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The basic theme: “Upgrading” a positivity property

Pointwise positivity on R+: P(x) ≥ 0 whenever x ≥ 0.

Coefficientwise positivity: All the coefficients of P are nonnegative.
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Here are two positivity properties that one might consider:

Pointwise positivity on R+: P(x) ≥ 0 whenever x ≥ 0.

Coefficientwise positivity: All the coefficients of P are nonnegative.

Obviously the second is stronger. (1− x)2 = 1− 2x + x2
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The basic theme: “Upgrading” a positivity property

Let P(x) ∈ R[x] be a polynomial with real coefficients
in one or more indeterminates x = (x1, . . . , xn).

Here are two positivity properties that one might consider:

Pointwise positivity on R+: P(x) ≥ 0 whenever x ≥ 0.

Coefficientwise positivity: All the coefficients of P are nonnegative.

Obviously the second is stronger. (1− x)2 = 1− 2x + x2

Many theorems in algebra or combinatorics assert a pointwise positivity.
Can they be “upgraded” to coefficientwise positivity?
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Negative-real-rooted polynomials and Laguerre–Pólya class
LP+
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Negative-real-rooted polynomials and Laguerre–Pólya class
LP+

A polynomial P(t) ∈ R[t] is negative-real-rooted if it is either
identically zero or else has all its (complex) roots in (−∞, 0].

Alan Sokal (University College London) Some positivity conjectures for symmetric functions motivated by classical theorems from the analytic theory of polynomialsRutgers Experimental Math 3 / 16
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A polynomial P(t) ∈ R[t] is negative-real-rooted if it is either
identically zero or else has all its (complex) roots in (−∞, 0].

Normalize to P(0) = 1: P(t) =
n∏

i=1

(1 + αi t) with all αi ≥ 0
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(1 + αi t) with all αi ≥ 0

Laguerre–Pólya class LP+: Entire functions that are limits
(uniformly on compacts) of negative-real-rooted polynomials.
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Negative-real-rooted polynomials and Laguerre–Pólya class
LP+

A polynomial P(t) ∈ R[t] is negative-real-rooted if it is either
identically zero or else has all its (complex) roots in (−∞, 0].

Normalize to P(0) = 1: P(t) =
n∏

i=1

(1 + αi t) with all αi ≥ 0

Laguerre–Pólya class LP+: Entire functions that are limits
(uniformly on compacts) of negative-real-rooted polynomials.

Theorem (Laguerre 1882)

An entire function f (t) with f (0) = 1 belongs to LP+ iff

f (t) = eγt
∞∏
i=1

(1 + αi t)

with γ, αi ≥ 0 and
∑

αi < ∞.
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Total positivity
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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive
if all its minors are nonnegative.

My apologies to those of you who call this totally nonnegative.
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Total positivity

A (finite or infinite) matrix of real numbers is called totally positive
if all its minors are nonnegative.

My apologies to those of you who call this totally nonnegative.

Applications:

Mechanics of oscillatory systems

Numerical linear algebra

Approximation theory

Stochastic processes

Lie theory and cluster algebras

Representation theory of the infinite symmetric group

Planar discrete potential theory and the planar Ising model

Stieltjes moment problem

Zeros of polynomials and entire functions

Enumerative combinatorics
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Total positivity

The basic theme (again):

Generalize the theory of total positivity from matrices of real numbers
to matrices with entries in a partially ordered commutative ring.
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(i) 0, 1 ∈ P.
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(iii) P ∩ (−P) = {0}.

We write a ≥ b as a synonym for a− b ∈ P.
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(iii) P ∩ (−P) = {0}.

We write a ≥ b as a synonym for a− b ∈ P.

N.B.: We do not assume that squares are nonnegative!

Our application: A ring of polynomials with the coefficientwise order.
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Generalize the theory of total positivity from matrices of real numbers
to matrices with entries in a partially ordered commutative ring.

A partially ordered commutative ring is a (unital) commutative ring R
together with a subset P (the nonnegative elements) satisfying

(i) 0, 1 ∈ P.
(ii) If a, b ∈ P, then a+ b ∈ P and ab ∈ P.
(iii) P ∩ (−P) = {0}.

We write a ≥ b as a synonym for a− b ∈ P.

N.B.: We do not assume that squares are nonnegative!

Our application: A ring of polynomials with the coefficientwise order.

Total positivity is then defined in the usual way.
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Toeplitz-total positivity

Given a sequence a = (an)n≥0, we define its Toeplitz matrix

T∞(a) = (ai−j)i ,j≥0 =


a0
a1 a0
a2 a1 a0
a3 a2 a1 a0
...

...
...

...
. . .



We say that the sequence a is Toeplitz-totally positive
if its Toeplitz matrix T∞(a) is totally positive.

Also called a Pólya frequency sequence when R = R.

This implies that the sequence is log-concave, but is much stronger.

This definition makes sense in any partially ordered commutative ring.
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Toeplitz-total positivity
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Toeplitz-total positivity

Theorem (Aissen–Edrei–Schönberg–Whitney 1951–53)

A sequence a = (an)n≥0 of real numbers with a0 = 1 is Toeplitz-TP iff

∞∑
n=0

ant
n = eγt

∞∏
i=1

1 + αi t

1− βi t

with γ, αi , βi ≥ 0,
∑

αi < ∞ and
∑

βi < ∞.
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Toeplitz-total positivity

Theorem (Aissen–Edrei–Schönberg–Whitney 1951–53)

A sequence a = (an)n≥0 of real numbers with a0 = 1 is Toeplitz-TP iff

∞∑
n=0

ant
n = eγt

∞∏
i=1

1 + αi t

1− βi t

with γ, αi , βi ≥ 0,
∑

αi < ∞ and
∑

βi < ∞.

Corollary (cases with no denominators)

(a) A finite sequence a = (a0, . . . , aN , 0, 0, . . .) with a0 = 1 is Toeplitz-TP
iff the polynomial P(t) =

∑N
n=0 ant

n is negative-real-rooted.

(b) A sequence a = (an)n≥0 with a0 = 1 and lim
n→∞

|an|1/n = 0 is

Toeplitz-TP if and only if the entire function f (t) =
∑∞

n=0 ant
n

belongs to the Laguerre–Pólya class LP+.
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Partial orders on the ring of symmetric functions
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Partial orders on the ring of symmetric functions

Symmetric functions come into the game because

P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i
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Partial orders on the ring of symmetric functions

Symmetric functions come into the game because

P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i

Here are some partial orders on the ring of symmetric functions:

e-nonnegative m-nonnegative −→
pointwise
nonnegative
on α ≥ 0↘ ↗

Schur-nonnegative
↗ ↘

h-nonnegative f -nonnegative
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Partial orders on the ring of symmetric functions

Symmetric functions come into the game because

P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i

Here are some partial orders on the ring of symmetric functions:

e-nonnegative m-nonnegative −→
pointwise
nonnegative
on α ≥ 0↘ ↗

Schur-nonnegative
↗ ↘

h-nonnegative f -nonnegative

The basic theme (again): Can we do “upgradings”?
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A simple example of “upgrading”
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A simple example of “upgrading”

Consider again P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i
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A simple example of “upgrading”

Consider again P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i

If α ≥ 0, then P(t) is negative-real-rooted

−→ (by the easy half of Aissen–Edrei–Schönberg–Whitney)

the sequence
(
ei (α)

)
i≥0

is Toeplitz-totally positive
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A simple example of “upgrading”

Consider again P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i

If α ≥ 0, then P(t) is negative-real-rooted

−→ (by the easy half of Aissen–Edrei–Schönberg–Whitney)

the sequence
(
ei (α)

)
i≥0

is Toeplitz-totally positive

This is a pointwise positivity on α ≥ 0. Can it be upgraded?
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A simple example of “upgrading”

Consider again P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i

If α ≥ 0, then P(t) is negative-real-rooted

−→ (by the easy half of Aissen–Edrei–Schönberg–Whitney)

the sequence
(
ei (α)

)
i≥0

is Toeplitz-totally positive

This is a pointwise positivity on α ≥ 0. Can it be upgraded?

Yes!!
By Jacobi–Trudi, the Toeplitz minors of (ei )i≥0 are skew Schur functions,
which are nonnegative linear combinations of Schur functions.

Alan Sokal (University College London) Some positivity conjectures for symmetric functions motivated by classical theorems from the analytic theory of polynomialsRutgers Experimental Math 8 / 16



A simple example of “upgrading”

Consider again P(t) =
n∏

i=1

(1 + αi t) =
n∑

i=0

ei (α) t i

If α ≥ 0, then P(t) is negative-real-rooted

−→ (by the easy half of Aissen–Edrei–Schönberg–Whitney)

the sequence
(
ei (α)

)
i≥0

is Toeplitz-totally positive

This is a pointwise positivity on α ≥ 0. Can it be upgraded?

Yes!!
By Jacobi–Trudi, the Toeplitz minors of (ei )i≥0 are skew Schur functions,
which are nonnegative linear combinations of Schur functions.

So we have a double upgrading:
from pointwise nonnegativity to m-nonnegativity to Schur-nonnegativity.
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Classical theorems from the analytic theory of polynomials

The ordinary product (fg)(t) = f (t) g(t)

The Hadamard product (f ⋆ g)(t) =
∞∑
n=0

anbnt
n

The factorial Hadamard product (f⊛g)(t) =
∞∑
n=0

n! anbnt
n

The differential composition (f ▷ g)(t) = f (d/dt) g(t)

The Laguerre composition

(f ▶ g)(t) = f (t d/dt) g(t) =
∞∑
n=0

f (n) bnt
n

Alan Sokal (University College London) Some positivity conjectures for symmetric functions motivated by classical theorems from the analytic theory of polynomialsRutgers Experimental Math 9 / 16



Classical theorems from the analytic theory of polynomials

The class of negative-real-rooted polynomials
(or entire functions in Laguerre–Pólya class LP+)
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Conjectured upgradings of these classical theorems (I)
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Conjectured upgradings of these classical theorems (I)

Each of these theorems implies a pointwise Toeplitz-TP result.

Can they be upgraded to monomial-positivity or even to Schur-positivity?
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n≥0

are monomial-positive in X,Y,Z for p = 0, 1, 2.

(d) Etc. for k factors and 0 ≤ p ≤ k − 1.
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Conjectured upgradings of these classical theorems (II)
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Conjectured upgradings of these classical theorems (II)

Conjecture for Laguerre composition

Fix M ≥ 1. Then the Toeplitz minors of the sequence(
M∏
i=1

(ai + bin) en(X)

)
n≥0

are monomial-positive in X,

coefficientwise in the ai and bi .
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)
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coefficientwise in the ai and bi .

Variant conjecture

The Toeplitz minors of
(
cn en(X)

)
n≥0

are monomial-positive in X,

whenever (cn)n≥0 are real numbers with
∞∑
n=0

cn
n!

tn ∈ LP+.

Here cn =
M∏
i=1

(ai + bin) is a special case.

But this is no longer coefficientwise in a,b.
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n=0

cn
n!

tn ∈ LP+.

Here cn =
M∏
i=1

(ai + bin) is a special case.

But this is no longer coefficientwise in a,b.

Follows from the preceding conjecture on factorial Hadamard product:

approximate cn/n! by en(Y) with Y ≥ 0.
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Richard Stanley’s idea for proving these conjectures

The Toeplitz minors of (en)n≥0 are (positive linear combinations of)
Schur functions.

For any sequence c = (cn)n≥1, consider the homomorphism defined
by ϕc(en) = cn en for n ≥ 1. [If we set c0 = 1, this holds also for n = 0.]

Then the Toeplitz minors of (cn en)n≥0 are the ϕc -images of Schur
functions.

What does this give for cn =
M∏
i=1

(1 + bin)?
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Polynomial generalization of the Kostka numbers (I)
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Polynomial generalization of the Kostka numbers (I)

Recall that if λ ⊢ n, then sλ =
∑
µ⊢n

Kλµmµ, where the Kostka number Kλα

is the number of semistandard Young tableaux of shape λ and content α.

N.B.: Kλµ ̸= 0 only when µ ≤ λ (dominance order), and Kλλ = 1.
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What can we say about the generalized Kostka numbers K c
λµ?
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K c
λµmµ .

What can we say about the generalized Kostka numbers K c
λµ?

Conjecture

For cn =
M∏
i=1

(1 + bin), the generalized Kostka numbers K c
λµ are

polynomials with nonnegative coefficients in the bi .
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Polynomial generalization of the Kostka numbers (I)

Recall that if λ ⊢ n, then sλ =
∑
µ⊢n

Kλµmµ, where the Kostka number Kλα

is the number of semistandard Young tableaux of shape λ and content α.

N.B.: Kλµ ̸= 0 only when µ ≤ λ (dominance order), and Kλλ = 1.

So for any sequence c = (cn)n≥1, write ϕc(sλ) =
∑
µ⊢n

K c
λµmµ .

What can we say about the generalized Kostka numbers K c
λµ?

Conjecture

For cn =
M∏
i=1

(1 + bin), the generalized Kostka numbers K c
λµ are

polynomials with nonnegative coefficients in the bi .

Can we find a combinatorial description of these polynomials?
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Polynomial generalization of the Kostka numbers (II)

K c
λµ ̸= 0 only when µ ≤ λ (dominance order).

(Yusra Naqvi) K c
λλ = cλ′

def
=

∏
i
cλ′

i

Conjecture for λ = (2k 1n−2k) and µ = (2ℓ 1n−2ℓ) with 0 ≤ ℓ ≤ k:

K c
λµ =

(
n − 2l

k − l

)
cn−k ck −

(
n − 2l

k − l − 1

)
cn−k+1 ck−1

Write Kλµ(b) when cn = 1 + bn

Empirically:

Kλµ(b) ̸= 0 if and only if Kλµ(0) ̸= 0

When Kλµ(b) ̸= 0, degKλµ(b) = λ1 (largest part in λ)
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Polynomial generalization of the Kostka numbers (III)

Empirically: When λ = (n), Kλµ(b) is a sum over marked SSYTs:

Form the unique SSYT of shape (n) and content µ.

For each subset S ⊆ [n] of cells (“marked”), form the subword S ;
let ℓ(S) be its length, and wt(S) the # of distinct permutations of S .

Conjecture: K(n),µ =
∑
S

wt(S) bℓ(S)

Checked up to n = 11Attempted generalization:

For each contributing SSYT, mark zero or one cells in each column.
In each row i , let Si be the subword of marked cells.
Let ℓ(Si ) and wt(Si ) be as before.

Conjecture: Kλµ =
∑

SSYTs

∑
markings

ℓ(λ)∏
i=1

wt(Si ) b
ℓ(Si )

This gets the diagonal elements Kλλ(b) right.
It gets many other cases right — but also many wrong,
starting with λ = (3, 1), µ = (2, 2).

It can be either too high or too low.
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Polynomial generalization of the Kostka numbers (IV)

Go back to the case of general c .

We believe that K c
λµ has the general form

K c
λµ =

∑
ν∈[µ,λ]

F (λ, ν) cν′ G (ν, µ)

where

[µ, λ] is the dominance-order interval {ν : µ ≤ ν ≤ λ}
F (λ, ν) are integers
G (ν, µ) are nonnegative integers

We have ideas for F (λ, ν) and G (ν, µ), but are still working out the
details.

Goal: First understand K c
λµ; then specialize to cn =

M∏
i=1

(1 + bin)

to prove the Conjecture.
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