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• Some Pattern avoidance results

• Some generalisations
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Descents
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

Example:

π = 3712546

LetSn denote the set of permutations of {1, 2, . . . , n}
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Descents
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

2. Identify the positions iwhere πi > πi+1.

Example:

π = 37◦125◦46

LetSn denote the set of permutations of {1, 2, . . . , n}
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Descents
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

2. Identify the positions iwhere πi > πi+1.

3. des(π) = |{i : πi > πi+1}|

Example:

π = 37◦125◦46
des(3712546) = 2

LetSn denote the set of permutations of {1, 2, . . . , n}



descent signed descents excedance signed excedances sn vs⊣n wilf-equivalence results

Descents
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

2. Identify the positions iwhere πi > πi+1.

3. des(π) = |{i : πi > πi+1}

Note that des is a function fromSn toN for all n. Descent is
an example of a permutation statistic, a map from the set

∪n⩾1Sn to the setN.

LetSn denote the set of permutations of {1, 2, . . . , n}
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The setSn has n! elements and each of them have a descent

value between 0 and n− 1.
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The setSn has n! elements and each of them have a descent

value between 0 and n− 1.
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(A(n, 0),A(n, 1), . . . ,A(n, n− 1)).
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Enumerating polynomials
The setSn has n! elements and each of them have a descent

value between 0 and n− 1.

Let A(n, d) be the number of permutations inSn with d descents.
For each n, we have the n-tuple

(A(n, 0),A(n, 1), . . . ,A(n, n− 1)).

What better to encode it than as a polynomial

An(t) :=
n−1∑
d=0

A(n, d)td =
∑
π∈Sn

tdes(π).
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Enumerating polynomials
The setSn has n! elements and each of them have a descent

value between 0 and n− 1.

Let A(n, d) be the number of permutations inSn with d descents.
What better to encode it than as a polynomial

An(t) :=
n−1∑
d=0

A(n, d)td =
∑
π∈Sn

tdes(π).

These polynomials are the famous Eulerian polynomials that

enjoy multiple exciting properties. It is palindromic and has

only real roots.
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Enumerating polynomials
Here is a list of the first 5 Eulerian polynomials.

• A1(t) = 1

• A2(t) = 1+ t

• A3(t) = 1+ 4t + t2

• A4(t) = 1+ 11t + 11t2 + t3

• A5(t) = 1+ 26t + 66t2 + 26t3 + t4
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Enumerating polynomials
In fact, we can do this with any statistic. Given a statistic

stat : ∪n⩾1Sn 7→N, we have the stat-enumerating polynomial

statn(t) :=
∑
π∈Sn

tstat(π).



descent signed descents excedance signed excedances sn vs⊣n wilf-equivalence results

Enumerating polynomials
In fact, we can do this with any statistic. Given a statistic

stat : ∪n⩾1Sn 7→N, we have the stat-enumerating polynomial

statn(t) :=
∑
π∈Sn

tstat(π).

Wewill also use the signed stat-enumerating polynomial

SgnStatn(t) :=
∑
π∈Sn

sign(π)tstat(π)
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Why stop at one variable?

Given a r-tuple of permutation statistics (stat1, stat2, . . . , statr),
we have the (stat1, stat2, . . . , statr)-enumerating polynomial

(stat1, stat2, . . . , statr)n(t1, . . . , tr) :=
∑
π∈Sn

tstat1(π)
1 . . . tstatr(π)

r .

Similarly, the signed (stat1 stat2 . . . statr)-enumerating
polynomial is

(SgnStat1 . . . Statr)n(t1, . . . , tr) :=
∑
π∈Sn

sign(π)tstat1(π)
1 · · · tstatr(π)

r .
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Why study the signed enumerating polynomials?

Because knowing statn(t) and SgnStatn(t) allows us to do

statn(t) + Sgnstatn(t) =
∑

π∈Sn

(
tstat(π) + sign(π)tstat(π)

)
= 2

∑
π∈An

tstat(π).Therefore, we can get the distribution of the

statistic overAn.

Here,An is the alternating subgroup inSn.



Let us look at the signed descent enumerating

polynomial.
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Signed Eulerian Numbers
Loday, when studying the cyclic homology of commutative

algebras, came across a sequence of numbers (SgnDesn,k)
related to the classical Eulerian numbers.

SgnDesn,k :=
∑

σ∈Sn:des(σ)=k

sign(σ)

SgnDesn(t) :=
n−1∑
k=0

SgnDesn,kt
k =

∑
σ∈Sn

sign(σ)tdes(σ).

Theorem (Foata, Desarmenien [4])
The SgnDesn(t) satisfy

SgnDes
2n(t) = (1− t)n desn(t),

SgnDes
2n+1(t) = (1− t)n desn+1(t).
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An involution?

Let’s look at SgnDesn(t) for n = 3.

• sign(123) = 1, des(123) = 0

• sign(132) = −1, des(132) = 1

• sign(213) = −1, des(213) = 1

• sign(231) = 1, des(231) = 1

• sign(312) = 1, des(312) = 1

• sign(321) = −1, des(321) = 2

So, SgnDes
3
(t) = 1− t − t + t + t − t2 = (1− t)(1+ t).
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An involution?

Is there a sign reversing involution that explains all the

cancellations and the terms that will be left at the end?
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Wachs’ involution
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

Example:

π = 3712546
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Wachs’ involution
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

2. Find the smallest 2i− 1 and 2i such that they are not adjacent
in the permutation.

Example:

π = 3712546
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Wachs’ involution
1. Take a permutation π = π1π2 . . . πn ∈ S2n.

2. Find the smallest 2i− 1 and 2i such that they are not adjacent
in the permutation.

3. If i exists, f (π) = (2i− 1, 2i).π. Else, f (π) = π.

Example:

π = 3712546

f (3712546) = 4712536
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Fixed points

A barred permutation onSn is a permutation written in one line

notation along with some bars over some symbols of the

permutation.

Example: 24153 is a barred permutation. 24153 also a barred

permutation.



descent signed descents excedance signed excedances sn vs⊣n wilf-equivalence results

Fixed points

For 2n, the fixed points are in bijection with barred
permutations onSn. Replace i by 2i− 1, 2i and i by 2i, 2i− 1.

24153←→ 347821(10)956

For 2n+ 1, the fixed points are in bijection with barred

permutations onSn+1 where the element n+ 1 is unbarred.

Replace i ̸= n+ 1 by 2i− 1, 2i, replace i by 2i, 2i− 1 and finally,

n+ 1 by 2n+ 1.

24153←→ 348721956



Let us look at another permutation statistic.
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Excedance statistic
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

Example:

π =

(
1 2 3 4 5 6 7

3 7 1 2 5 4 6

)
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Excedance statistic
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

2. Identify the positions iwhere πi > i.

Example:

π =

(
1 2 3 4 5 6 7

3 7 1 2 5 4 6

)
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Excedance statistic
1. Take a permutation π = π1π2 . . . πn ∈ Sn.

2. Identify the positions iwhere πi > πi+1.

3. exc(π) = |{i : πi > i}|.

Example:

π =

(
1 2 3 4 5 6 7

3 7 1 2 5 4 6

)
exc(3712546) = 2
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Descent and Excedance have the same
distribution overSn

It is one of the first results in permutation statistics proven

nearly 100 years ago, by MacMahon, that∑
σ∈Sn

tdes(σ) =
∑
σ∈Sn

texc(σ).

A bijective proof of this, i.e. one that a permutation with k
descents to one with k excedances, is the first fundamental
transformation.



Let’s look at the signed excedance enumerating

polynomial.
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Signed Excedance numbers

Theorem (Mantaci [8])
For n ∈N SgnExcn(t) =

∑
π∈Sn

sign(π)texc(π) = (1− t)n−1.

Wewill look at a sign reversing involution that gives us this

result. But before that, we will also look at a simpler proof of this

fact.
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Determinantal proof (due to Sivasubramanian [9])

Consider the n× nmatrixMn =


1 t . . . t t
1 1 . . . t t
.
.
.

.

.

.
. . .

.

.

.

.

.

.

1 1 . . . 1 t
1 1 . . . 1 1

 .

Then, det(Mn) =
∑

σ∈Sn
sign(σ)m1,σ(1) . . .mn,σ(n).

Now,mi,σ(i) = 1 if i is not an excedance position andmi,σ(i) = t if
it is. Therefore, det(M) = SgnExcn(t) =

∑
σ∈Sn

sign(σ)texc(σ)
.

This determinant can be explicitly computed (say, using

recursion) to be (1− t)n−1. This completes the proof.
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Canonical reduced words

Let si be the transposition (i, i+ 1). We know thatSn is

generated by s1, . . . , sn−1.

We will look at a canonical way to write any permutation as a

product of these generators.
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How to get it?

1. To get π1 . . . πn, we start from the permutation 12 . . . n.

2. We will multiply identity with generators on the right to

move the element πn to the last position. We will use rn to
keep track of the generators wemultiplied.

3. Multiply generators to get πn−1 to its correct position. Keep

track of what wemultiplied with rn−1.

4. Repeat this process till we have arrived at our required

permutation.
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Let’s try to get the canonical reduced word decomposition of

‘41523’.

12345

12453

14523

14523

41523

r5=s3s4

r4=s2s3

r3=1

r2=s1

Therefore, we get a canonical reduced word decomposition for

π = 41523 namely r5r4r3r2r1 = [s3s4][s2s3][1][s1][1].
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Observations

1. rn . . . ri, by definition, will get πi to its correct spot.

2. ri will look like sjsj+1 . . . si−1. It has to end with si−1. Therefore,

it can be at most of length i− 1.

3. If ri has length 1, the previous line implies that ri = si−1.
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An involution on canonical reduced words

For a permutation, find the rightmost ri+1, say ri0+1, which has
length⩾ 2. The one to its right, ri0, is forced to have length 1 or 0.
If it was length 1, it had to be si0−1. If it was length 0, it was just 1.

If it was si0−1, flip it to 1. If it was 1, flip it to si0−1.

If such there is no component of length 2 or more, leave it fixed.

This is our involution.

Example: π = 41523 = r5r4r3r2r1 = [s3s4][s2s3][1][s1][1]. We will flip
r3. Our involution yields fA(41523) = [s3s4][s2s3][s2][s1][1] = 51423.



Wewill look at some of the interesting properties that

the Eulerian distribution overSn satisfies and

compare themwith theAn counterparts.
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γ-positivity for the Eulerian distribution

A sequence is said to be γ-positive if the sequence can be written

as aZ-linear combination of rows of the Pascal triangle with the
same center of symmetry.

Example:

1 4 6 4 1

0 1 2 1 0 ×22
0 0 1 0 0 ×16
1 26 66 26 1

Every palindromic sequence of positive integers (one that reads

the same from front and back) can be written in this way.
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γ-positivity for palindromic polynomials

A polynomial is said to be γ-positive if the polynomial can be

written as aZ-linear combinations of polynomials of the form
tj(1+ t)n−2j. (tj shifts the center of symmetry)

Theorem (Foata, Schutzenberger [5])
There existsγn,j ⩾ 0 such that the Eulerian polynomial An(t) can be
written as

An(t) =
⌊ n−1

2
⌋∑

j=0

γn,jtj(1+ t)n−1−2j.
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γ-positivity for descents overAn

The polynomials

A+n (t) =
∑
π∈An

tdes(π),

A−n (t) =
∑

π∈Sn−An

tdes(π)

are not palindromic for all n. This is slightly disappointing.

However, whenever they are palindromic, they are γ-positive.

Theorem (Dey,Sivasubramanian [2])
The polynomials A+n (t),A−n (t) areγ-positive iff n ≡ 0, 1 (mod 4)
with the same center of symmetry.
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γ-positivity for excedances overAn

The polynomials

AE+n (t) =
∑
π∈An

texc(π),

AE−n (t) =
∑

π∈Sn−An

texc(π)

are not palindromic for all n. They are palindromic for all odd

positive integers n.

Theorem (Dey,Sivasubramanian [3])
The polynomials AE+n (t),AE−n (t) areγ-positive iff n ≡ 1 (mod 2)
with the same center of symmetry (n− 1)/2.
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Log-concavity of a sequence

A sequence (ak)nk=1 of reals is said to be log-concave if for each
2 ⩽ i ⩽ n− 1, we have a2i ⩾ ai+1ai−1.

A nice approach to proving log-concavity is the following

theorem due to Newton.

Theorem
Let

P(x) =
n∑

k=0

(
n
k

)
akxk

be a (real) polynomial with only real roots. Then, the sequence (ak)nk=0 is
log-concave.
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Ultra-log-concavity

Suppose the polynomial

P ′(x) =
n∑

k=0

akxk

is real-rooted. Then the sequence
ak
(nk)

is log-concave (this follows

fromNewton’s theorem). A sequence (ak)nk=0 is called
ultra-log-concave if the sequence

( ak
(nk)

)n
k=0 is log-concave. So,

sequences that appear as coefficients of real rooted polynomials

are ultra-log-concave.
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Real rootedness
The Eulerian polynomials are always real-rooted.

Theorem (Frobenius [6])
TheEulerian polynomials An(t) have only real and simple roots for all
natural n ⩾ 1.

However, we do not know counterparts of this result for the

descent and excedance distributions overAn.

Conjecture (Fulman, Lee, Petersen, Kim [7])
The polynomials A+n (t) and A−n (t) are real-rooted for all n ∈N.

Conjecture (Shankar)
The polynomials AE+n (t) and AE−n (t) are real-rooted for all n > 5.
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Back to log-concavity: Synchronicity

Let A = (ak)nk=1 and B = (bk)nk=1 be two sequences. Let S(A,B) be
the set of 2

n
sequences (ck)nk=1 such that ck ∈ {ak, bk}.

Two sequences A,B are said to be strongly synchronised if all
sequences in S(A,B) are log-concave. This implies that the

sequences A,B themselves are log-concave.
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Synchronicity overAn

Bn,k-number of permutations inAn with k descents
Cn,k-number of permutations inSn −An with k descents
Pn,k-number of permutations inAn with k excedances
Qn,k-number of permutations inSn −An with k excedances
Theorem (Shankar)
All 4n sequences in S((Bn,k)

n−1
k=0, (Cn,k)

n−1
k=0, (Pn,k)

n−1
k=0, (Qn,k)

n−1
k=0) are

ultra log-concave.
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Pattern Containment

Given a permutation τ = τ1 . . . τk ∈ Sk, a permutation

π = π1 . . . πn ∈ Sn is said to be contain the pattern τ if there is

some sequence i1 < i2 < · · · < ik such that πi1 . . . πik is order
isomorphic to τ.

Example: 24153 contains the subsequence 413 which is order

isomorphic to 312. Therefore, it contains the pattern 312.

However, the permutation avoids the pattern 321.
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Pattern Avoidance

If π does not contain τ, then we say π avoids τ. We will denote

the set of permutations inSn that avoid τ bySn(τ).

For example, the number of permutations inS20 that avoid the

pattern 213 is the password of our Zoommeeting.
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Wilf Equivalence

If for two patterns σ, τ ∈ Sk, the cardinalities

|Sn(σ)| = |Sn(τ)| are the same for every natural n, then the two
patterns σ, τ are said to beWilf-equivalent. We denote it by
σ ≡Sn τ.

For example, all three length patterns areWilf-equivalent.

123 ≡Sn 132 ≡Sn 213 ≡Sn 231 ≡Sn 312 ≡Sn 321

.
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even-Wilf-equivalence

We can imitate the definition ofWilf-equivalence for even

permutations.

We call two patterns σ, τ to be even-Wilf-equivalent if

Sn(σ) ∩An = Sn(τ) ∩An.

Wewill denoteSn(σ) ∩An byAn(σ). We will denote
even-Wilf-equivalence of two patterns σ, τ by σ ≡An τ.
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For patterns of length 3 and 4

For length 3 patterns, we have the following theorem.

Theorem (Simion, Schmidt)
There are two distinct even-Wilf-equivalence classes for patterns of length
3.
1. 123 ≡An 312 ≡An 213

2. 132 ≡An 321 ≡An 231

For length 4 patterns, we have the following theorem.

Theorem (Jaggard, Baxter [1])
There are 11 even-Wilf-equivalence classes for patterns of length 4.
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For patterns of length 5 and above

As far as we know, there can be anywhere between 35 and 39

even-Wilf-equivalence classes.

Conjecture (Jaggard, Baxter [1])
The following equivalences hold:
1. 12345 ≡An 45312

2. 54321 ≡An 21354

3. 12354 ≡An 45321

4. 13524 ≡An 42531
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Amore surprising conjecture

Conjecture (Jaggard, Baxter [1])
Ifσ ≡An τ, thenσ ≡Sn τ.

The conjecture asserts that if the number of even permutations

avoiding σ and τ are the same, then the number of odd

permutations avoiding σ and τ are the same.



Can we generalise these results somehow?
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Oneway to generalise
The permutations inAn are the permutations inSn whose

number of inversions are 0 (mod 2).
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Oneway to generalise
The permutations inAn are the permutations inSn whose

number of inversions are 0 (mod 2).

What about the permutations whose number of inversions are 0

(mod k)?
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Oneway to generalise
The permutations inAn are the permutations inSn whose

number of inversions are 0 (mod 2).

What about the permutations whose number of inversions are 0

(mod k)?

Are the descent enumerating polynomials over these classes

palindromic? γ-positive? Real rooted?



descent signed descents excedance signed excedances sn vs⊣n wilf-equivalence results

A conjecture?

I would like to end the talk with this conjecture.

Conjecture
LetSn,3 := {σ ∈ Sn : inv(σ) ≡ 0 (mod 3)}. For n ≡ 0, 1
(mod 3) and n ⩾ 4, then the polynomial∑

σ∈Sn,3

tdes(π)

isγ-positive.
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