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Tiling a Square with Similar Rectangles

Presented by: George Spahn
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Background

▶ How many ways can we partition a

square into n similar rectangles?

▶ Hot question on Mathstodon -

“math twitter”

▶ Group effort organized by John

Carlos Baez

▶ Got the attention of the New York

Times
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Case: n = 1

▶ Divide a square into 1 similar rectangle.

▶ 1 way to do it!

▶
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Case: n = 2

Both cases: The rectangles have the same size

Both cases: The rectangles have a 2:1 aspect ratio
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Dealing with Symmetry

▶ We could try to exclude rotations/reflections.

▶ Let’s say all partitions with the same aspect ratio (of the

rectangles) are equivalent.
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Case: n = 3

▶ Here’s one solution with r = 1/3

▶ How to be more rigorous?

▶ First make a cut r
1

1

▶ Without loss of generality we can make our next cut in the

white region.

▶ Making another horizontal cut forces the solution we found

already.
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Case: n = 3

r
1

s

1

By observation, we see r < 1. The red rectangle must be oriented

horizontally (long size is horizontal). There are now 3 possibilities:

1. Both white rectangles are oriented horizontally

2. Both are oriented vertically

3. One is oriented horizontally and the other is oriented vertically
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Case: n = 3 , both horizontal

r1

s

1

▶ The white rectangles must be congruent, therefore s = 1/2

▶ In order for the white rectangles to be similar to the red

rectangle
r

1
=

1− r

s

▶ Linear equation in r with solution r = 2/3
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Case: n = 3 , both horizontal

r1

s

1

▶ The white rectangles must be congruent, therefore s = 1/2

▶ In order for the white rectangles to be similar to the red

rectangle
r

1
=

1− r

s

▶ Linear equation in r with solution r = 2/3
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Case: n = 3 , both vertical

r
1

s

1

▶ The white rectangles must be congruent, therefore s = 1/2

▶ In order for the white rectangles to be similar to the red

rectangle
r

1
=

s

1− r

r ∗ (1− r) = 1/2

▶ No real solution!
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Case: n = 3 , both vertical

r
1

s

1

▶ The white rectangles must be congruent, therefore s = 1/2

▶ In order for the white rectangles to be similar to the red

rectangle
r

1
=

s

1− r

r ∗ (1− r) = 1/2

▶ No real solution!
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Case: n = 3 , one vertical + one horizontal

r
1

s

1 Let’s say the left one is vertical.

r

1
=

s

1− r

r

1
=

1− r

1− s

s = r − r2 r ∗
[
1− (r − r2)

]
= 1− r

r3 − r2 + 2r − 1 = 0

r ≈ 0.5698, the reciprocal of the square of the plastic number!
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Case: n=3

3 possibilities in total: 2 rational, 1 irrational

r = .3333, .5698, 0.6667
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Guillotine Cuts

▶ To solve the n = 3 case we started with the square and

repeatedly cut a rectangle into two smaller rectangles.

▶ Such cuts are called guillotine cuts.

▶ A guillotine partition is a partition of the square into

rectangles using guillotine cuts.

▶

▶ A guillotine partition into n rectangles could potentially give

rise to 2n distinct solutions, since each rectangle can be

oriented in 2 ways.
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Schroder Numbers

▶ The number of structurally distinct guillotine partitions into n

rectangles is given by the Schroder numbers, Sn. For example,

S4 = 22:

▶ Sn also counts the number of n step lattice paths from (0, 0)

to (2n, 0) using steps of EAST (2, 0), NORTHEAST (1, 1)

and SOUTHEAST (1,−1) that do no fall below the x-axis.
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Schroder Numbers

This is A6318 in the OEIS. The generating function is:

1− x −
√
1− 6x + x2

2x

Similar to the Catalan numbers.

We can compute many terms.
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Algorithm using guillotine cuts

▶ Enumerate all guillotine partitions with n rectangles.

▶ For each partition, iterate through all 2n orientations for each

rectangle.

▶ Let r < 1 be the aspect ratio, and let ai be the side length of

the longest side of the i th rectangle.

▶ Generate a system of equations.
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Getting a system of Equations

For each cut, we get an equation.

1

2 3

a1

a1r

a3

a3r

a2r

a2

a1 = a2r + a3

a2 = a3r

Plus two more for the sides of

the square:

a1r + a3r = 1

a2r + a3 = 1
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Case: n = 4

The guillotine cut approach successfully computes a(4) = 11:

There are 5 rational solutions: r = 1, 1/4, 3/4, 2/5, 3/5 – Exactly

when all the rectangles are horizontal!

There are 6 irrational solutions, each a root of a 3rd degree

polynomial.
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Failure of Guillotine Cuts

The following partition of a square into 5 rectangles is not

obtainable by guillotine cuts!
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Grid Coloring

We need a better way of generating the “arrangements”.

In a tiling with n rectangles, there are at most n − 1 internal

horizontal lines ( at most one for the top of each rectangle, minus

the very top).

We can slide the horizontal lines vertically, without changing the

arrangement, until each line is on a gridline of the n × n grid.
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Grid Coloring

The arrangement is nicely represented by a matrix. There was only

1 internal horizontal line, and 1 internal vertical line, so we used a

2× 2 matrix.
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Grid Coloring

To generate arrangements with n rectangles, we could start by

generating all possible colorings of the n × n grid into n colors.

Then check whether each color is connected and forms a rectangle.

In practice there are much more efficient ways.
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4 Rectangle Arrangements

With a few symmetries removed, here are the possible

arrangements for 4 rectangles:

All the ones that used a 4× 4 grid had repeated rows or columns,

which can be removed.
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Grid Coloring Algorithm

1. Generate all arrangements using grid coloring.

2. For each arrangement, check all 2n orientations.

3. Define the variables and generate the system of equations.

4. Use linear algebra to solve for the polynomial that r must

satisfy.

5. Check to see that the polynomial has a real root ∈ (0, 1] and

that none of the rectangles have size 0.
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Case: n = 5

Ian Henderson has drawn the 51 solutions:
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Case: n = 6

Ian Henderson has drawn the 245 solutions:
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How far can we go?

▶ A359146 in the OEIS records our current progress on the

problem.

▶ Ian Henderson computed the first 8 terms: 1, 1, 3, 11, 51,

245, 1372, 8522

▶ A couple weeks ago David Einstein computed 2 more terms

using a graph theory approach that is closely connected to

electrical networks. Time permitting I can talk about this at

the end.
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Which aspect ratios are possible?

If we allow any finite number of rectangles, which aspect ratios are

possible?

Are all rational numbers possible?
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An example: 14/47

Recall the continued fraction expansion of a rational number:

14

47
=

1
47
14

=
1

3 + 5
14

=
1

3 + 1
14
5

=
1

3 + 1
2+ 4

5

=
1

3 + 1
2+ 1

1+ 1
4

This gives the sequence 3, 2, 1, 4
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An example: 14/47

Let’s now try to tile a 14× 47 rectangle with squares.

14

1414 14

Here are three 14× 14 squares.
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An example: 14/47

We can add two 5× 5 squares.

14

1414 14

5

5

5
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An example: 14/47

And then a 4× 4 square.

14

1414 14

5

5

5

4
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An example: 14/47

And then finally four 1× 1 squares.

14

1414 14

5

5

5

4

Does the sequence 3,2,1,4 look familiar?
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Method of Squinty Vision

14

1414 14

5

5

5

4

The big rectangle has become a square, and the squares have

become rectangles with aspect ratio 14/47!
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Method of Squinty Vision

14

1414 14

5

5

5

4

▶ This shows that there will be solutions for any rational

number.

▶ We can also go backward – if all the rectangles in our tiling of

a square are oriented the same way, we can produce a tiling of

a rectangle with squares.

▶ In 1903 Max Dehn proved that in any tiling of a rectangle

with finitely many squares, the aspect ratio of the rectangle

must be rational.
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Tiling a Rectangle with the fewest number of

squares

Does this method of continued fractions give the minimal number

of squares to tile a rectangle?

5

5 1

1

A 6× 5 rectangle
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Tiling a Rectangle with the fewest number of

squares

5

5 1

1

3

3 3

2

5

6
=

1

1 + 1
5

so we needed 1 + 5 squares using the continued fractions method.
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Tiling a Rectangle with the fewest number of

squares

Given two natural numbers n and m, find the minimum number of

integer sided squares required to tile the n ×m rectangle. Call this

number h(n,m).

▶ Extensive research has been done on this problem.

▶ We have a large table of results, and some upper and lower

bounds.

It is conjectured that h(dn, dm) = h(n,m).
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Does this help us?

A210517 in the OEIS gives the number of rectangles dissectable

into n squares, unique up to aspect ratio, but we only know 8

terms.

If the conjecture is true, we can probably compute many more

terms.

But there is still a problem:
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Open Question

What if sometimes we need to put the rectangles in different

orientations?

Does there exist a rational ratio r , such that in any minimum

partition of the square into rectangles with aspect ratio r , there

exists two rectangles in different orientations?
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Which irrational numbers are possible?

▶ Let’s first consider the case of tilings obtainable from

guillotine cuts.

▶ Let Tr be the rectangle with ratio r .

▶ Let Sr be set of all possible ratios of rectangles that are

buildable using rectangles similar to Tr .

▶ We are then interested in determining for which r , is 1 ∈ Sr .



41/54

Building up a Rectangle

▶ Guillotine cut tilings can be built up from smaller pieces in a

nice way.

▶ On each side of a cut, we must have a rectangle with ratio in

Sr .

▶ Say the ratios are r1 and r2.

▶ Then the ratio of the rectangle being divided by the cut is

either

r1 + r2,
1

r1
+ r2, r1 +

1

r2
,

1

r1
+

1

r2
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Building up a Rectangle

1

r1 r2

r1 + r2

A guillotine cut diagram is built up from repeated joins and

rotations.

We conclude Sr must be closed under addition and multiplicative

inverses.
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Continued Fractions

This fits with what we know about continued fractions:

▶ It is possible to get from any rational to any other rational

with just using the operations of addition and reciprocal!
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A Rational Expression for each Guillotine Tiling

Another way we could have solved the n = 3 case:

r

1

1/r

1

The ratio of the blue + yellow rectangle is thus

1

r + 1
r
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A Rational Expression for each Guillotine Tiling

Rescaling:

1

1

1
r+ 1

r

r

So the ratio of the big rectangle is thus

r +
1

r + 1
r
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A Rational Expression for each Guillotine Tiling

We can simplify:

r +
1

r + 1
r

=
r3 + 2r

r2 + 1

Since we want the rectangle to be actually be a square, we can set

the fraction equal to 1 and get

r3 + 2r = r2 + 1

This gives the polynomial r3 − r2 + 2r − 1 that we encountered

before.
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The polynomials for the n = 4 case

Recall in the n = 4 case we found 11 solutions:

The rational solutions were 1, 1/4, 3/4, 2/5, 3/5. Except for 1,

these are the rational numbers in (0, 1] that have continued

fraction expansion sequence adding up to 4!

The irrational solutions are the real positive roots to the following

3rd degree polynomials:

x3 − x2 + 3x − 2 x3 − x2 + 4x − 2 2x3 − 2x2 + 2x − 1

3x3 − 2x2 + 2x − 2 2x3 − x2 + 3x − 1 2x3 − 2x2 + 3x − 1
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Alternating Coefficients!

x3 − x2 + 3x − 2 x3 − x2 + 4x − 2 2x3 − 2x2 + 2x − 1

3x3 − 2x2 + 2x − 2 2x3 − x2 + 3x − 1 2x3 − 2x2 + 3x − 1

These polynomials are generated by setting the numerator and

denominator of a rational expression equal to each other.

It is not too hard to see that the numerator and denominator are

always polynomials with positive coefficients, and that they are

always of the form even function over odd function or odd function

over even function.
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Alternating Coefficients!

The two operations we had for generating the rational functions

was addition and taking the reciprocal. Clearly reciprocal preserves

the property. For addition:

odd

even
+

even

odd
=

odd*odd + even*even

even*odd
=

even

odd

odd

even
+

odd

even
=

odd*even + odd*even

even*even
=

odd

even

even

odd
+

even

odd
=

even*odd + even*odd

odd*odd
=

odd

even
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Which irrational ratios are possible?

So we know that if 1 ∈ Sr , then r had better be the root of some

polynomial with alternating coefficients.

But we also were limiting ourselves to looking at guillotine

partitions.

It turns out that an amazing theorem settles this question once

and for all.
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Powerful Theorem

Proved in 1994 by Laczkovick and Szekeres, and also

independently by Freiling and Rinne in the same year.

Theorem:

A square can be partitioned into finitely many rectangles with ratio

r if and only if r is algebraic and all of its conjugate roots have

positive real part.
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Wall’s Theorem

Used in the proof is another theorem by Wall from 1945 that

enlightens the situation a little bit.

Theorem:

Let P(x) = xn + pn−1x
n−1 + ...+ p0, and let

Q(x) = xn + pn−2x
n−2 + pn−4x

n−4 + ..., and

R(x) = pn−1x
n−1 + pn−3x

n−3 + ....

Then all roots of P(x) have positive real part if and only if

−R(x)

Q(x)
=

1

cnx + 1
cn−1x+... 1

c1x
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Guillotine cuts generate all possible ratios!

All roots of P(x) have positive real part if and only if

−R(x)

Q(x)
=

1

cnx + 1
cn−1x+... 1

c1x

These polynomials are exactly the polynomials that we were

generating with guillotine cuts!
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The End

Thank you for listening!


