Éric Angelini’s Comma Sequence

Experimental Math Seminar, Rutgers, January 18 2024

Neil J. A. Sloane, Visiting Scholar, Math. Dept., Rutgers University; and The OEIS Foundation, Highland Park, NJ
(njasloane@gmail.com)
Start with video:

Lorenzo Angelini,
Happy birthday Éric!!, Youtube video.
The Comma Sequence (Eric Angelini, 2006) is defined by:

Comma Numbers = First Differences

\[a(n): \quad 1, \quad 12, \quad 35, \quad 94, \quad 135, \quad 186, \quad 248, \quad 331, \quad 344, \ldots \quad \text{A121805} \]

\[cn(n): \quad 11, \quad 23, \quad 59, \quad 41, \quad 51, \quad 62, \quad 83, \quad 13, \ldots \quad \text{A366487} \]

comma numbers

Edwin Clark: \quad a(2137453) = 99999945

and the next term does not exist!

But if we start with 3 we get \quad 3, \quad 36 \quad \text{(ends)}

33, \quad 61 \quad \text{fails etc}
The manuscript:

The Comma Sequence: A Simple Sequence With Bizarre Properties

Éric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson

Draft, January 18 2024. Will be on my homepage NeilSloane.com
Summary of talk

- Base-dependent sequences with remarkable properties
- Will give good model of comma sequence:
 kangaroo hopping along infinite road with occasional small clumps of landmines.
- Know where landmines are (Th 1)
- Sequence is always finite for base $B>2$ (conj)
- Expected length $\exp(2B)$ (conj)
- n-th term (if it exists) is about $n B^{2/2}$
- Very fast program
- Occasionally 2 choices for comma-number, definition says take smaller
- If allowed to take other path, infinite comma sequences exist (theorem)
- In base $B=3$, know how to get to oo
- In base 10, know oo path exists, know 10^{84} terms, don’t know explicit path to oo
Outline

• Summary of talk

• The comma sequence

• The Landmines, Theorem 1

• The Successor Graph G_s and the Child Graph G_c

• The child graph contains infinite paths

• Periodicity of comma numbers, the algorithm

• Chance of hitting landmine, average life of comma sequence

• Open problems
If we start at n, the sequence has X terms and the last term is Y:

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>OEIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2137453</td>
<td></td>
<td>2</td>
<td>199900</td>
<td>19700</td>
<td></td>
<td>15</td>
<td>A330128</td>
</tr>
<tr>
<td>Y</td>
<td>99999945</td>
<td>194697747222394</td>
<td>36</td>
<td>9999945</td>
<td>999945</td>
<td>999999999999999936</td>
<td>936</td>
<td>A330129</td>
</tr>
</tbody>
</table>

What on earth is going on?
Basic facts about comma sequences

Comma-successor to \(a(n) \)

\[
a(n+1) = a(n) + cn(n) \quad \text{(add the comma number)}
\]

If leading digit didn’t change, and \(a(n) = bcdef \) then \(cn(n) = fb \)

In base \(B \), \(1 \leq cn(n) \leq B^2 - 1 \), so small steps

Average step is \(B^2/2 \), so good rule of thumb is

\[
a(n) \approx n \times B^2/2 \quad \text{if it exists}
\]

![Plot of A121805(n)/n versus n (entire sequence)](image)
The Landmines

Theorem 1. In base $B \geq 2$, the landmines (numbers with no successor) are the numbers $B-1 \ B-1 \ \ldots \ B-1 \ x \ y$ with $i \geq 0$ copies of $B-1$, $1 \leq x \leq B-2$, $y=B-1-x$.

Base $B=10$: 18 27 36 45 54 63 72 81, 918 927 936 945 954 963 972 981, 9918 9927 … 9981, 99918 99927 … 99981, 999918 999927 … 999981, … A367341

Note: There are 8 with 2 digits, 8 with 3 digits, 8 with 4 digits, … Landmines are rare and only occur near the end of each interval from 10^k to $10^{(k+1)-1}$.

Model: Kangaroo making bounded jumps on infinite road with clusters of 8 mines at every power of 10 cells
Proof of Theorem 1

(1) The listed k are landmines. If k has 2 digits, easy. WLOG assume base $B = 10$. Suppose $k = 999xy$, with at least one 9, and $x + y = 9$.

Suppose k has successor k'. If $k' = 9\ldots$, $k' = k + y9 \geq 100\ldots0$, contradiction.
If $k' = 1\ldots$, $k' = k + y1 < 100\ldots0$, contradiction.

(2a) Conversely, suppose k has no successor, and at least 3 digits, say $k = f \ s \ x \ y$, where f, x, y have 1 digit and s has $i \geq 0$ digits.

If fs is not $999\ldots9$, then $\text{LD}(k) = \text{LD}(k')$ and can take $k' = yf$, so k' exists, contradiction.
Therefore $fs = 999\ldots9$.

Suppose $k = 999\ldots9xy$ has successor $k' = g\ldots$.
if $g = 9$ there was no overflow from last two digits, so $xy + y9 < 100$, and $k' = k + yg$ works, so need $xy + yg \geq 100$, that is $10(x+y) + 10y + 9 \geq 100$(1)
On the other hand, if $g = 1$, then we can take $k' = 99\ldots9xy + y1$ unless $xy + y1 < 100$, so need $10(x+y) + y + 1 < 100$(2)

(1) and (2) imply xy is one of $18, 27, 36, 45, 54, 63, 72, \text{or} 81$. Done.

(2b) If k has no successor and two digits, then [see the manuscript!]
If more than one comma-number works:

Rules say take smallest successor. In rare cases there are two choices for the comma-number, never more. Call them comma-children.

14 has two comma-children, 59 and 60

45

46

Theorem 2. Numbers with 2 children in base B are \(wx \) with \(1 \leq x \leq \lfloor (B-1)/2 \rfloor \) and \(w = B-1-2x \), and the numbers \(d B-1 B-1 \ldots B-1 d B-1-d \) with \(i \geq 0 \) copies of \(B-1 \) and \(1 \leq d \leq B-2 \).

In base 10: 14, 33, 52, 71, 118, 227, 336, 445, 554, 663, 772, 881, 1918, 2927… A367346

By the Law of Primogeniture, the first-born child (the smallest) is the successor.
The successor graph G_s and the child graph G_c

Nodes are all positive integers, in both cases.

Base $B = 2$:

$G_s = G_c$:

1 2 3 4 5 6 7 8 9 10 11 12 13 ... 2

2 3 4 5 6 7 10 11 14

Two infinite paths

Base $B = 10$, Successor Graph G_s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 2137 453

1 12 3 5 9 4 8 64 1 3 12 35 94 99999945

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 1996 9774 2 2223 94

2 24 71 ... 9999999999999918

...$

\infty$ many finite paths, no ∞ path (conj.)
Lemma: If \(n \) is a child of \(k \), then
\[
k = n - xB - f, \quad f = \text{first digit of } n, \quad x = (n-f) \mod B
\]

Notes: If \(n \) IS a child, \(k \) is unique. If \(k < 0 \), \(n \) is not a child.
If \(n \) is a child of \(k \), \(n \) may not be the successor to \(k \).

Theorem 3: In base \(B \geq 3 \), all numbers \(n \geq B^2-1 \) are comma-successors
except \(cB^i \), where \(2 \leq c \leq B-1, i \geq 2 \).

In base \(B = 10 \), the numbers that are not successors are (infinitely many)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 60, 62, 63, 64, 65, 70, 74, 75, 76, 80, 86, 87, 90, 98, 200, 300, 400, 500, 600,

Theorem 4: In base \(B \geq 2 \), the only numbers that are not children are in the range 1 to \(B^2 - 1 \).

[Follows from Lemma and Theorem 4]

In base \(B = 10 \), there are exactly 50 numbers that are not children (A367611):
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 49, 50, 51, 52, 53, 54, 62, 63, 64, 65, 74, 75, 76, 86, 87, 98
Child graphs G_c contain infinite paths

Theorem 5: For any base $B \geq 2$, the child graph G_c contains an infinite path.

Proof: By Theorem 4, every node in G_c belongs to a tree with root $\leq B^2 - 1$. By the Infinite Pigeonhole Principle, one tree contains infinitely many nodes. By König's Infinity Lemma(*), that tree contains an infinite path starting at the root.

So if we are allowed to choose which child to follow at the branch-points, we can avoid all the landmines.

(*) An infinite rooted tree with bounded degree contains an infinite path starting at the root.

Proof uses Zermelo-Fraenkel-Axiom-of-Choice (ZFC) axioms
The Base 10 Child Graph G_c

It is made up of 50 rooted trees, all but one of which is finite.

So we know there is at least one infinite path rooted at 20, and we can define A_{367620} to be the lexicographically earliest infinite tree. It begins 20, 22, 46, 107, 178, 260, 262, 284, 327, 401,...

and the first branch point is at $a(412987860) = 19999999918$.

We have followed this tree out through the first 69 branch points. At the 30th branch point there were three candidates left, but only one of them survived. So we know the first 30 choices to make:

$$0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 0$$

We have not identified that binary sequence yet!

By 69 branches there are still multiple candidates left. We do know the first 10^{84} terms of A_{367620} for certain.

For base 3 we know exactly what the infinite path is. It is unique, and the choice sequence is simply $01010101...$
Periodicity of Comma Numbers - The Algorithm

1. As long as the leading digit of the comma sequence $a(n)$ doesn’t change, the comma number (= first difference!) is periodic, and we cross that region in a small finite number of steps (see next slide)

2. All landmines are within the last 100 steps between two powers of 10. These two facts are the basis for our fast algorithm.

See Mathematica and Python implementations in A121805.
Speeding up the computation

A121805 and comma numbers A366487

Can move forward 2171 steps in one step

<table>
<thead>
<tr>
<th>n</th>
<th>- a(n)</th>
<th>b(n) = a(n+1) - a(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1942</td>
<td>99987</td>
<td>61</td>
</tr>
<tr>
<td>1943</td>
<td>100058</td>
<td>81</td>
</tr>
<tr>
<td>1944</td>
<td>100191</td>
<td>91</td>
</tr>
<tr>
<td>1945</td>
<td>100230</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>100231</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>4112</td>
<td>199807</td>
<td>71</td>
</tr>
<tr>
<td>4113</td>
<td>199872</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>199959</td>
<td>92</td>
</tr>
<tr>
<td>4115</td>
<td>200051</td>
<td></td>
</tr>
</tbody>
</table>

199959

Differences are periodic: 81, 91, 1, 11, 21, ... 71

Sum 460

2171 steps = 217 copies + one

\[217 \times 460 + 81 = 99901 \]

So in 2171 steps we advance by 99901 reaching 199959.
What is chance of kangaroo getting from 10^k to $10^{(k+1)}$? There are 8 landmines in last 100 cells. Say K. jumps in at square s, $999900 \leq s \leq 999999$, and follows comma rule until hits mine or reaches safety at 1000000. Answer: 88 succeed, 12 die. Chance of death for each k is $12/100 = 1/8.33$. Expected life = $10^8.33$.

In base $B\geq2$, not 12 but this sequence:

0, 1, 2, 4, 5, 7, 8, 11, 12, 14, 16, 18, 20, 23, 24, 26, 29, … (100 terms) …. (*)

It was not in OEIS(**), but first differences match A136107 (Thank you, OEIS) = no. of ways of writing B as difference of two triangular numbers = A001227 - A010054. Asked Václav Kotěšovec for help. Answer (see next slide):

(**) It is now: see A368364.
Want growth of $\frac{C}{a}$

\[\text{Partial sums of } A_{136107} \]

\[= \text{Partial sums of } A_{001227} - A_{000054} \]

From Václav Kotěšovec: negligible

$A_{001227} = \text{no of odd divisors of } B$

Dirichlet g.f. $\zeta(s)(1 - 2^{-s})$

By Perron’s theorem,

Partial sums of A_{1227}

\[\sim \text{Residue at } s = 1 \text{ of } \frac{\zeta(s)(1 - 2^{-s})}{s} \frac{B^s}{s} \]

\[\sim B \left(\frac{\log(B)}{2} + \frac{8 - 11}{2} \right) \]

Chance of dying from B^a to B^{a+1}

\[\sim B \left(\frac{\log B}{2} \right)^{2} \frac{1}{B^2} = \frac{\log B}{2B} \]

Expected life $= \frac{2B}{\log B}$ “centuries”

\[= B \cdot \frac{2B}{\log B} \text{ steps} \]

\[= e^{2B} \text{ steps (conj.)} \]

Thank you, Václav Kotěšovec!
The Comma Transform of a sequence of nonnegative numbers

Replace each comma \(ijk, pqr\) by the one- or two-digit number \(kp\), then throw away the original sequence

Example:

\[
\begin{align*}
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... \\
1, 12, 23, 34, 45, 56, 67, 78, 89, 91, 11, 21, ...
\end{align*}
\]

A367362, Nov. 2023
The main unsolved problems

- Given the starting term and the base B, how long is the comma sequence?

 (Expected value is conjectured to be $\exp(2B)$)

- Show all comma sequences are finite in base $B > 3$.

 (Have proof for $B=3$, and it is false for $B=2$.)

- In base $B = 10$, what is the infinite path?

 (Know first 10^85 terms, first 30 decisions.)