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Reinforcement learning

Main idea: RL algorithms have managed to reach superhuman level play in
Atari games, Go, Chess, starting from only the rules and learning
everything else by themselves.

Can we teach neural networks to reach superhuman level play in the
“game” of constructing graphs without 4-cycles, with as many edges as
possible?

Can this same algorithm be used to try to learn to disprove any conjecture,
by only inputting the statement and letting the algorithm figure out the
rest?
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Plan

Goal: find counterexamples to open conjectures via RL

Try to avoid using human insights as much as possible

Would like a general setup: use the same program for every problem,
only change reward function

Throw this setup at 100 open conjectures and hope for the best.
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Example 1

Conjecture

For any graph G , we have λ1(G ) + µ(G ) ≥
√
n − 1 + 1.

Refuted in 2010, but smallest counterexample found has 600 vertices.

Game: offer edges one by one, agent can accept/reject each. A game lasts
n(n−1)

2 turns.

Reward: λ1 + µ (minimize).

Run a reinforcement learning algorithm for n = 19:
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Example 1

Conjecture

For any graph, λ1 + µ ≥
√
n − 1 + 1.
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Example 1
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Example 1
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Example 2 – What if we don’t succeed?

Conjecture (Auchiche–Hansen, 2016)

Let G be a connected graph with diameter D, proximity π and distance
spectrum ∂1 ≥ . . . ≥ ∂n. Then

π + ∂⌊ 2D
3 ⌋ > 0.

Reward: π + ∂⌊ 2D
3 ⌋ (minimize).

Run it for n = 30:
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Example 2

This is not quite a counterexample (π + ∂⌊ 2D
3 ⌋ ≈ 0.4), but it tells us very

clearly what counterexamples could look like.
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Example 2

190 leaves

Figure: A counterexample to the conjecture
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Example 3 - Not just graphs

Question (Brualdi–Cao)

How large can the permanent of a 312-pattern avoiding 0-1 matrix be?

Figure: The pattern 312

per(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)
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Example 3 - Not just graphs

Question (Brualdi–Cao)

How large can the permanent of a 312-pattern avoiding 0-1 matrix be?

Figure: This is also not allowed

More precisely: we are not allowed to have three ones (dark squares)
(xi , yi ) : i ∈ {1, 2, 3} such that y1 < y2 < y3 and x2 < x1 < x3.
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Example 3

Conjecture (Brualdi–Cao, 2020)

The best you can do is Fibn+2 − 1.

Reward: per(A)− penalty(# of 312-s)
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Example 3

These are best possible for n ≤ 8 (computer proof). So the sequence
starts with 1, 2, 4, 8, 16, 32, 64,120.

Adam Wagner Reinforcement learning and pattern finding Mar, 2024



Example 4 - non-obvious reward function

Question (Hogben–Reinhart)

Do there exist two graphs G and H such that they have the same
DL-eigenvalues, but G is transmission regular and H is not?

RL has constructed two graphs. What should the reward function be?

Idea:
score(G ,H) = f1(G ,H) + f2(G ) + f3(H),

where

f1 measures how close the DL-spectrum of G and H is,

f2 measures how close G is to being transmission regular, and

f3 gives a penalty if H is transmission regular.
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Example 4

The graph on the left is transmission regular, whereas the graph on the
right is not. The characteristic polynomials of their distance Laplacians are
the same (x12 − 216x11 + 21188x10 − 1245904x9 + 48797440x8 − 1336652544x7 +

26129121472x6 − 364516883456x5 + 3556516628224x4 − 23113129559040x3 +

90045806284800x2 − 159318669312000x), so they are DL-cospectral.
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Example 5 - Infinite problems?

Many interesting problems can not have finite counterexamples.

Conjecture (Erdős, 1962)

The function
K4(G ) + K4(Ḡ )

is asymptotically minimized by random graphs.

Thomason (1989): This is false!

Figure: Gwenaël Joret

Adam Wagner Reinforcement learning and pattern finding Mar, 2024



Example 5 - Infinite problems?

How can we refute such conjectures using RL?

Find the best construction for n = 50, then generalize “by hand”.

Somehow reduce to a finite conjecture.

Solution: “blowing up”! Construct a finite graph G , so that G × Km is a
counterexample as m → ∞.

limm→∞
K4(G×Km)+K4(G×Km)

m4 depends only on G , and there is an easy
formula for it. This will be our reward function.

Run RL for n = 34 −→ find a counterexample.
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Example 5
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Pros and cons

How useful is this simple RL setup in pure maths research?
Pros:

Simple and fun baseline method that can be thrown at a large class of
problems

Occasionally it works...

Cons:

...but most of the times it doesn’t.

Very slow, doesn’t scale well

Often doesn’t perform better than simple greedy searches

It is not the case that we can throw AlphaZero at any conjecture, and
expect it to work better than any other algorithm. (Mehrabian et al,
2023)

Adam Wagner Reinforcement learning and pattern finding Mar, 2024



Generative methods

Joint work with Jordan Ellenberg, Marijn Heule, Geordie Williamson.
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How can we use generative methods in maths research?

Let’s pick a problem in maths where there is a mysterious pattern that we
don’t understand, and see if transformers can understand it better and
help us generalize it.

Question

How many integers can we choose between 1 and N, without choosing 3
numbers that form an arithmetic progression?

Central problem in pure mathematics, current best bounds (Behrend 1946,
Bloom–Sisask 2023):

e−c
√
logN · N ≤ r3(n) ≤ e−c log1/9 N · N.

What about the 2D variant of this problem?
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The isosceles triangle problem

A 3-AP in one dimension is three distinct numbers a, b, c with
d(a, b) = d(b, c).

Question (Ellenberg)

How many points can we choose in the N × N grid, without choosing
three points that satisfy d(a, b) = d(b, c), i.e. without creating any
isosceles triangles?

Let this maximum be f (N). What bounds can we prove on f (N)?
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The isosceles triangle problem – bounds

Lower bounds:

f (N) ≥ N√
logN

– simple alteration argument

f (N) ≥ cN – Random greedy independent set process

Upper bounds:

f (N) ≤ e−c log1/9 N · N2 – trivial bound

f (N) ≤ N1.99 – open

It would be nice to have a guess about the asymptotics of f (N).
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The isosceles triangle problem

For small grids, we can do it by hand:
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The isosceles triangle problem

For slightly larger grids, we can use LP solvers:
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(c) f (10) = 18
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The isosceles triangle problem

SAT solvers work up to n ≈ 30.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(a) f (16) = 28
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(b) f (16) = 28
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(c) f (27) = 48
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The isosceles triangle problem
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(a) f (27) = 48
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(b) f (32) ≥ 56
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The isosceles triangle problem
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The isosceles triangle problem

As we suspected, f (n) seems to be a linear function, with f (n) ≈ 16
9 n.

As f (16) = 28 and f (32) ≈ 56, we expect f (64) ≈ 112. Can we find it?

With LP solvers, SAT solvers, local search methods, after a few months
we managed to find a 108.
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The isosceles triangle problem
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Figure: f (64) ≥ 108
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The isosceles triangle problem

We create a database of many thousands of good 64× 64 constructions.

We train a transformer on these, and then generate more constructions
like those in the dataset. We used a simple transformer implementation by
Andrej Karpathy, called Makemore.

How nice would it be if the transformer generated some 109s and 110s as
well, if we let it generate new constructions for a long time?
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The isosceles triangle problem

Transformer generated a bunch of 104-108s, but nothing better.

But local search is really struggling at such high scores: it takes days to
find a single new 108. The transformer finds new good constructions much
more frequently!

Idea: run a quick local search from all new constructions given by the
transformer. By pure numbers, maybe 1% of them will not be a local
maximum.
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The isosceles triangle problem
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Figure: f (64) ≥ 110
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The isosceles triangle problem

This worked, but maybe it was pure luck. Let’s repeat this experiment on
100×100 grids.

We ran several different local search methods for 3 weeks. The best they
found was 154 (the optimum should likely be around 176-ish).

We trained a transformer on the best 1 million constructions, then
generated new grids with it, launching local searches from all new grids.

This led to a grid with score 160!
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Figure: f (100) ≥ 154
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Figure: f (100) ≥ 160
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Conclusion

This method repeatedly worked over multiple experiments. The method
seems to be:

1. Run local search until it reaches its limit, where you reach a high
enough score so that it takes days to find new constructions with this
score.

2. At this point, train a transformer on all (1M+) best constructions

3. Ask the transformer to generate new constructions, and launch local
searches from them

4. The scores of the local searches from these new seeds will be better
than the scores of the original local searches, and it leads to new,
higher scores.
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Challenge: what would the optimal construction for f (10, 000) look like?
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Figure: f (10, 000) ≥ 3000
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Conclusion

Even though most mathematicians don’t use machine learning in their
research yet, there exist already some interesting applications.

There are still many low hanging fruits and things are happening very
quickly.

I can’t wait to hear all the new ideas you will come up with in the next
years.
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