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What is Origami?

Origami
The art of paper folding.
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Introduction
Crease Patterns and Flat Foldability
Origami Flip Graphs

What is Origami?

Origami
The art of paper folding.

Crease Pattern

The set of edges (creases) and vertices that one will be folding
along.
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Introduction
Crease Patterns and Flat Foldability

Origami Flip Graphs

Mountain /Valley Assignments

Mountain/Valley Assignment

Every crease can folded in one of two ways: like a mountain or like
a valley. An MV assignment p assigns one of {-1,1} to a crease
where -1 represents valleys and 1 represents mountains.
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When is a Crease Pattern Flat Foldable?

To fold flat, the creases around any given vertex need to have:

Kawasaki's Theorem

The alternating sum of the angles around a vertex sum to 0.
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When is a Crease Pattern Flat Foldable?

To fold flat, the creases around any given vertex need to have:

Kawasaki's Theorem

The alternating sum of the angles around a vertex sum to 0.

Maekawa's Theorem
M-V =42
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Origami Flip Graphs

When is a Crease Pattern Flat Foldable?

To fold flat, the creases around any given vertex need to have:

Kawasaki's Theorem

The alternating sum of the angles around a vertex sum to 0.

Maekawa's Theorem
M-V =42
Big-Little-Big

m If you have an odd number of consecutive smallest angles,
M — V = 0 for the creases surrounding them.

m If you have an even number of consecutive smallest angles,
M — V = +£1 for the creases surrounding them.
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Crease Patterns and Flat Foldability
Origami Flip Graphs

When is a Crease Pattern Flat Foldable?

m Local flat foldability is when the creases around every vertex
can fold flat.

m Global flat foldability is when the crease pattern folds flat
entirely.

m For a single vertex crease pattern, these are the same.
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Introduction
Crease Patterns and Flat Foldability
Origami Flip Graphs

When is a Crease Pattern Flat Foldable?

m Local flat foldability is when the creases around every vertex
can fold flat.

m Global flat foldability is when the crease pattern folds flat
entirely.

m For a single vertex crease pattern, these are the same.

m We consider an MV assignment on a crease pattern valid if it
is locally flat foldable.

m C(v) is the number of valid MV assignments for a crease
pattern.
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Origami Flip Graphs

What are Face Flips?

m We define a face flip as a reversal of parity of every crease
bordering the face.
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Crease Patterns and Flat Foldability

Origami Flip Graphs

What are Face Flips?

m We define a face flip as a reversal of parity of every crease
bordering the face.

m We say that a face flip is valid if it results in a new MV
assignment that is also valid.

m For example, in a single vertex crease pattern, the face
between two creases which are the minority is not flippable,
since flipping it would violate Maekawa's rule M — V = 42
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Origami Flip Graphs

Flippable Faces

Figure: Flipping the face between two minority creases (Face B) is not a
valid face flip.

N. Ter-Saakov Origami Flip Graphs



Introduction
Crease Patterns and Flat Foldability

Origami Flip Graphs

Constructing the OFG

m The Origami Flip Graph or OFG(v) is the graph where
every vertex is a valid MV assignment for v and every edge
connecting two vertices is a face flip which goes from one MV
asssingment to the other.

m We studied single vertex crease patterns and their OFGs.
From now on, we will only be talking about single vertex
crease patterns unless we say otherwise.
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Origami Flip Graphs

Some Examples of OFGs for Degree 4 Crease Patterns
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Some Examples of OFGs for Degree 4 Crease Patterns
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Counting Vertices in an OFG

m Number of vertices in an OFG = C(v)
Recursive Folding

To fold a crease pattern, find the smallest angle(s) and take the
largest consecutive set of them. Fold that and repeat until you get
to all equal angles. As the last step, fold them.

m Each step in the rescursive folding contributes a factor to the
C(v). If k consecutive angles are folded, there are (Lkl;zj)
ways to assign mountain/valley folds to that set of creases.
The last step contributes a factor of 2(k2_k1).

m For a vertex of degree 2n,

2”<C(v)<2< 2n )

n—1
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Origami Flip Graphs

Recursive Folding

i«?

Figure: First, the smallest angle is folded up. Then, two equal angles
appear and are folded up. This leaves a small angle, which, when folded,
produces two equal angles.

m When folding up an odd number of angles, they collapse into
a face with a new angle. If the bigs have angles a and  and
the littles have angle (3, then the new face with have angle
a+vy—p.

m When folding up an even number of angles, they collapse into
a crease.
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Characterizations of OFGs Dieritie

Single Vertex OFGs are Bipartite

All OFGs for Single-Vertex Crease Patterns are Bipartite

All cycles either contain each face an even number of times or
contains every face.
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Smallest C(v)
Connectivity General Connectivity

Characterization of an OFG for the Smallest C(v)

m The smallest possible C(v) = 2". This occurs when the
recursive folding involves n — 1 smallest angles, one after
another, followed by 2 equal angles.

m The only faces that can be flipped are faces between two
creases of a small or two creases of the final equal angles.
Because these do not influence each other, a given face is
either always flippable or never flippable.

m The OFG is 2"~ k-dimensional hypercubes where k is the
number of always flippable faces
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Disconnected Smallest C(v) for degree 6

N. Ter-Saakov Origami Flip Graphs



Smallest C(v)
Connec tivity General Connectivity

Connected Smallest C(v) for degree 6
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Smallest C(v)
Connectivity General Connectivity

Causes of Disconnectedness for Single Vertex CPs

m Disconnectedness is caused by the interactions of Never
Flippable Faces

m Never Flippable Faces appear on either side of a big-little-big
with an odd number of littles.

m Upon being folded up, the new face is also considered a Never
Flippable Face

m If a Never Flippable Face gets folded up into a crease, that
crease is called a Restricted Crease.

m Restricted Creases that get folded up into creases also cause
restricted creases
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Smallest C(v)
Connectivity General Connectivity

Never Flippable Faces and Restricted Creases

‘ 10
20°

Figure: First, the smallest angle is folded up. Then, two equal angles
appear and are folded up. This leaves a small angle, which, when folded,
produces two equal angles.

N. Ter-Saakov Origami Flip Graphs



All Equal Angles Case

Characterization of an OFG for the Largest C(v)

m The largest possible C(v) = 2(,72_"1). This occurs when all the

angles are equal.

m Let Ay, be the crease pattern with 2n equal angles.

m The only faces that cannot be flipped from a given MV
assignment are faces surrounded by minority creases.

m To count the number of edges in this graph, we counted the
number of possible edges (if every face was flippable) and
subtracted the number of faces that cannot be flipped from a
given MV assignment for every MV assignment.
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All Equal Angles Case

Flippable Faces for All Equal Angles

Figure: Flipping the face between two minority creases (Face B) is not a
valid face flip.




All Equal Angles Case

Images of OFG(Ag)

Click here for the interactive file.
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https://coauthor.csail.mit.edu/file/8cpkLQbZgkRt7WHaG

Vertices and Edges in OFG(A,,)

All Equal Angles Case

n | # Vertices | # Edges
1 2 2
2 38 16
3 30 84
4 112 400
5 420 1820
6 1584 8064
7 6006 35112
8 22880 151008
9 87516 643500
10 335920 | 2722720
11 1203292 | 11454872
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All Equal Angles Case

Vertices and Edges in OFG(A,,)

2 V%, = Number of vertices in OFG(Az,)

n | # Vertices | # Edges
1 2
2 38 16
3 30 84
4 112 400
5 420 1820
6 1584 8064
7 6006 35112
8 22880 151008
9 87516 643500
10 335920 | 2722720
11 1203292 | 11454872
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=2
<n—1
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All Equal Angles Case

Vertices and Edges in OFG(A,,)

n | # Vertices | # Edges
1 2 2 Vs, = Number of vertices in OFG(Asn)
2 8 16 o
3 30 84 - 2< )
4 112 400 n—1
5 420 1820 (A162551)
6 1584 8064
7 6006 35112
8 22880 | 151008 p " Number of edges in OFG(A,,)
9 87516 | 643500
10| 335020 | 2722720 _ (n+1)Bn-2) ( 2n >
11| 1293292 | 11454872 2n—1 n—1
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All Equal Angles Case

Edges in OFG for All Equal Angles

Vo, = Number of vertices in OFG(A3),)
2n
=2
()
E>, = Number of edges in OFG(Az,)

B (n+1)(3n—2)< 2n )

a 2n—1 n—1
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All Equal Angles Case

Edges in OFG for All Equal Angles

Vo, = Number of vertices in OFG(A3),)
2n
=2
()
E>, = Number of edges in OFG(Az,)
_(n+1)Bn—-2)( 2n
B 2n—1 n—1
fon(k) = Number of vertices of degree k in OFG(A2p)
_4n n+1 n—2
Con+1\k—n—-1)\k—n-=2
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All Equal Angles Case

Connectivity for Ay,

m OFG(A2,) is connected
m OFG(Azp) has diameter n
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All Equal Angles Case

Looking at Subgraphs

Theorem

Let C be a flat-foldable, single-vertex crease pattern of degree 2n

that is not Azn. Then (C) is isomorphic to at least 2n distinct
subgraphs of (Azp).
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All Equal Angles Case

Thank You!

Thank you to Sarah Nash and Manny Morales, who | did this work
with, Dr. Thomas C. Hull, the director of the MathlLy-EST REU,
Robert Dougherty-Bliss for conjecturing the edges formula,
Jonah Ostroff for the combinatorial proof, dr. sarah-marie
belcastro, the Pl, Mathematical Staircase, Inc. and everyone who

contributed thoughts and ideas to this research.
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