Effectively multiplication- and division-free
residue number systems

Physics and Computer Science Department
Wilfrid Laurier University, Waterloo

e-mail: ezima@w/u.ca

mailto:ezima@wlu.ca

Chapter 4— Arithmetic 194

*4.3.2. Modular Arithmetic

THE CLASSIC WORK Another interesting alternative is available for doing arithmetic on large integer
NEWLY UPDATED AND REVISED numbers, based on some simple principles of number theory. The idea is to have
several moduli my1, mo, ..., m, that contain no common factors, and to work

indirectly with residues u mod mj, u mod my, ..., u mod m, instead of directly

with the number u.

The Art of

*4.3.3. How Fast Can We Multiply?

Computer
Programming * Intro and generic requirements to the moduli
VOLUME 2 Mersenne type of moduli
B Fermat type of moduli

* Sparse balanced binary number system
DONALD E. KNUTH * Three-term moduli (trinomials)

 Many small primes & two-level RNS (application)
* Conclusion

Intro

modular

s R/(p
R/{p1)
direct modular
computation computation
v
R/{p1)
| / |
R : o
\ Y
reconstruction

R/(pr)

FIGURE 5.2: General scheme for small primes modular algorithms.

Modern Computer Algebra

e Taalle;

Intro

If bit-complexity of direct computations
is M (n) the “modular” approach
reduces it to rM (%) plus some “overhead”.

modular

s R/(p
R/{p1)
direct modular
computation computation
v
R/{p1)
| / |
R : o
\ Y
reconstruction

R/(pr)

FIGURE 5.2: General scheme for small primes modular algorithms.

Modern Computer Algebra

e Taalle;

Intro

If bit-complexity of direct computations
is M (n) the “modular” approach
reduces it to rM (%) plus some “overhead”.

Additionally

e the size of intermediate results is controlled

e computations modulo p;,2 =1,...,r
can be done in parallel

modular

y R/{pr)
\
R/(p1)
direct modular
computation computation
- R/ {p1)

Y
R

Y

R/(pr)

FIGURE 5.2: General scheme for small primes modular algorithms.

Modern Computer Algebra

e Taslls
11

Similarity with evaluation and interpolation

reduction == evaluation
reconstruction == interpolation

Compare Garner’s reconstruction and Newton interpolation...

Selection of different evaluation points was studied extensively.
See for example

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS

DANIEL J. BERNSTEIN

ABSTRACT. This paper surveys techniques for multiplying elements of various
commutative rings. It covers Karatsuba multiplication, dual Karatsuba multi-
plication, Toom multiplication, dual Toom multiplication, the FFT trick, the
twisted FF'T trick, the split-radix FFT trick, Good’s trick, the Schonhage-
Strassen trick, Schonhage’s trick, Nussbaumer’s trick, the cyclic Schonhage-
Strassen trick, and the Cantor-Kaltofen theorem. It emphasizes the underlying
ring homomorphisms.

Selection of different evaluation points was studied extensively.
See for example

MULTIDIGIT MULTIPLICATION FOR MATHEMATICIANS

DANIEL J. BERNSTEIN

ABSTRACT. This paper surveys techniques for multiplying elements of various
commutative rings. It covers Karatsuba multiplication, dual Karatsuba multi-
plication, Toom multiplication, dual Toom multiplication, the FFT trick, the
twisted FF'T trick, the split-radix FFT trick, Good’s trick, the Schonhage-
Strassen trick, Schonhage’s trick, Nussbaumer’s trick, the cyclic Schonhage-
Strassen trick, and the Cantor-Kaltofen theorem. It emphasizes the underlying
ring homomorphisms.

Selection of different moduli is not that popular, but still deserves investigation.

Requirements to the moduli

- relative primality

modular
modular reduction R/{pr) o |
reduction . - “fast” reduction
\ - “fast” reconstruction
R/{p1)
, - balance in size
direct modular
computation computation
| - scalability
R/(p1)
i / .
reconstruction

R/(p:)

Algorithm 5 Garner(r, m)

Most “complex” arithmetic operations involved Require: Vie [0, N-1]: 0< r, <m;

in reduction/reconstruction: E;‘S;‘;'e‘ “Elrf o)
2:fori=1toN-1do
- integer division with remainder (red) 33 M ~— Mm;_,
. . . e M _
- computation of modular inverses (rec) 2: eng‘for e maday
- multiplication by moduli (rec) i i)
- multiplication by the inverses (rec) 7:fori=1toN—-1do
8: [<-——a;_,
9: forj=i-2downtoOdo
10: [<— tm;
Some variations of reconstruction use l: 1 «—1+gq
12: end for

P - V—k

14: a; <— tM; mod m;
15: end for

16: a <— ay_,
17:fori=N -1 downto 0
18: a <—— am;

19: a<-<—a+aq;

20: end for

21: return a

M;; =m;' mod m;, (i< j)

How to chose the moduli making both
conversion to RNS and reconstruction
as efficient as possible?

Mersenne type of modul

Several relatively prime moduli of the form 2" —1 are selected (using ged(2"—1,2™—1) =1
if and only if ged(n,m) = 1).

This replaces division with remainder in the residue computation by shift and addition
operations that are much simpler (using that 2* = 1 mod (2" — 1), the remainder from

division of z by 2™ — 1 can be obtained by splitting = into several numbers of bit-length n
from right to left and adding them modulo 2" — 1).

Mersenne type of moduli 2°=1 mod (2" - 1)

Mersenne type of moduli 2°=1 mod (2" - 1)

[Lvput 1 mod (lb\" 4) =

I
:@,UTL\ k':D

T T med (R-1)

Mersenne type of modul

- relative primality ged(2° — 1, 27 — 1) = gecdlef) _ 1
- reduction is fast

—recenstruetiondistast-(multiplications by moduli are fast,
multiplication by “precomputed” inverses are not)

- balance in size

- scalabihty

Mersenne type of modul

- relative primality ged(2° — 1, 27 — 1) = gecdlef) _ 1
- reduction is fast "=1 mod (2" — 1)

—recenstruetiondistast-(multiplications by moduli are fast,
multiplication by “precomputed” inverses are not)

- balance in size

- scalabihty

Mersenne type of moduli (scalability)

One of the earliest (semi-successful use of Mersenne type of moduli in modular arithmetic):

[10] Schonhage A. Multiplikation groer Zahlen. Computing vol. 1, 1966, pp. 182-196.

Mersenne type of moduli (scalability)

One of the earliest (semi-successful use of Mersenne type of moduli in modular arithmetic):

In order to understand the essential mechanism of Schonhage’s method, we
shall look at a special case. Consider the sequence defined by the rules

go = 1, gk+1 = 3qk — 1, (22)
so that gy = 3F — 31 - ... -1 = %(3’“ + 1). We will study a procedure

that multiplies pg-bit numbers, where py = (18¢x + 8), in terms of a method

for multiplying px_1-bit numbers. Thus, if we know how to multiply numbers
having po = 26 bits, the procedure to be described will show us how to multiply
numbers of p; = 44 bits, then 98 bits, then 260 bits, etc., eventually increasing
the number of bits by almost a factor of 3 at each step.

When multiplying pg-bit numbers, the idea is to use the six moduli

my = 96gk—1 _ 1,

my = 289+3 _ 1 mg = 2695 — 1, me = 289x+7 _ 1.

mo = 26qk+1 _ 1, ms = 26a+2 _ 1

3

(23)

These moduli are relatively prime, by Eq. 4.3.2—(19), since the exponents
6gr —1, 6qx+1, 6gr+2, 6gx+3, 6ge+09, 6gp+7 (24)

are always relatively prime (see exercise 6). The six moduli in (23) are capable
of representing numbers up to m = mimemamgmsmg > 2359%+16 — 92px g0
there is no chance of overflow in the multiplication of pg-bit numbers v and v.

Mersenne type of moduli (scalability)

One of the earliest (semi-successful use of Mersenne type of moduli in modular arithmetic):

The reader will find it instructive to study the ingenious method represented
by (32) and (33) very carefully. Similar techniques are discussed in Section 4.6.3.

Schonhage’s paper [Computing 1 (1966), 182-196] shows that these ideas
can be extended to the multiplication of n-bit numbers using r ~ 2V2lgn moduli,
obtaining a method analogous to Algorithm T. We shall not dwell on the details
here, since Algorithm T is always superior; in fact, an even better method is
next on our agenda.

T() = (av)T (F) + 0 ()

T(w) = (v T (%) + 0 ()

Mersenne type single modulus

Side note (from 1960):

T'he Use of Index Calculus and Mersenne Primes for the

Design of a High-Speed Digital Multiplier*
Avipzrr S. FRAENKEL

University of Culifornia, Los Angeles

Introduction

In recent years there has been an interest in unconventional number repre-
sentations for computer number systems {1, 2]. The present paper considers a
system in which the two numbers entering a multiplication are transformed
into sndices. These indices are added in their own number system. I'he sum, when
converted back, gives the product.

As with logarithms, multiplication is thus replaced by the faster process of
addition. In fact, ¢” may be computed by the single operation of multiplying
the index of a by n. Using indices that arc integers the product is exact, which
is not generally true for logarithms. However, the difference of two indices
corresponds to the quotient only when the latter is an integer. No easy way has
been found for performing division in other cases.

Properties of indices corresponding to Mersenne Primes are derived and used
to save mechanization or storage requirements for the conversion of numbers
into indices and vice versa. For a computer with a large word length, the re-
quired storage is still quite extensive.

Fermat type of moduli

Different strategies of selecting the moduli of the form 2™ + 1 were considered in [12].
Relative primality of such moduli guaranteed by the proper choice of exponents driven by
the following fact:

ged(2™ +1,2" 4+ 1) =1 < wvy(m) # va(n),

where vy(x) is the binary valuation of z (the number of trailing zeros in the binary repre-
sentation of).

Fermat type of moduli

Different strategies of selecting the moduli of the form 2™ + 1 were considered in [12].
Relative primality of such moduli guaranteed by the proper choice of exponents driven by

the following fact:
ged(2™ +1,2" 4+ 1) =1 < wvy(m) # va(n),

where vy(x) is the binary valuation of z (the number of trailing zeros in the binary repre-
sentation of).
This is a corollary of a more general result: for any

positive integers a, 1, m, a > 1 [4], 4. Cade, J.J., Kee-Wai, Lau, Pedersen, A., and Loss-
ers, O.P., Problem E3288. Problems and Solutions, The

GCD(a" + 1,a" + 1) Am. Math. Monthly, 1990, vol. 97, no. 4, pp. 344-345.
% S 1, if vo,(m) = v,y(n)
| if v,(m) #v,(n)
=h and « 1s even
2 if v,(m)#v,(n)

and « 1s odd.

Fermat type of moduli

Different strategies of selecting the moduli of the form 2™ + 1 were considered in [12].
Relative primality of such moduli guaranteed by the proper choice of exponents driven by
the following fact:

ged(2™ +1,2" 4+ 1) =1 <= vy(m) # va(n),

~

where vy(x) is the binary valuation of z ~ - T S {5] devetad fo Bvitizt

sentation of z). numbers [5] (which appeared 11 years later after publi-
cation [4]), only a particular case of this result i1s
proven:

GCD(2" +1,2™ +1)
1, if n 1s even
2"+ 1. if n is odd.

5. K¥iZek.M.. Luca. F.. and Somer. L., 17 Lectures on Fer-
mat Numbers: From Number Theory to Geometry. New
York: Springer, 2001.

Fermat type of moduli

Using 2" = —1 mod (2™ + 1), the remainder from division of z by 2™ + 1 can be obtained
by splitting z into several numbers of bit-length n from right to left and subtracting/adding
them modulo 2" + 1 (see [12] for details).

~a

Fermat type of moduli

Fermat type of moduli

Fermat type of moduli

Block strategy Shift strategy

m; =222 41, i=0.1,... k m; =22 11, i=01,...k

n >k

Space complexity comment ...

Fermat type of moduli (shift strategy)

Consider moduli of the form m; = 2% +1, i = 0,2,...,k, where a is an arbitrary
positive integer, and products M; = Hj;t m; = Hj;t (2“2j + 1) , 1=0,1,...,k—1. Then

M modm; =221 -2 41, i=1,2, .. k. (1)

Fermat type of moduli (shift strategy)

Consider moduli of the form m; = 2% +1, i = 0,2,...,k, where a is an arbitrary
positive integer, and products M; = H;;%) m; = Hj.;t (2“2j + 1) , 1=0,1,...,k—1. Then

M, " mod m; = 90—l _ga-l 41 =1, 2,..., k. (1)

With this choice of moduli there is no need to (pre-)compute and to store inverses. Inverse
is defined by the value of a (which is the same for all moduli) and the index ¢. This allows
reconstruction to become essentially multiplication-free: multiplication by the sparse inverse
is just 2 shifts, 1 addition, and 1 subtraction. When a =1 (i.e., the moduli are consecutive
Fermat numbers), Mz-_1 mod m; = 22!, 4 = 1,2,... and multiplication by the inverse
requires shift only.

Fermat type of moduli (shift strategy)

Consider moduli of the form m; = 2% +1, i = 0,2,...,k, where a is an arbitrary
positive integer, and products M; = H;;%) m; = Hj.;t (2a2j + 1) , 1=0,1,...,k—1. Then

M modm; =221 -2 41, i=1,2, .. k. (1)

With this choice of moduli there is no need to (pre-)compute and to store inverses. Inverse
is defined by the value of a (which is the same for all moduli) and the index ¢. This allows
reconstruction to become essentially multiplication-free: multiplication by the sparse inverse
is just 2 shifts, 1 addition, and 1 subtraction. When a =1 (i.e., the moduli are consecutive
Fermat numbers), Mz-_1 mod m; = 22!, 4 = 1,2,... and multiplication by the inverse
requires shift only.

However, such choice of moduli does not satisfy balance requirement. In fact, the bit
length of m; is larger than the bit-length of product mgm; ... m;_;.

Fermat type of moduli (other bases)

A more general result is valid for an arbitrary
numerical system with an even base B. Consider mod-

uli of type m; = le +1 (i =0,1, ..., k) and products
M= [T om =TT B+ =1.2 k)

Proposition 2.

B _B+2

= 1.2.....k.
5 l , &,

-1
M. mod m; =

[

Fermat type of moduli

Block strategy Shift strategy

- relative primality — 8d(2" +1,2"+1) =1 <= w(m) #v:(n) - relative primality

- reduction is fast 2" =-1 mod (2" +1) - reduction is fast

- reconstructionisfast(same as - reconstruction is fast
Mersenne)

- balance in size - balapceinsize

- scalability ? - scalability

Simple scalability is in place if multiplying all the exponents by the same
natural a preserves relative primality, and probably some other interesting
properties.

Sparse balanced binary numbers

Consider = € Z represented as

Huxonaii IlerpoBuy bpycennos

CeTyHl), IKCNIEPUMEHTAJIbHAA MOJEIb

r = b2 with b; € {—1,0,1}. (2)
1=0

This representation looks similar to the balanced ternary representation [TAoCP]
but uses base 2 instead of base 3. We call (2) balanced binary representation =
and note that it shares many useful properties with balanced ternary repre-
sentation. For example,

(a) most significant digit in (2) defines the sign of number .

~~~~~

(b) x =0 if and only if b; = 0,7 = 0, 1,...n. Equivalently, if there is a value Cerynp, cepmiiHast Mones,
of index 7 such that b; # 0 then z # 0. BBINyIIeHo S50 mr.
Representation (2) is not unique. However, with little additional effort this

can be fixed. *{ \

30 = 11110 . L]

30 = 100110
30 = 100010




Sparse balanced binary numbers

Huxonaii IlerpoBuy bpycennos

We say that a number x € Z is in sparse balanced binary representation it

CeTyHb, JKCIIEPHMEHTAILHAS MOAEIh

x:ZbZZZ with bz c {—1,0,1} and bszl:Oforz:O,l,,n—l, (3)

1=0 d | i

~~~~~

i.e., it is represented as in (2) with extra requirement: no two consecutive
bits are set.

CeryHb, cepuiiHasi MOJI€JIb,
BbINyIeHO S50 mT.

Sparse balanced binary numbers

Huxonaii IlerpoBuy bpycennos

We say that a number x € Z is in sparse balanced binary representation it

CeTyHlx, IKCNIEPUMEHTAJIbHAA MOJEIb

Q?ZZbZZZ with bz € {—1,0,1} and bszl:Oforz:O,l,,n—l, (3)

1=0

i.e., it is represented as in (2) with extra requirement: no two consecutive
bits are set.

. . . CeryHnb, cepuiiHas MoJ€JIb,
1. Every number x € Z has unique sparse balanced binary representation. BLImymeno 50 .

2. Sparse balanced binary representation of x € Z is the sparsest one: it has
minimal number of bits set among all possible balanced binary representa-
tions of .

NN ginunuInnnn
wnao punnIaann
i e

e
ARLARALEE Laay
A T SR TR R TP

Sparse balanced binary numbers

Given z as in (3) and natural u,
Scal(u, x) Z b; 2" .

This is the same as change of base from 2 to 2.

Fermat type moduli scale (preserve relative primality under scaling), Mersenne type moduli do not scale
2"+ 1 1L 2"+ 1 <= 1n(m) # 1n(n) ged(2'™ —1,2"" — 1) # 1 for u > 1
29 4+ 1 1 2"+ 1 <= wa(um) # ve(un)
vo(uv) = vo(u) + v2(v)

Sparse balanced binary numbers

“Some other interesting property” is computed inverses preserve sparsity under scaling operation

For example, for a = 2224 + 1 and b = 2192 4+ 1 we have
a—l mod b = 2191 4+ 2159 i 2127 4 295 4 263 i 231 4+ 1.

Now, it we scale moduli by factor v = 100 and consider a = 222400 4+ 1 and
b= 219200 1 1 then

a—l mod B _ 219199 + 215999 4+ 212799 + 29599 4+ 26399 + 23199 +1.

Sparse balanced binary numbers

“Some other interesting property” is computed inverses preserve sparsity under scaling operation

For example, for a = 2224 + 1 and b = 2192 4+ 1 we have
a—l mod b = 2191 4+ 2159 i 2127 4 295 4 263 i 231 4+ 1.

Now, it we scale moduli by factor v = 100 and consider a = 222400 4+ 1 and
b= 219200 1 1 then

a—l mod B _ 219199 + 215999 4+ 212799 + 29599 4+ 26399 + 23199 +1.

m; =222 +1, i=0,1,....k

n >k

... start with i>1 and sparsity of inverses will be preserved under scaling

Sparse balanced binary numbers

“Some other interesting property” is computed inverses preserve sparsity under scaling operation
2 Some basic facts

Let u and v be natural with v > v. Write u = qu + 7, (0 <7 <w).
Then
)2 +1=Q(2"—-1)+ R, (0<R<2’—1) with

R=2"+1 Q=2""+2""%4...42%°%
2)2¢—1=Q(2" - 1)+ R, (0< R<2"—1) with

R=2"—-1, Q=2¥""4+2""2 ... v
3)2+1=Q(2"+1)+ R, (0<R<2"+1) with

R=2"+1 Q=24"Y_v & ... _uw
for even ¢, and

R=2"— (2 —1) 41, Q=2""—2v20 4 .. youa_1
for odd q.
AH 2 —1=Q2"+1)+R, (0< R<2"+1) with
RZQT—]_, Q:2u—v_2u—2v+.”_2u—qv

for even ¢, and

R=2"-2", Q:Q”_”_2"_2”_|_...+2“—qv_1
for odd gq.

Sparse balanced binary numbers

“Some other interesting property” is computed inverses preserve sparsity under scaling operation

2 Some basic facts

Let u and v be natural with u > v. Write u = qu+r, (0 <r < wv).
Then
1)2"+1=Q(2*—-1)+ R, (0 < R<2"—1) with

R=2"+1 Q=2""+2""%4...42%°%
2)2¢—1=Q(2" - 1)+ R, (0< R<2"—1) with

R=2"—-1, Q=2¥""4+2""2 ... v
3)2+1=Q(2"+1)+ R, (0<R<2"+1) with

R=2 41, Q=2v"v_u2 . . _gua
for even ¢, and

R=2"— (2 —1) 41, Q=2""—2v20 4 .. youa_1
for odd q.
42" —1=Q(2°+1)+ R, (0<R<2°+1) with
R:2T—1, Q:2u—v_2u—2v+_”_2u—qv

for even ¢, and

R=2"-2", Q:Q"‘”_2“_2”+...+2“—qv_1
for odd gq.

Consider two moduli from a group of block-Fermat numbers: 22"~2 +1
and 22" 72" 41 with m > [. "Remainder” sequence for those looks like
E

22"-2" 4 1,

after subtraction we get

92"-2" (922" _ 1) and after cancelling power of 2 we get

e

Next reminder is from division of 22" 72" + 1 by =

Sparse balanced binary numbers

“Some other interesting property” is computed inverses preserve sparsity under scaling operation

2 Some basic facts

Let u and v be natural with u > v. Write u = qu+r, (0 <r < wv).
Then
1)2"+1=Q(2*—-1)+ R, (0 < R<2"—1) with

R=2"4+1, Q=2""42u2 .. 4 oua
2)2¢—1=Q(2" - 1)+ R, (0< R<2"—1) with

R=2"—-1, Q=2¥""4+2""2 ... v
3) 2 +1=Q(2°+1)+ R, (0< R<2"+1) with

R=2 41, Q=2v"v_u2 . . _gua
for even ¢, and

R=2"— (2 —1) 41, Q=2""—2v20 4 .. youa_1
for odd q.
42" —1=Q(2°+1)+ R, (0<R<2°+1) with
R:2T—1, Q:2u—v_2u—2v+_”_2u—qv

for even ¢, and

R=2"-2", Q:Q”‘”_2“_2”+...+2“—qv_1
for odd gq.

Consider two moduli from a group of block-Fermat numbers: 22"~2 +1
and 22" 72" 41 with m > [. "Remainder” sequence for those looks like
E

22"-2" 4 1,

after subtraction we get

92"-2" (922" _ 1) and after cancelling power of 2 we get

e

Next reminder is from division of 22" 72" + 1 by =

1

The closed-form expression for a™ mod b when m =141 is

92" —2m—1 | 92" —2m—2!-1 4oy 92" 2" —(g—1)2' -1 +1
Alternatively,

92"—2m—1 | 22"—2m—2l—1 bt 22‘—1 +1

Sparse balanced binary numbers

Repeat for scaled numbers:

For a = 2"=2)% 41 and b = 22" -2 4 1
the extended gcd sequence for general m, n:

S t

1 0

0 1

1 —1
1 2(2m—2l)u
m=1014+1

The closed form expression for a™

g

2(2"—2’)u +1
2(2“—2m)u +1

2(2”—2m)u(2(2m—2l)u _
—1

2(2m—2l)u

1

1)

mod b is

2(2n—2m)u—1 + 2(2"—2m—2l)u—1 IS 2(2”—2m—(q—1)-2l)u—1 +1

... or use Maple to choose “satisfactory” group of moduli...

Notes:

Note that SBB-number is evaluation of a sparse polynomial from Z3|z]
at © = 2 (when symmetric representatives for Zs are used); also scaling
operation with scaling factor u is evaluation of the same polynomial at x = 2.

Moduli size grow fast with the number of moduli required.

Block Fermat numbers not perfectly balanced in size.

Three-term modul,

mi:2”

- B

1,

k; <n

Three-term modul,

mz — 2n —+ zkz T 1, k’l, < n Balance is guaranteed by default

Three-term moduli

mz — 2'n, |- 2kz -1 1, k’l, < /4] Balance is guaranteed by default

Simple Power Analysis on Fast Modular
Reduction with NIST Recommended
Elliptic Curves

Yasuyuki Sakai' and Kouichi Sakurai?

Three-term moduli

mz = 2n —+ 2kz —+ 1, k’l, < n Balance is guaranteed by default

2.1 Generalized Mersenne Prime

In FIPS 186-2 NIST provides 5 recommended prime fields [2]. The order of the
fields are shown below.

P-192: pjgo = 2192 — 264 _ 1

P-224: pogg = 2224 — 296 1

P-256: Dasg = 2256 — 2224 of 2192 o 296 =
P-384: Paga = 2384 — 2128 - 296 - 232 |
P-521: Ps521 = 2521 -1

These recommended primes have a special form, which are referred to as gen-
eralized Mersenne prime. This form permits fast modular reduction. Solinas gave
fast reduction algorithms for such the prime [4,15]. The following Algorithms
2, 3, 4 and 5 show the dedicated reduction algorithms for p192 p224, P256, P3s4 and
Ps21, respectively.

Three-term moduli

mz = 2n —+ 2kz —+ 1, k’l, < n Balance is guaranteed by default

GENERALISED MERSENNE NUMBERS REVISITED

ROBERT GRANGER AND ANDREW MOSS

ABSTRACT. Generalised Mersenne Numbers (GMNs) were defined by Solinas
in 1999 and feature in the NIST (FIPS 186-2) and SECG standards for use
in elliptic curve cryptography. Their form is such that modular reduction is
extremely efficient, thus making them an attractive choice for modular mul-

Three-term moduli

Consider m = 2" — 2¥ + 1 and a 2n-bit number z. Using 2" = 2 — 1 mod m one
can compute (in division/multiplication-free manner (see also [9])) r = rem(z,2"), ¢ =
quo(z,2"), y = r+q-(2F—1), obtaining number y of length about n+ k bits with z mod m =
y mod m. This process can be continued until we get residue of z. If £ < cn for fixed
constant ¢: 0 < ¢ < 1, then the number of iterations in this process is bounded by [~],
i.e., effectively bounded by constant and does not depend on n.

Three-term moduli

Algorithm 2 Theoretic-Reduce(a, m) — Reduce a by m = 2" — 2F 41

Require: 0 <a
Ensure: The number returned r satisfies 0 < r < 2" —1
aa +— a
r rem(aa,2")
q < quo(aa,2™)
while ¢ # 0 do
aa —r+q-(2F 1)
r < rem(aa,2")
q < quo(aa,2™)
end while
if r>2" -2+ 1thenr«r— (2" -2F+1)
end if

- return r

e
- O

If k ~ 3/4 n the while loop has at most 4 iterations; If k ~ 1/2 n the while loop has at most 2 iterations;

Three-term moduli

Algorithm 2 Theoretic-Reduce(a, m) — Reduce a by m = 2" — 2F 41

Require: 0 <a

Ensure: The number returned r satisfies 0 < r < 2" —1

[
S

11:

aa < a
r rem(aa,2")
q < quo(aa,2™)
while ¢ # 0 do
aa —r+q-(2F 1)
r < rem(aa,2")
q < quo(aa,2™)
end while
if r>2" -2+ 1thenr«r— (2" -2F+1)
end if

return r

202017 =-2027A10+1

Regular Simple
rand[0..n] | GMP (s) Reduce (s)
2/A21718 2.04586 0.0336324
2A2719 6.96865 0.0816615
2A21720 13.5465 0.243587
2A2/21 26.9513 0.885439
2A2A22 54.3707 3.504

If k ~ 3/4 n the while loop has at most 4 iterations; If k ~ 1/2 n the while loop has at most 2 iterations;

Reduction is fast for both — original arbitrary large input and in RNS (15t line in the table above).

Three-term moduli

Consider moduli m; =2" =2 +1,my=2" -2 +1,n >k > L.

A very simple sufficient condition of co-primality of m;, ms is:
if n mod (k —¢) = k mod (k — ¢) or k mod (k — ¢) = 0 then gcd(m;, ms) = 1. This follows
from the inspection of remainder sequence for m,, mo while applying combined steps of
binary and regular Euclidean algorithm: 2" — 2¢ +1,2" — 2F 4+ 1,25(2*% —1),... and the
equality

(2n . 2k + 1) mod (2k—£ . 1) — 9n mod (k—¥¢) 2k mod (k—¥) +1.

Similar conditions hold for different choice of +/— signs between terms of moduli.

Three-term moduli

Now, to satisfy requirement 3 one needs to search for moduli in advance using careful
inspection of application of binary and regular extended Euclidean algorithm to my, ms with
fixed n and variable k,¢. This search is to be performed only once, and produces moduli
and inverses that can be re-scaled and reused for different sizes of input. The scalability
follows from simple properties of remainder sequences: if ged(2" —2¢+1,2" —2F +1) =1
then for any natural a also ged(2°" — 2% +1,2%" — 2% + 1) = 1 (the remainder sequence for
scaled moduli will be the same as original with all exponents scaled by the factor a). Also,
if for k > £ + 1 the inverse m; ' mod m, has sparse bit pattern, then scaling moduli the by
same factor a preserves the bit pattern (again, remainder sequence in binary and regular
extended Euclidean algorithm remains the same with all exponents scaled). For example,
(2100 — 260 4 1)~! mod (2! — 2% + 1) = 290 4 230 + 220 4 210 4 1 and scaling by arbitrary
natural a gives (2190¢ — 2602 1)=1 mod (21902 — 2°0a 4 1) = 240a 4 230a 4 920a 4 9l0a 4 7

Three-term moduli

Note, that after three-terms moduli satisfying requirements 1-4 are selected, one can add
2™ and 2" 4+ 1 to the set of moduli, as these new moduli are relatively prime to previously
selected, and also (2" —2F +1) ' mod 2" =2 +1, (2" —2*+ 1) mod (2" + 1) = 2" * and
(2" +1)~! mod 2™ = 1, i.e., inverses are sparse and scalable.

Many small primes

Choose many moduli that fit machine word and use hardware arithmetic for the simultaneous reduction/reconstruction

Simultaneous Conversions with the Residue Number System
Using Linear Algebra

JAVAD DOLISKANI, Institute for Quantum Computing, University of Waterloo
PASCAL GIORGI and ROMAIN LEBRETON, LIRMM CNRS - University of Montpellier
ERIC SCHOST, University of Waterloo

We present an algorithm for simultaneous conversions between a given set of integers and their Residue
Number System representations based on linear algebra. We provide a highly optimized implementation of
the algorithm that exploits the computational features of modern processors. The main application of our
algorithm is matrix multiplication over integers. Our speed-up of the conversions to and from the Residue
Number System significantly improves the overall running time of matrix multiplication.

Many small primes (FFLAS-FFPACK)

Choose many moduli that fit machine word and use hardware arithmetic for the simultaneous reduction/reconstruction
- relative primality

- reduction is fast

Simultaneous Conversions with the Residue Number Systertn B
Using Linear Algebra ““reconstruction is fas

- balance in size

JAVAD DOLISKANI, Institute for Quantum Computing, University of Waterloo)
PASCAL GIORGI and ROMAIN LEBRETON, LIRMM CNRS - University of Montpellier
ERIC SCHOST, University of Waterloo

We present an algorithm for simultaneous conversions between a given set of integers and their Residue
Number System representations based on linear algebra. We provide a highly optimized implementation of
the algorithm that exploits the computational features of modern processors. The main application of our
algorithm is matrix multiplication over integers. Our speed-up of the conversions to and from the Residue
Number System significantly improves the overall running time of matrix multiplication.

Two-level RNS (application)

In [4] an algorithm for simultaneous conversions between a given set of integers and their
modular representations based on linear algebra is described. Authors provide a highly opti-
mized implementation of the algorithm that exploits the computational features of modern
processors. This implementation performance on the standard benchmark of matrix multi-
plication starts to deteriorate when the size of entries of randomly selected integer matrices
becomes very large (2!® or more bits).

Two-level RNS (application)

In [4] an algorithm for simultaneous conversions between a given set of integers and their
modular representations based on linear algebra is described. Authors provide a highly opti-
mized implementation of the algorithm that exploits the computational features of modern
processors. This implementation performance on the standard benchmark of matrix multi-
plication starts to deteriorate when the size of entries of randomly selected integer matrices
becomes very large (2'® or more bits).

To improve this two layer experimental modular approach was implemented by Yu Li
and Benjamin Chen (University of Waterloo).

The idea is to select large moduli discussed in previous section on the first layer, and
reduce the problem to several problems with entries bit-size amenable for FFLAS-FFPACK.
On the second layer simultaneous conversion [4] is used. Result from multiple calls to
FFLAS-FFPACK are used to reconstruct the final answer using accelerated reconstruction
with specially selected modul.

Two-level RNS (application)

Benchmark is matrix multiplication with large integer entries

| Dim | Size | FFLAS | Marge (overh) | Trinom (overh) |
8 | ~20° | 1.09 0.22 (0.05) 0.41 (0.03)
T [2™ 219 [102.69 | 11.73 (0.88) | 1L52 (0.52)
[~2 | 40658 | 43.64 (2.07) | 43.20 (1.16)
T~ [1627.49 | 169.45 (5.17) | 168.78 (2.57)
| ~22T | DNF | 385.71(7.95) | 382.80 (4.05)
16 | ~2° | L8 0.44 (0.18) 0.49 (0.12)
T 2219 | 10531 | 16.96 (3.37) 15.84 (1.92)
T ~2 | 41694 | 5942 (8.16) | 56.20 (4.44)
T ~2% [1656.10 | 222.08 (20.54) | 212.76 (10.09)
T | ~2%T | DNF | 482.94 (3L.7) | 480.15 (16.07)
33 | ~20 1.61 1.33 (0.62) 1.11 (0.39)
T[22 [124.33 | 42.63 (13.43) | 38.29 (7.57)
T [~2 | 479.36 | 128.12 (32.56) | 114.51 (17.65)
T [~2 [2003.60 | 450.47 (82.15) | 408.52 (40.35)
T [~27T | DNF | 946.7 (126.96) | 900.89 (63.93)

Table 1: Timing (in seconds) of square integer matrix multiplication benchmark:

Dim - matrix dimension, Size - bitsize of entries, FFLAS - direct use of FFLAS-FFPACK implemen-
tation, Marge - first layer with 7 moduli of the form 2™ — 1, Trinom - first layer with 7 moduli of the
form 2" — 2¥ 41, (overh) represents the time spent for conversion to and from RNS in the first layer
(note, that in column Marge overhead includes time to compute inverses, while in column Trinom
inverses are not computed and obtained from scaling). Hardware used is AMD EPYC 7502P 32C
@ 2.5 GHz with 503GB of RAM. Entries DNF mean “did not finish in 10 hours”.

FFLAS-FFPACK timing

I Preprocessing
| Simultaneous conversion to RNS

B Multiplication in all RNS
[] Reconstruction of result from modular images

FFLAS-FFPACK timing

I Preprocessing
| Simultaneous conversion to RNS

B Multiplication in all RNS
[] Reconstruction of result from modular images

B Upper layer conversion to RNS

I

FFLAS-FFPACK timing

I Preprocessing
| Simultaneous conversion to RNS

B Multiplication in all RNS
[] Reconstruction of result from modular images

[1 savedtime

B Upper layer conversion to RNS

FFLAS-FFPACK timing

I Preprocessing
| Simultaneous conversion to RNS

B Multiplication in all RNS
[] Reconstruction of result from modular images

[1 savedtime

B Upper layer conversion to RNS

FFLAS-FFPACK timing

I Preprocessing
| Simultaneous conversion to RNS

B Multiplication in all RNS
[] Reconstruction of result from modular images

[1 savedtime

B Upper layer conversion to RNS

FFLAS-FFPACK timing

I Preprocessing
| Simultaneous conversion to RNS

B Multiplication in all RNS
[] Reconstruction of result from modular images

[1 savedtime

B Upper layer conversion to RNS

FFLAS-FFPACK timing

I Preprocessing

| Simultaneous conversion to RNS

B Multiplication in all RNS

[] Reconstruction of result from modular images

[1 savedtime

B Upper layer conversion to RNS
B Upper layer reconstruction

Two-level RNS (application)

Benchmark is matrix multiplication with large integer entries

Dim Size FFLAS | Marge (overh) | Trinom (overh)
8 ~ 210 1.09 0.22 (0.05) 0.41 (0.03)
- 2% — 2891 102.69 11.73 (0.88) 11.52 (0.52)
- ~ 219 406.58 43.64 (2.07) 43.20 (1.16)
- ~ 220 1627.49 | 169.45 (5.17) 168.78 (2.57)
- ~ 241 DNF 385.71 (7.95) 382.80 (4.05)
16 ~ 21° 1.18 0.44 (0.18) 0.49 (0.12)
- 218 — 2191 105.31 16.96 (3.37) 15.84 (1.92)
- ~29 | 416.94 | 59.42 (8.16) 56.20 (4.44)
- ~ 24 1656.10 | 222.08 (20.54) | 212.76 (10.09)
- ~ 221 DNF 482.94 (31.7) 480.15 (16.07)
32 | ~2D» 1.61 1.33 (0.62) 1.11 (0.39)
- 218 _ 219 1 124.33 42.63 (13.43) 38.29 (7.57)
- ~ 2% 479.36 | 128.12 (32.56) | 114.51 (17.65)
= ~ 240 2003.69 | 450.47 (82.15) | 408.52 (40.35)
- ~ 241 DNF 946.7 (126.96) | 900.89 (63.93)

Table 1: Timing (in seconds) of square integer matrix multiplication benchmark:

Dim - matrix dimension, Size - bitsize of entries, FFLAS - direct use of FFLAS-FFPACK implemen-
tation, Marge - first layer with 7 moduli of the form 2™ — 1, Trinom - first layer with 7 moduli of the
form 2" — 2F 41, (overh) represents the time spent for conversion to and from RNS in the first layer
(note, that in column Marge overhead includes time to compute inverses, while in column Trinom
inverses are not computed and obtained from scaling). Hardware used is AMD EPYC 7502P 32C
@ 2.5 GHz with 503GB of RAM. Entries DNF mean “did not finish in 10 hours”.

Two-level RNS (application)

15t level arithmetic comparison

Size | R.Red | M.Red | T.Red R.Rec M.Rec T.Rec
218 3.90 0.10 0.20 3.41 + 6.68 2.39 + 2.59 2.48
219 9.96 0.20 0.37 8.51 + 16.82 5.94 + 6.42 6.26
220 | 24.70 0.40 0.64 20.22 + 39.17 | 14.38 + 15.71 | 14.86
221 | 58.45 0.79 1.24 51.35 + 88.67 | 38.45 + 36.57 | 34.43
222 | 128.40 1.59 2.43 | 111.44 + 195.43 | 84.07 + 78.96 | 77.14

Table 2: Timing (in seconds) for the input 32 by 32 matrix conversion to RNS and immediate
reconstruction from RNS. Column Size represents bitsize of matrix entries, R.Red — time for the
regular (division-based) reduction, M.Red - reduction by moduli of the form 2" —1, T.Red - reduction
by moduli of the form 2" — 2¥ + 1. Column R.Rec represents time of the regular reconstruction
[4] (time to compute inverses + reconstruction time), M.Rec — reconstruction time for moduli of

the form 2™ — 1 (time to compute inverses + reconstruction time), T.Rec — reconstruction time for
moduli of the form 2" — 2% + 1. Hardware used is AMD EPYC 7502P 32C @ 2.5 GHz with 503GB

of RAM.

Conclusion

Careful selection of moduli with fixed bit-pattern provides practical improvement to
the standard modular algorithms. This selection (satisfying requirements 1-4) uses search
with back-tracking and is based on inspection of remainder sequences in combined binary
and regular extended Euclidean algorithm. There is a similarity between few-terms moduli
discussed here and polynomials with few terms (such as trinomials or pentanomials) over
the integers. For example, given natural n > k > £, if nmod (k — ¢) = k mod (k — ¢)
or k mod (k — ¢) = 0 then polynomials 2" — z° + 1 and z™ — z* + 1 are relatively prime.
It is anticipated that the inspection of the structure of polynomial remainder sequences
for fewnomials with unit coefficients over integers can help in the search of balanced moduli
with three, five, or generally “few” terms, satisfying requirements 1-4. Note, that fewnomials
over finite fields were studied extensively (see, for example [1]). However, it seems that the
structure of polynomial remainder sequences of fewnomials over the ring of integers deserves
additional study.

References

[1] Banegas G., Custdédio R., and Panario D. A new class of irreducible pentanomials for
polynomial-based multipliers in binary fields. J Cryptogr. Eng., vol. 9, 2019, pp. 359-373.

Conclusion

It is expected that choosing moduli with 4, 5 or even more terms in bit pattern satisfying
requirements 1-4 might provide further improvement. There is a trade-off: adding more terms
slows down conversion to RNS and RNS arithmetic slightly, but gives more flexibility in finding
relatively prime moduli with scalable sparse inverses, which accelerates reconstruction phase. This
trade-off deserves further investigation.

