Some positivity conjectures for symmetric functions motivated by classical theorems from the analytic theory of polynomials

> Alan Sokal University College London

Rutgers Experimental Mathematics Seminar April 3, 2025

Work in collaboration with Yusra Naqvi With early help from Richard Stanley and Lauren Williams

Let $P(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be a polynomial with real coefficients in one or more indeterminates $\mathbf{x} = (x_1, \dots, x_n)$.

Let $P(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be a polynomial with real coefficients in one or more indeterminates $\mathbf{x} = (x_1, \dots, x_n)$.

Here are two positivity properties that one might consider:

Let $P(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be a polynomial with real coefficients in one or more indeterminates $\mathbf{x} = (x_1, \dots, x_n)$.

Here are two positivity properties that one might consider:

• Pointwise positivity on \mathbb{R}_+ : $P(\mathbf{x}) \ge 0$ whenever $\mathbf{x} \ge 0$.

Let $P(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be a polynomial with real coefficients in one or more indeterminates $\mathbf{x} = (x_1, \dots, x_n)$.

Here are two positivity properties that one might consider:

- Pointwise positivity on \mathbb{R}_+ : $P(\mathbf{x}) \ge 0$ whenever $\mathbf{x} \ge 0$.
- **Coefficientwise positivity:** All the coefficients of *P* are nonnegative.

Let $P(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be a polynomial with real coefficients in one or more indeterminates $\mathbf{x} = (x_1, \dots, x_n)$.

Here are two positivity properties that one might consider:

- Pointwise positivity on \mathbb{R}_+ : $P(\mathbf{x}) \ge 0$ whenever $\mathbf{x} \ge 0$.
- **Coefficientwise positivity:** All the coefficients of *P* are nonnegative.

Obviously the second is stronger. $(1-x)^2 = 1 - 2x + x^2$

Let $P(\mathbf{x}) \in \mathbb{R}[\mathbf{x}]$ be a polynomial with real coefficients in one or more indeterminates $\mathbf{x} = (x_1, \dots, x_n)$.

Here are two positivity properties that one might consider:

- Pointwise positivity on \mathbb{R}_+ : $P(\mathbf{x}) \ge 0$ whenever $\mathbf{x} \ge 0$.
- **Coefficientwise positivity:** All the coefficients of *P* are nonnegative.

Obviously the second is stronger. $(1-x)^2 = 1 - 2x + x^2$

Many theorems in algebra or combinatorics assert a pointwise positivity. Can they be "upgraded" to coefficientwise positivity?

A polynomial $P(t) \in \mathbb{R}[t]$ is *negative-real-rooted* if it is either identically zero or else has all its (complex) roots in $(-\infty, 0]$.

A polynomial $P(t) \in \mathbb{R}[t]$ is *negative-real-rooted* if it is either identically zero or else has all its (complex) roots in $(-\infty, 0]$.

Normalize to
$$P(0)=1$$
: $P(t)=\prod_{i=1}^n(1+lpha_it)$ with all $lpha_i\geq 0$

A polynomial $P(t) \in \mathbb{R}[t]$ is *negative-real-rooted* if it is either identically zero or else has all its (complex) roots in $(-\infty, 0]$.

Normalize to
$$P(0) = 1$$
: $P(t) = \prod_{i=1}^{n} (1 + \alpha_i t)$ with all $\alpha_i \ge 0$

Laguerre–Pólya class *LP*⁺**:** Entire functions that are limits (uniformly on compacts) of negative-real-rooted polynomials.

A polynomial $P(t) \in \mathbb{R}[t]$ is *negative-real-rooted* if it is either identically zero or else has all its (complex) roots in $(-\infty, 0]$.

Normalize to
$$P(0) = 1$$
: $P(t) = \prod_{i=1}^{n} (1 + \alpha_i t)$ with all $\alpha_i \ge 0$

Laguerre–Pólya class *LP*⁺**:** Entire functions that are limits (uniformly on compacts) of negative-real-rooted polynomials.

Theorem (Laguerre 1882)

An entire function f(t) with f(0) = 1 belongs to LP^+ iff

$$f(t) = e^{\gamma t} \prod_{i=1}^{\infty} (1 + \alpha_i t)$$

with $\gamma, \alpha_i \geq 0$ and $\sum \alpha_i < \infty$.

Total positivity

イロト イヨト イヨト イヨト

æ

Total positivity

A (finite or infinite) matrix of real numbers is called *totally positive* if all its minors are nonnegative.

My apologies to those of you who call this totally nonnegative.

Total positivity

A (finite or infinite) matrix of real numbers is called *totally positive* if all its minors are nonnegative.

My apologies to those of you who call this totally nonnegative.

Applications:

- Mechanics of oscillatory systems
- Numerical linear algebra
- Approximation theory
- Stochastic processes
- Lie theory and cluster algebras
- Representation theory of the infinite symmetric group
- Planar discrete potential theory and the planar Ising model
- Stieltjes moment problem
- Zeros of polynomials and entire functions
- Enumerative combinatorics

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A *partially ordered commutative ring* is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying

(i)
$$0, 1 \in \mathcal{P}$$
.
(ii) If $a, b \in \mathcal{P}$, then $a + b \in \mathcal{P}$ and $ab \in \mathcal{P}$.
(iii) $\mathcal{P} \cap (-\mathcal{P}) = \{0\}$.

We write $a \ge b$ as a synonym for $a - b \in \mathcal{P}$.

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A *partially ordered commutative ring* is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying

(i)
$$0, 1 \in \mathcal{P}$$
.
(ii) If $a, b \in \mathcal{P}$, then $a + b \in \mathcal{P}$ and $ab \in \mathcal{P}$.
(iii) $\mathcal{P} \cap (-\mathcal{P}) = \{0\}$.

We write $a \ge b$ as a synonym for $a - b \in \mathcal{P}$.

N.B.: We do not assume that squares are nonnegative!

Our application: A ring of polynomials with the coefficientwise order.

Generalize the theory of total positivity from matrices of real numbers to matrices with entries in a partially ordered commutative ring.

A *partially ordered commutative ring* is a (unital) commutative ring R together with a subset \mathcal{P} (the nonnegative elements) satisfying

(i)
$$0, 1 \in \mathcal{P}$$
.
(ii) If $a, b \in \mathcal{P}$, then $a + b \in \mathcal{P}$ and $ab \in \mathcal{P}$.
(iii) $\mathcal{P} \cap (-\mathcal{P}) = \{0\}$.

We write $a \ge b$ as a synonym for $a - b \in \mathcal{P}$.

N.B.: We do not assume that squares are nonnegative!

Our application: A ring of polynomials with the coefficientwise order.

Total positivity is then defined in the usual way.

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 5/16

э

Given a sequence $a = (a_n)_{n \ge 0}$, we define its *Toeplitz matrix*

$$\mathcal{T}_{\infty}(a) = (a_{i-j})_{i,j \ge 0} = egin{pmatrix} a_0 & & & & \ a_1 & a_0 & & & \ a_2 & a_1 & a_0 & & \ a_3 & a_2 & a_1 & a_0 & & \ dots & dots &$$

Given a sequence $a = (a_n)_{n \ge 0}$, we define its *Toeplitz matrix*

$$\mathcal{T}_{\infty}(a) = (a_{i-j})_{i,j \ge 0} = egin{pmatrix} a_0 & & & \ a_1 & a_0 & & \ a_2 & a_1 & a_0 & & \ a_3 & a_2 & a_1 & a_0 & & \ dots & do$$

• We say that the sequence a is *Toeplitz-totally positive* if its Toeplitz matrix $T_{\infty}(a)$ is totally positive.

Also called a *Pólya frequency sequence* when $R = \mathbb{R}$.

Given a sequence $\mathbf{a} = (a_n)_{n \ge 0}$, we define its *Toeplitz matrix*

$$\mathcal{T}_{\infty}(a) = (a_{i-j})_{i,j\geq 0} = egin{pmatrix} a_0 & & & & \ a_1 & a_0 & & & \ a_2 & a_1 & a_0 & & \ a_3 & a_2 & a_1 & a_0 & & \ dots & dots &$$

• We say that the sequence **a** is *Toeplitz-totally positive* if its Toeplitz matrix $T_{\infty}(a)$ is totally positive.

Also called a *Pólya frequency sequence* when $R = \mathbb{R}$.

• This implies that the sequence is *log-concave*, but is much stronger.

Given a sequence $\mathbf{a} = (a_n)_{n \ge 0}$, we define its *Toeplitz matrix*

$$\mathcal{T}_{\infty}(a) = (a_{i-j})_{i,j\geq 0} = egin{pmatrix} a_0 & & & & \ a_1 & a_0 & & & \ a_2 & a_1 & a_0 & & \ a_3 & a_2 & a_1 & a_0 & & \ dots & dots &$$

• We say that the sequence a is Toeplitz-totally positive if its Toeplitz matrix $T_{\infty}(a)$ is totally positive.

Also called a *Pólya frequency sequence* when $R = \mathbb{R}$.

- This implies that the sequence is *log-concave*, but is much stronger.
- This definition makes sense in any partially ordered commutative ring.

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 6/16

э

Theorem (Aissen-Edrei-Schönberg-Whitney 1951-53)

A sequence $a = (a_n)_{n \ge 0}$ of real numbers with $a_0 = 1$ is Toeplitz-TP iff

$$\sum_{n=0}^{\infty} a_n t^n = e^{\gamma t} \prod_{i=1}^{\infty} \frac{1+\alpha_i t}{1-\beta_i t}$$

with $\gamma, \alpha_i, \beta_i \geq 0$, $\sum \alpha_i < \infty$ and $\sum \beta_i < \infty$.

Theorem (Aissen-Edrei-Schönberg-Whitney 1951-53)

A sequence $a = (a_n)_{n \ge 0}$ of real numbers with $a_0 = 1$ is Toeplitz-TP iff

$$\sum_{n=0}^{\infty} a_n t^n = e^{\gamma t} \prod_{i=1}^{\infty} \frac{1+\alpha_i t}{1-\beta_i t}$$

with $\gamma, \alpha_i, \beta_i \geq 0$, $\sum \alpha_i < \infty$ and $\sum \beta_i < \infty$.

Corollary (cases with no denominators)

(a) A finite sequence $\mathbf{a} = (a_0, \dots, a_N, 0, 0, \dots)$ with $a_0 = 1$ is Toeplitz-TP iff the polynomial $P(t) = \sum_{n=0}^{N} a_n t^n$ is negative-real-rooted.

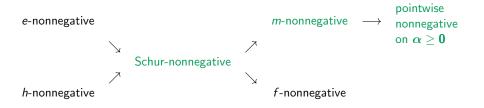
(b) A sequence
$$\mathbf{a} = (a_n)_{n \ge 0}$$
 with $a_0 = 1$ and $\lim_{n \to \infty} |a_n|^{1/n} = 0$ is
Toeplitz-TP if and only if the entire function $f(t) = \sum_{n=0}^{\infty} a_n t^n$ belongs to the Laguerre-Pólya class LP^+ .

Symmetric functions come into the game because $P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$

Symmetric functions come into the game because

$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

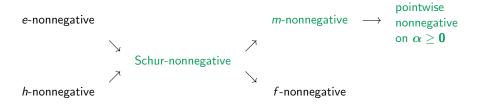
Here are some partial orders on the ring of symmetric functions:



Symmetric functions come into the game because

$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

Here are some partial orders on the ring of symmetric functions:



The basic theme (again): Can we do "upgradings"?

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 8/16

э

Consider again
$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

э

Consider again
$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

If $\alpha \geq$ 0, then P(t) is negative-real-rooted

 \rightarrow (by the easy half of Aissen–Edrei–Schönberg–Whitney) the sequence $(e_i(\alpha))_{i>0}$ is Toeplitz-totally positive

Consider again
$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

If $\alpha \geq 0$, then P(t) is negative-real-rooted

- \rightarrow (by the easy half of Aissen–Edrei–Schönberg–Whitney) the sequence $(e_i(\alpha))_{i>0}$ is Toeplitz-totally positive
- This is a pointwise positivity on $\alpha \ge 0$. Can it be upgraded?

A simple example of "upgrading"

Consider again
$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

If $\alpha \geq$ 0, then P(t) is negative-real-rooted

 \rightarrow (by the easy half of Aissen–Edrei–Schönberg–Whitney) the sequence $(e_i(\alpha))_{i>0}$ is Toeplitz-totally positive

This is a pointwise positivity on $\alpha \ge 0$. Can it be upgraded?

Yes!!

By Jacobi–Trudi, the Toeplitz minors of $(e_i)_{i\geq 0}$ are skew Schur functions, which are nonnegative linear combinations of Schur functions.

A simple example of "upgrading"

Consider again
$$P(t) = \prod_{i=1}^{n} (1 + \alpha_i t) = \sum_{i=0}^{n} e_i(\alpha) t^i$$

If $\alpha \geq$ 0, then P(t) is negative-real-rooted

 \rightarrow (by the easy half of Aissen–Edrei–Schönberg–Whitney) the sequence $(e_i(\alpha))_{i>0}$ is Toeplitz-totally positive

This is a pointwise positivity on $\alpha \ge 0$. Can it be upgraded?

Yes!!

By Jacobi–Trudi, the Toeplitz minors of $(e_i)_{i\geq 0}$ are skew Schur functions, which are nonnegative linear combinations of Schur functions.

So we have a double upgrading: from pointwise nonnegativity to *m*-nonnegativity to Schur-nonnegativity.

The class of negative-real-rooted polynomials (or entire functions in Laguerre–Pólya class *LP*⁺) is closed under several types of bilinear composition:

Let
$$f(t) = \sum_{n=0}^{\infty} a_n t^n$$
 and $g(t) = \sum_{n=0}^{\infty} b_n t^n$

The class of negative-real-rooted polynomials (or entire functions in Laguerre–Pólya class *LP*⁺) is closed under several types of bilinear composition:

Let
$$f(t) = \sum_{n=0}^{\infty} a_n t^n$$
 and $g(t) = \sum_{n=0}^{\infty} b_n t^n$

• The ordinary product (fg)(t) = f(t)g(t)

The class of negative-real-rooted polynomials (or entire functions in Laguerre–Pólya class *LP*⁺) is closed under several types of bilinear composition:

Let
$$f(t) = \sum_{n=0}^{\infty} a_n t^n$$
 and $g(t) = \sum_{n=0}^{\infty} b_n t^n$

- The ordinary product (fg)(t) = f(t)g(t)
- The Hadamard product $(f \star g)(t) = \sum_{n=0}^{\infty} a_n b_n t^n$

The class of negative-real-rooted polynomials (or entire functions in Laguerre–Pólya class *LP*⁺) is closed under several types of bilinear composition:

Let
$$f(t) = \sum_{n=0}^{\infty} a_n t^n$$
 and $g(t) = \sum_{n=0}^{\infty} b_n t^n$

- The ordinary product (fg)(t) = f(t)g(t)
- The Hadamard product $(f \star g)(t) = \sum_{n=0}^{\infty} a_n b_n t^n$
- The factorial Hadamard product $(f \circledast g)(t) = \sum_{n=0}^{\infty} n! a_n b_n t^n$

The class of negative-real-rooted polynomials (or entire functions in Laguerre–Pólya class *LP*⁺) is closed under several types of bilinear composition:

Let
$$f(t) = \sum_{n=0}^{\infty} a_n t^n$$
 and $g(t) = \sum_{n=0}^{\infty} b_n t^n$

• The ordinary product (fg)(t) = f(t)g(t)

- The Hadamard product $(f \star g)(t) = \sum_{n=0}^{\infty} a_n b_n t^n$
- The factorial Hadamard product $(f \circledast g)(t) = \sum_{n=0}^{\infty} n! a_n b_n t^n$
- The differential composition $(f \triangleright g)(t) = f(d/dt)g(t)$

The class of negative-real-rooted polynomials (or entire functions in Laguerre–Pólya class LP^+) is closed under several types of bilinear composition:

Let
$$f(t) = \sum_{n=0}^{\infty} a_n t^n$$
 and $g(t) = \sum_{n=0}^{\infty} b_n t^n$

• The ordinary product (fg)(t) = f(t)g(t)

- The Hadamard product $(f \star g)(t) = \sum_{n=0}^{\infty} a_n b_n t^n$
- The factorial Hadamard product $(f \circledast g)(t) = \sum_{n=0}^{\infty} n! a_n b_n t^n$
- The differential composition $(f \triangleright g)(t) = f(d/dt)g(t)$
- The Laguerre composition

$$(f \triangleright g)(t) = f(t d/dt)g(t) = \sum_{n=0}^{\infty} f(n) b_n t^n$$

~

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 10/16

Each of these theorems implies a pointwise Toeplitz-TP result.

Can they be upgraded to monomial-positivity or even to Schur-positivity?

Each of these theorems implies a pointwise Toeplitz-TP result.

Can they be upgraded to monomial-positivity or even to Schur-positivity?

Answer: No for Schur. Empirically yes for monomial!

Each of these theorems implies a pointwise Toeplitz-TP result.

Can they be upgraded to monomial-positivity or even to Schur-positivity?

Answer: No for Schur. Empirically yes for monomial!

Conjectures for Hadamard product and factorial Hadamard product

- (a) All the Toeplitz minors of the sequence $(e_n(\mathbf{X}) e_n(\mathbf{Y}))_{n \ge 0}$ are monomial-positive in \mathbf{X} and \mathbf{Y} .
- (b) All the Toeplitz minors of the sequence $(n! e_n(\mathbf{X}) e_n(\mathbf{Y}))_{n \ge 0}$ are monomial-positive in **X** and **Y**.

Each of these theorems implies a pointwise Toeplitz-TP result.

Can they be upgraded to monomial-positivity or even to Schur-positivity?

Answer: No for Schur. Empirically yes for monomial!

Conjectures for Hadamard product and factorial Hadamard product

- (a) All the Toeplitz minors of the sequence $(e_n(\mathbf{X}) e_n(\mathbf{Y}))_{n \ge 0}$ are monomial-positive in \mathbf{X} and \mathbf{Y} .
- (b) All the Toeplitz minors of the sequence $(n! e_n(\mathbf{X}) e_n(\mathbf{Y}))_{n \ge 0}$ are monomial-positive in \mathbf{X} and \mathbf{Y} .
- (c) All the Toeplitz minors of the sequence $(n!^{p} e_{n}(\mathbf{X}) e_{n}(\mathbf{Y}) e_{n}(\mathbf{Z}))_{n \geq 0}$ are monomial-positive in $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ for p = 0, 1, 2.

Each of these theorems implies a pointwise Toeplitz-TP result.

Can they be upgraded to monomial-positivity or even to Schur-positivity?

Answer: No for Schur. Empirically yes for monomial!

Conjectures for Hadamard product and factorial Hadamard product

- (a) All the Toeplitz minors of the sequence $(e_n(\mathbf{X}) e_n(\mathbf{Y}))_{n \ge 0}$ are monomial-positive in \mathbf{X} and \mathbf{Y} .
- (b) All the Toeplitz minors of the sequence $(n! e_n(\mathbf{X}) e_n(\mathbf{Y}))_{n \ge 0}$ are monomial-positive in **X** and **Y**.
- (c) All the Toeplitz minors of the sequence $(n!^{p} e_{n}(\mathbf{X}) e_{n}(\mathbf{Y}) e_{n}(\mathbf{Z}))_{n \geq 0}$ are monomial-positive in $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ for p = 0, 1, 2.
- (d) Etc. for k factors and $0 \le p \le k 1$.

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 11/16

Conjecture for Laguerre composition

Fix $M \ge 1$. Then the Toeplitz minors of the sequence

$$\left(\prod_{i=1}^{M} (a_i + b_i n) e_n(\mathbf{X})\right)_{n \ge 0}$$
 are monomial-positive in \mathbf{X}_i

coefficientwise in the a_i and b_i .

Conjecture for Laguerre composition

Fix $M \ge 1$. Then the Toeplitz minors of the sequence

$$\left(\prod_{i=1}^{M}(a_i+b_in)\;e_n({\sf X})
ight)_{n\geq 0}$$
 are monomial-positive in ${\sf X}$

coefficientwise in the a_i and b_i .

Variant conjecture

The Toeplitz minors of $(c_n e_n(\mathbf{X}))_{n\geq 0}$ are monomial-positive in \mathbf{X} , whenever $(c_n)_{n\geq 0}$ are real numbers with $\sum_{n=0}^{\infty} \frac{c_n}{n!} t^n \in LP^+$. Here $c_n = \prod_{i=1}^{M} (a_i + b_i n)$ is a special case. But this is no longer coefficientwise in \mathbf{a}, \mathbf{b} .

Conjecture for Laguerre composition

Fix $M \ge 1$. Then the Toeplitz minors of the sequence

$$\left(\prod\limits_{i=1}^{M}(a_i+b_in)\;e_n({\sf X})
ight)_{n\geq 0}$$
 are monomial-positive in ${\sf X}$

coefficientwise in the a_i and b_i .

Variant conjecture

The Toeplitz minors of $(c_n e_n(\mathbf{X}))_{n\geq 0}$ are monomial-positive in \mathbf{X} , whenever $(c_n)_{n\geq 0}$ are real numbers with $\sum_{n=0}^{\infty} \frac{c_n}{n!} t^n \in LP^+$. Here $c_n = \prod_{i=1}^{M} (a_i + b_i n)$ is a special case. But this is no longer coefficientwise in \mathbf{a}, \mathbf{b} .

Follows from the preceding conjecture on factorial Hadamard product: approximate $c_n/n!$ by $e_n(\mathbf{Y})$ with $\mathbf{Y} \ge 0$.

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 12/16

 The Toeplitz minors of (e_n)_{n≥0} are (positive linear combinations of) Schur functions.

- The Toeplitz minors of (e_n)_{n≥0} are (positive linear combinations of) Schur functions.
- For any sequence c = (c_n)_{n≥1}, consider the homomorphism defined by φ_c(e_n) = c_n e_n for n ≥ 1. [If we set c₀ = 1, this holds also for n = 0.]

- The Toeplitz minors of (e_n)_{n≥0} are (positive linear combinations of) Schur functions.
- For any sequence c = (c_n)_{n≥1}, consider the homomorphism defined by φ_c(e_n) = c_n e_n for n ≥ 1. [If we set c₀ = 1, this holds also for n = 0.]
- Then the Toeplitz minors of (c_n e_n)_{n≥0} are the φ_c-images of Schur functions.

- The Toeplitz minors of (e_n)_{n≥0} are (positive linear combinations of) Schur functions.
- For any sequence c = (c_n)_{n≥1}, consider the homomorphism defined by φ_c(e_n) = c_n e_n for n ≥ 1. [If we set c₀ = 1, this holds also for n = 0.]
- Then the Toeplitz minors of (c_n e_n)_{n≥0} are the φ_c-images of Schur functions.
- What does this give for $c_n = \prod_{i=1}^{M} (1 + b_i n)$?

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 13/16

Recall that if $\lambda \vdash n$, then $s_{\lambda} = \sum_{\mu \vdash n} K_{\lambda\mu} m_{\mu}$, where the Kostka number $K_{\lambda\alpha}$

is the number of semistandard Young tableaux of shape λ and content α .

N.B.: $K_{\lambda\mu} \neq 0$ only when $\mu \leq \lambda$ (dominance order), and $K_{\lambda\lambda} = 1$.

Recall that if $\lambda \vdash n$, then $s_{\lambda} = \sum_{\mu \vdash n} K_{\lambda\mu} m_{\mu}$, where the Kostka number $K_{\lambda\alpha}$

is the number of semistandard Young tableaux of shape λ and content $\alpha.$

N.B.: $K_{\lambda\mu} \neq 0$ only when $\mu \leq \lambda$ (dominance order), and $K_{\lambda\lambda} = 1$.

So for any sequence $\boldsymbol{c} = (c_n)_{n \geq 1}$, write $\phi_{\boldsymbol{c}}(s_{\lambda}) = \sum_{\mu \vdash n} K_{\lambda\mu}^{\boldsymbol{c}} m_{\mu}$.

What can we say about the generalized Kostka numbers $K_{\lambda\mu}^{\boldsymbol{c}}$?

Recall that if $\lambda \vdash n$, then $s_{\lambda} = \sum_{\mu \vdash n} K_{\lambda\mu} m_{\mu}$, where the Kostka number $K_{\lambda\alpha}$

is the number of semistandard Young tableaux of shape λ and content $\alpha.$

N.B.: $K_{\lambda\mu} \neq 0$ only when $\mu \leq \lambda$ (dominance order), and $K_{\lambda\lambda} = 1$.

So for any sequence $\boldsymbol{c} = (c_n)_{n \ge 1}$, write $\phi_{\boldsymbol{c}}(\boldsymbol{s}_{\lambda}) = \sum_{\mu \vdash n} K_{\lambda\mu}^{\boldsymbol{c}} m_{\mu}$.

What can we say about the generalized Kostka numbers $K_{\lambda\mu}^{\boldsymbol{c}}$?

Conjecture

For $c_n = \prod_{i=1}^{M} (1 + b_i n)$, the generalized Kostka numbers $K_{\lambda\mu}^c$ are polynomials with *nonnegative* coefficients in the b_i .

Recall that if $\lambda \vdash n$, then $s_{\lambda} = \sum_{\mu \vdash n} K_{\lambda\mu} m_{\mu}$, where the Kostka number $K_{\lambda\alpha}$

is the number of semistandard Young tableaux of shape λ and content α .

N.B.: $K_{\lambda\mu} \neq 0$ only when $\mu \leq \lambda$ (dominance order), and $K_{\lambda\lambda} = 1$.

So for any sequence $\boldsymbol{c} = (c_n)_{n \ge 1}$, write $\phi_{\boldsymbol{c}}(\boldsymbol{s}_{\lambda}) = \sum_{\mu \vdash n} K_{\lambda\mu}^{\boldsymbol{c}} m_{\mu}$.

What can we say about the generalized Kostka numbers $K_{\lambda\mu}^{\boldsymbol{c}}$?

Conjecture

For $c_n = \prod_{i=1}^{M} (1 + b_i n)$, the generalized Kostka numbers $K_{\lambda\mu}^c$ are polynomials with *nonnegative* coefficients in the b_i .

Can we find a **combinatorial** description of these polynomials?

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 14/16

• $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 14/16

- $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).
- (Yusra Naqvi) $K_{\lambda\lambda}^{c} = c_{\lambda'} \stackrel{\text{def}}{=} \prod_{i} c_{\lambda'_{i}}$

- $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).
- (Yusra Naqvi) $K_{\lambda\lambda}^{c} = c_{\lambda'} \stackrel{\text{def}}{=} \prod_{i} c_{\lambda'_{i}}$
- Conjecture for $\lambda = (2^k 1^{n-2k})$ and $\mu = (2^\ell 1^{n-2\ell})$ with $0 \le \ell \le k$:

$$\mathcal{K}_{\lambda\mu}^{\boldsymbol{c}} = \binom{n-2l}{k-l} c_{n-k} c_k - \binom{n-2l}{k-l-1} c_{n-k+1} c_{k-1}$$

- $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).
- (Yusra Naqvi) $\mathcal{K}_{\lambda\lambda}^{c} = c_{\lambda'} \stackrel{\text{def}}{=} \prod_{i} c_{\lambda'_{i}}$
- Conjecture for $\lambda = (2^k 1^{n-2k})$ and $\mu = (2^\ell 1^{n-2\ell})$ with $0 \le \ell \le k$:

$$\mathcal{K}_{\lambda\mu}^{\boldsymbol{c}} = \binom{n-2l}{k-l} c_{n-k} c_k - \binom{n-2l}{k-l-1} c_{n-k+1} c_{k-1}$$

• Write $K_{\lambda\mu}(b)$ when $c_n = 1 + bn$

- $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).
- (Yusra Naqvi) $\mathcal{K}_{\lambda\lambda}^{c} = c_{\lambda'} \stackrel{\text{def}}{=} \prod_{i} c_{\lambda'_{i}}$
- Conjecture for $\lambda = (2^k 1^{n-2k})$ and $\mu = (2^\ell 1^{n-2\ell})$ with $0 \le \ell \le k$:

$$\mathcal{K}_{\lambda\mu}^{\boldsymbol{c}} = \binom{n-2l}{k-l} c_{n-k} c_k - \binom{n-2l}{k-l-1} c_{n-k+1} c_{k-1}$$

- Write $K_{\lambda\mu}(b)$ when $c_n = 1 + bn$
- Empirically:

- $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).
- (Yusra Naqvi) $K_{\lambda\lambda}^{c} = c_{\lambda'} \stackrel{\text{def}}{=} \prod_{i} c_{\lambda'_{i}}$
- Conjecture for $\lambda = (2^k 1^{n-2k})$ and $\mu = (2^\ell 1^{n-2\ell})$ with $0 \le \ell \le k$:

$$\mathcal{K}_{\lambda\mu}^{\boldsymbol{c}} = \binom{n-2l}{k-l} c_{n-k} c_k - \binom{n-2l}{k-l-1} c_{n-k+1} c_{k-1}$$

- Write $K_{\lambda\mu}(b)$ when $c_n = 1 + bn$
- Empirically:
 - $K_{\lambda\mu}(b) \neq 0$ if and only if $K_{\lambda\mu}(0) \neq 0$

- $K_{\lambda\mu}^{c} \neq 0$ only when $\mu \leq \lambda$ (dominance order).
- (Yusra Naqvi) $K_{\lambda\lambda}^{c} = c_{\lambda'} \stackrel{\text{def}}{=} \prod_{i} c_{\lambda'_{i}}$
- Conjecture for $\lambda = (2^k 1^{n-2k})$ and $\mu = (2^\ell 1^{n-2\ell})$ with $0 \le \ell \le k$:

$$\mathcal{K}_{\lambda\mu}^{\boldsymbol{c}} = \binom{n-2l}{k-l} c_{n-k} c_k - \binom{n-2l}{k-l-1} c_{n-k+1} c_{k-1}$$

- Write $K_{\lambda\mu}(b)$ when $c_n = 1 + bn$
- Empirically:
 - $K_{\lambda\mu}(b) \neq 0$ if and only if $K_{\lambda\mu}(0) \neq 0$
 - When $K_{\lambda\mu}(b) \neq 0$, deg $K_{\lambda\mu}(b) = \lambda_1$ (largest part in λ)

• **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:

Alan Sokal (University College London) Some positivity conjectures for symmetric fun Rutgers Experimental Math 15/16

- Empirically: When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$
 - Checked up to n = 11

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$
- Attempted generalization:

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$
- Attempted generalization:
 - For each contributing SSYT, mark zero or one cells in each column.

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

- For each contributing SSYT, mark zero or one cells in each column.
- In each row *i*, let S_i be the subword of marked cells.

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

- For each contributing SSYT, mark zero or one cells in each column.
- In each row i, let S_i be the subword of marked cells.
- Let $\ell(S_i)$ and $\operatorname{wt}(S_i)$ be as before.

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

Attempted generalization:

• For each contributing SSYT, mark zero or one cells in each column.

0())

- In each row *i*, let S_i be the subword of marked cells.
- Let $\ell(S_i)$ and $wt(S_i)$ be as before.

• Conjecture:
$$\mathcal{K}_{\lambda\mu} = \sum_{\text{SSYTs}} \sum_{\text{markings}} \prod_{i=1}^{\ell(\lambda)} \operatorname{wt}(S_i) b^{\ell(S_i)}$$

- **Empirically:** When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

- For each contributing SSYT, mark zero or one cells in each column.
- In each row *i*, let S_i be the subword of marked cells.
- Let $\ell(S_i)$ and $wt(S_i)$ be as before.
- Conjecture: $K_{\lambda\mu} = \sum_{\text{SSYTs}} \sum_{\text{markings}} \prod_{i=1}^{\ell(\lambda)} \operatorname{wt}(S_i) b^{\ell(S_i)}$
- This gets the diagonal elements $K_{\lambda\lambda}(b)$ right.

- Empirically: When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

- For each contributing SSYT, mark zero or one cells in each column.
- In each row *i*, let S_i be the subword of marked cells.
- Let $\ell(S_i)$ and $wt(S_i)$ be as before.
- Conjecture: $K_{\lambda\mu} = \sum_{\text{SSYTs}} \sum_{\text{markings}} \prod_{i=1}^{\ell(\lambda)} \operatorname{wt}(S_i) b^{\ell(S_i)}$
- This gets the diagonal elements $K_{\lambda\lambda}(b)$ right.
- It gets many other cases right but also many wrong, starting with λ = (3, 1), μ = (2, 2).

- Empirically: When $\lambda = (n)$, $K_{\lambda\mu}(b)$ is a sum over marked SSYTs:
 - Form the unique SSYT of shape (n) and content μ .
 - For each subset S ⊆ [n] of cells ("marked"), form the subword S; let ℓ(S) be its length, and wt(S) the # of distinct permutations of S.
 - Conjecture: $K_{(n),\mu} = \sum_{S} \operatorname{wt}(S) b^{\ell(S)}$

- For each contributing SSYT, mark zero or one cells in each column.
- In each row *i*, let S_i be the subword of marked cells.
- Let $\ell(S_i)$ and $wt(S_i)$ be as before.
- Conjecture: $K_{\lambda\mu} = \sum_{\text{SSYTs}} \sum_{\text{markings}} \prod_{i=1}^{\ell(\lambda)} \operatorname{wt}(S_i) b^{\ell(S_i)}$
- This gets the diagonal elements $K_{\lambda\lambda}(b)$ right.
- It gets many other cases right but also many wrong, starting with λ = (3, 1), μ = (2, 2).
- It can be either too high or too low.

• Go back to the case of general *c*.

- Go back to the case of general *c*.
- We believe that $K^{m{c}}_{\lambda\mu}$ has the general form

$$\mathcal{K}^{m{c}}_{\lambda\mu} \;=\; \sum_{
u\in[\mu,\lambda]} F(\lambda,
u) \, m{c}_{
u'} \, m{G}(
u,\mu)$$

where

- $[\mu, \lambda]$ is the dominance-order interval $\{\nu \colon \mu \leq \nu \leq \lambda\}$
- $F(\lambda, \nu)$ are integers
- $G(\nu,\mu)$ are nonnegative integers

- Go back to the case of general *c*.
- We believe that $K^{\pmb{c}}_{\lambda\mu}$ has the general form

$$\mathcal{K}^{\boldsymbol{c}}_{\lambda\mu} \;=\; \sum_{\nu\in[\mu,\lambda]} \mathcal{F}(\lambda,
u) \, \boldsymbol{c}_{
u'} \, \mathcal{G}(
u,\mu)$$

where

- $[\mu, \lambda]$ is the dominance-order interval $\{\nu \colon \mu \leq \nu \leq \lambda\}$
- $F(\lambda, \nu)$ are integers
- $G(\nu,\mu)$ are nonnegative integers
- We have ideas for $F(\lambda, \nu)$ and $G(\nu, \mu)$, but are still working out the details.

- Go back to the case of general *c*.
- We believe that $K^{\pmb{c}}_{\lambda\mu}$ has the general form

$$\mathcal{K}^{m{c}}_{\lambda\mu} \;=\; \sum_{
u\in[\mu,\lambda]} F(\lambda,
u) \, m{c}_{
u'} \, m{G}(
u,\mu)$$

where

- $[\mu, \lambda]$ is the dominance-order interval $\{\nu \colon \mu \leq \nu \leq \lambda\}$
- $F(\lambda, \nu)$ are integers
- $G(\nu,\mu)$ are nonnegative integers
- We have ideas for $F(\lambda, \nu)$ and $G(\nu, \mu)$, but are still working out the details.
- Goal: First understand $\mathcal{K}_{\lambda\mu}^{c}$; then specialize to $c_n = \prod_{i=1}^{M} (1 + b_i n)$ to prove the Conjecture.