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In honor of our two heroes, Don Knuth who was 85, a year ago, and Neil Sloane, who is

now 85

On Oct. 10, 2024, exactly 85 years after his birth, guru Neil Sloane gave a great Zoom talk:

https://vimeo.com/1018688642?share=copy .

After the talk was over his many fans discussed the significance of the number 85, and someone men-

tioned that the OEIS sequence A85 (https://oeis.org/A000085) is a very important sequence,

the number of involutions of length n, and also, thanks to the famous RSK (Robinson-Schenstead-

KNUTH) correspondence, the number of Young tableaux with n boxes. And indeed this sequence

was important enough that guru Don Knuth, in his bible, The Art of Computer Programming ([Kn],

pp. 62-64) spent three pages deriving, by hand, using Laplace’s method, the asymptotic formula

for the members of A85, first determined, using a different method by Moser and Wyman ([MW]).

Namely, tn := A85[n] (Eq. (53), p. 64, in [Kn]) is given by the following formula.

tn =
1√
2
nn/2e−n/2+

√
n−1/4

(
1 +

7

24
n−1/2 + O(n−3/4)

)
.

Knuth remarked:

In principle, the method we have used could be extended to any O(n−k), for any k, instead

of O(n−3/4).

In this modest tribute to our two heroes, we will do it in practice for the important number

k = 85. Ideally one should be able to use the Maple package

http://sites.math.rutgers.edu/~zeilberg/tokhniot/AsyRec.txt written by the third author,

and executed by the first author, that, alas, for some mysterious reason, can only go as far as k = 22.

Its extension, written in Sage by the second author, using the method in [KaJJ], and executed by

his computer, can go as far as one wishes, but in honor of the two gurus we will stop at O(1/n85).

We have (to order O(n−5))

Theorem:
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To get the O( 1
n85 ) asymptotics, that is too long to be typyset in humanese, see the output file:

http://sites.math.rutgers.edu/~zeilberg/tokhniot/A85asympt.txt .

Comments

1. Our method is different from both the one used by Moser and Wyman and the one used by

Knuth (that he attributes to Laplace). We use the method exposited in [WZ], originally invented

by George D. Birkhoff and W. J. Trjitzinsky, and implemented by us in Maple and Sage. We use

the fact, mentioned in [Kn] (p. 62, Eq. (40) there), that tn (i.e. A85[n]) satisfies the second-order

recurrence

tn = tn−1 + (n− 1)tn−2 .

2. The combinatorial proof given in [Kn] (p. 62), goes like this:

A permutation is its own inverse if and only if its cycle form consists of one-cycles (fixed points)

and two cycles (transpositions). Since tn−1 of the tn involutions have (n) as a one-cycle, and since

tn−2 of them have (jn) as a two-cyle, for fixed j < n, we obtain this formula.

We have two additional proofs, for what there are worth. Eq, (41) of ([Kn], p.62) says:

tn =

bn/2c∑
k=1

n!

(n− 2k)!2kk!
,

(as explained in [Kn], suppose there are k two-cycles and n− 2k one-cycles. There are
(
n
2k

)
ways to

choose the fixed points, and the multinomial coefficient (2k)!/(2!)k is the number of ways to arrange

the other elements into k distinguished transpositions; dividing by k! to make the transpositions

indistinguishable.)

Now download the Maple package:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/EKHAD.txt ,

and type

zeil(n!/((n-2*k)!*2**k*k!),k,n,N); ,

and you would get the above recurrence, followed by its proof certificate.

Eq. (42) in [Kn], p. 62, ∑
n

tnz
n/n! = ez+z2/2 ,

yields yet-another proof. In the above-mentioned Maple package, type

AZd(n!*exp(z+z**2/2)/z**(n+1),z,n,N); ,
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and you would get the recurrence, followed by its proof certificate.

3. This article is accompanied by a Maple package A85.txt available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/A85.txt ,

that lets you find the asymptotic expansion to order O(1/n(k+1)/2) for any 1 ≤ k ≤ 169. Just type

‘AsyI(n,k);’ if n is numeric, and ‘AsyIs(n,k);’, if n is symbolic.

Procedures SeqWn(N) outputs the list of first N terms of OEIS sequence A85.

Just for fun, to get A85[1000], (the number of involutions of length 1000) type:

SeqWn(1000)[1000]; ,

getting, right away, the number in the following output file:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/A85w1000.txt .

This is a 1296-digit number, that in floating point to twenty digits is:

2.1439289538422655419 · 101296 .

The approximation from using O(1/n) asymptotics is gotten by typing

evalf(AsyI(1000,1),20);

yielding

2.1441496003431008422 · 101296 .

The ratio to the exact value is:

1.0001029168902448312

On the other hand with evalf(AsyI(1000,30),20); (the O(1/n31/2)) formula), the ratio is:

0.9999999999999999999999999996 . . . .

Pas mal! .
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