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Definition: A function f : K→ K is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)
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Definition: A a power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)
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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)
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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)
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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)

symbolic
summation

symbolic
integration

Feynman
integrals



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V -topologies
[arXiv:1509.08324]

F (ε, n) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzxε/2yε/2(1− z)−

3ε
2
−2z

ε
2
+n+1

(1− xz)ε/2 × (1− yz)ε/2(x+ y − 1)n
︸ ︷︷ ︸

f(ε, n, x, y, z)
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The integrand is
◮ hyperexponential in x,y,z:

Dxf(ε, n, x, y, z)

f(ε, n, x, y, z)
∈ Q(ε, n, x, y, z)
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◮ hyperexponential in x,y,z:
◮ hypergeometric in n:

f(ε, n+ 1, x, y, z)

f(ε, n, x, y, z)
∈ Q(ε, n, x, y, z)

Holonomic theory shows that there exists a holonomic recurrence!
[Multi-Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory; Moa Apagodu

(formerly Mohamud Mohammed) and Doron Zeilberger]



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V -topologies
[arXiv:1509.08324]

F (ε, n) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzxε/2yε/2(1− z)−

3ε
2
−2z

ε
2
+n+1

(1− xz)ε/2 × (1− yz)ε/2(x+ y − 1)n
︸ ︷︷ ︸

f(ε, n, x, y, z)

Ablinger’s
MultiIntegrate.m





y

(9 hours)

a0(ε, n)F (ε, n) + a1(ε, n)F (ε, n + 1) + · · · + a5(ε, n)F (ε, n + 5) = 0



Symbolic integration (recurrence finding) 4

a0(n, ε) = (n+ 1)(n+ 2)
(

8ε10 + 104ε9(n+ 3) + 4ε8
(

96n2 + 601n+ 887
)

+ 4ε7
(

12n3 + 414n2 + 1583n + 1393
)

− 8ε6
(

264n4 + 2436n3 + 8643n2 + 14518n + 9947
)

− 16ε5
(

156n5 + 1690n4 + 6847n3 + 12661n2 + 9537n+ 717
)

+ 32ε4
(

68n6 + 1158n5 + 8155n4 + 30114n3 + 61712n2 + 67616n + 31693
)

+ 64ε3
(

40n7 + 560n6 + 2755n5 + 3729n4 − 14194n3 − 61920n2 − 89140n − 46600
)

− 128ε2(n+ 2)
(

12n7 + 254n6 + 2249n5 + 10758n4 + 30173n3 + 50610n2

+ 49122n+ 22706
)

+ 256ε(n+ 2)2(n+ 3)(n + 4)
(

44n4 + 501n3 + 2044n2 + 3455n + 1976
)

− 512(n+ 1)(n + 2)3(n+ 3)2(n+ 4)
(

6n2 + 47n+ 95
))

,



Symbolic integration (recurrence finding) 4

a1(n, ε) = (n+ 2)
(

− 22ε11 − 2ε10(157n + 435) − ε9
(

1500n2 + 8611n+ 11745
)

− ε8
(

2548n3 + 22936n2 + 63597n + 54229
)

+ 4ε7
(

266n4 + 1857n3 + 6065n2 + 14351n + 15987
)

+ 8ε6
(

994n5 + 12961n4 + 67246n3 + 174692n2 + 226821n + 116092
)

+ 16ε5
(

336n6 + 5348n5 + 33569n4 + 104918n3 + 165290n2 + 108259n + 6100
)

− 16ε4
(

404n7 + 7578n6 + 61778n5 + 284762n4 + 802660n3 + 1382074n2

+ 1340455n + 560287
)

− 64ε3
(

94n8 + 1823n7 + 14305n6 + 55870n5 + 96299n4 − 37256n3

− 447044n2 − 704959n − 379338
)

+ 128ε2(n+ 3)
(

30n8 + 715n7 + 7667n6 + 48253n5 + 194086n4 + 507439n3

+ 835393n2 + 785327n + 320382
)

− 256ε(n+ 2)(n+ 3)2
(

107n6 + 2070n5 + 16342n4 + 67226n3 + 151557n2

+ 176932n + 83196
)

+ 256(n + 2)3(n+ 3)3(n+ 4)
(

30n3 + 331n2 + 1193n+ 1386
))

,



Symbolic integration (recurrence finding) 4

a2(n, ε) =
(

12ε12 + 12ε11(17n+ 45) + 2ε10
(

620n2 + 3553n + 4795
)

+ 2ε9
(

1504n3 + 14190n2 + 41901n + 38907
)

+ 4ε8
(

172n4 + 4983n3 + 30942n2 + 69119n + 50850
)

− 4ε7
(

1996n5 + 24056n4 + 113313n3 + 269119n2 + 337198n + 185290
)

− 16ε6
(

450n6 + 8210n5 + 59749n4 + 227386n3 + 486841n2 + 563176n + 275664
)

+ 16ε5
(

340n7 + 4314n6 + 19137n5 + 25532n4 − 55105n3 − 206516n2 − 191528n

− 23458
)

+ 32ε4
(

140n8 + 2940n7 + 26550n6 + 139926n5 + 493839n4 + 1240186n3

+ 2161699n2 + 2304248n + 1100084
)

+ 64ε3
(

4n9 + 506n8 + 8651n7 + 63510n6 + 236215n5 + 395334n4 − 105413n3

− 1551017n2 − 2362944n − 1217770
)

− 128ε2(n+ 3)
(

12n9 + 314n8 + 3782n7 + 29105n6 + 160727n5 + 640273n4

+ 1750874n3 + 3052505n2 + 3017094n + 1276604
)

+ 256ε(n + 2)(n + 3)2(n+ 4)
(

26n6 + 825n5 + 8967n4 + 46529n3 + 125411n2

+ 168628n + 88652
)

− 512(n + 1)(n + 2)2(n+ 3)3(n+ 4)2
(

6n3 + 98n2 + 459n+ 655
))

,



Symbolic integration (recurrence finding) 4

a3(n, ε) =
(

− 64ε12 − 8ε11(113n + 298) − 8ε10
(

519n2 + 2948n + 3896
)

− 4ε9
(

1444n3 + 13839n2 + 39746n + 34305
)

+ 4ε8
(

1948n4 + 17868n3 + 63837n2 + 112966n + 84655
)

+ 16ε7
(

1456n5 + 20460n4 + 112365n3 + 304963n2 + 412258n + 221769
)

− 8ε6
(

320n6 + 2050n5 + 4192n4 + 27408n3 + 174901n2 + 411759n + 324872
)

− 16ε5
(

1756n7 + 33154n6 + 265889n5 + 1186719n4 + 3218059n3 + 5349388n2

+ 5071913n + 2113696
)

+ 32ε4
(

188n8 + 4802n7 + 59527n6 + 439922n5 + 2025336n4 + 5813984n3

+ 10076450n2 + 9621283n + 3878602
)

+ 64ε3
(

140n9 + 2768n8 + 22500n7 + 99545n6 + 287700n5 + 723136n4

+ 1854572n3 + 3714620n2 + 4272517n + 2031600
)

− 128ε2
(

24n10 + 830n9 + 14362n8 + 152630n7 + 1053620n6 + 4834279n5

+ 14824351n4 + 29964399n3 + 38244797n2 + 27875896n + 8824032
)

+ 256ε(n+ 2)(n+ 3)(n + 4)
(

118n7 + 2639n6 + 24247n5 + 118311n4 + 329565n3

+ 520306n2 + 426076n + 136854
)

− 512(n + 1)(n + 2)2(n+ 3)2(n+ 4)2(n+ 5)
(

12n3 + 97n2 + 230n + 144
))

,



Symbolic integration (recurrence finding) 4

a4(n, ε) =
(

64ε12 + 192ε11(5n + 14) + 16ε10
(

297n2 + 1769n + 2451
)

+ 16ε9
(

453n3 + 4462n2 + 13094n + 11244
)

− 8ε8
(

1084n4 + 11117n3 + 47258n2 + 103981n + 94650
)

− 8ε7
(

3304n5 + 51138n4 + 311957n3 + 948722n2 + 1440105n + 858544
)

+ 16ε6
(

420n6 + 5507n5 + 36275n4 + 169650n3 + 536911n2 + 952507n + 694370
)

+ 16ε5
(

1828n7 + 38868n6 + 353301n5 + 1801014n4 + 5604391n3 + 10664390n2

+ 11433064n + 5260048
)

− 32ε4
(

316n8 + 8356n7 + 105800n6 + 802421n5 + 3836854n4 + 11588223n3

+ 21401558n2 + 22066744n + 9745752
)

− 64ε3
(

116n9 + 2424n8 + 19923n7 + 82966n6 + 208191n5 + 530980n4 + 1847484n3

+ 4687014n2 + 6120858n + 3111104
)

+ 128ε2
(

24n10 + 826n9 + 14897n8 + 172000n7 + 1314686n6 + 6710299n5

+ 22873183n4 + 51298261n3 + 72551278n2 + 58573022n + 20544948
)

− 256ε(n+ 2)(n+ 3)
(

106n8 + 3278n7 + 42903n6 + 310942n5 + 1366350n4

+ 3729418n3 + 6173159n2 + 5657732n + 2191212
)

+ 512(n+ 1)(n + 2)2(n+ 3)2(n+ 4)(n + 5)(n + 6)
(

12n3 + 121n2 + 396n + 431
))

,



Symbolic integration (recurrence finding) 4

a5(n, ε) = (n+ 5)
(

− 128ε11 − 128ε10(11n+ 26)− 32ε9
(

115n2 + 592n+ 647
)

+ 32ε8
(

63n3 + 430n2 + 1665n + 2384
)

+ 16ε7
(

714n4 + 7881n3 + 33802n2 + 66225n + 47654
)

− 16ε6
(

234n5 + 2444n4 + 13989n3 + 50862n2 + 104083n + 87848
)

− 16ε5
(

580n6 + 10181n5 + 76586n4 + 319207n3 + 772120n2 + 1012046n + 547832
)

+ 16ε4
(

244n7 + 5456n6 + 61605n5 + 401216n4 + 1536277n3 + 3408574n2

+ 4066436n + 2026928
)

+ 64ε3
(

26n8 + 357n7 + 583n6 − 11139n5 − 65193n4 − 120264n3 + 11864n2

+ 272830n + 222624
)

− 64ε2(n+ 3)
(

12n8 + 298n7 + 4684n6 + 49024n5 + 306907n4 + 1122441n3

+ 2350650n2 + 2607576n + 1185072
)

+ 256ε(n + 2)(n + 3)
(

25n7 + 743n6 + 8856n5 + 55358n4 + 197497n3 + 404131n2

+ 439902n + 196128
)

− 256(n + 1)(n+ 2)2(n+ 3)2(n+ 4)(n + 6)(n+ 7)
(

6n2 + 35n+ 54
))

.
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

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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)
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Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K



Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

S.A. Abramov, M. Bronstein, M. Petkovšek, CS. J. Symb. Comput. 107, pp. 23-66. 2021.



Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

S2,1(n) =
n∑

i=1

1

i2

i∑

j=1

1

j
(harmonic sums)

J. Blümlein and S. Kurth, Phys. Rev. D 60 (1999) 014018 [arXiv:hep-ph/9810241];

J.A.M. Vermaseren, Int. J. Mod. Phys. A 14 (1999) 2037 [arXiv:hep-ph/9806280].



Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

n∑

k=1

2k

k

k∑

i=1

2−i

i

i∑

j=1

S1(j)

j
(generalized harmonic sums)

S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083];

J. Ablinger, J. Blümlein and CS, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378].



Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

n∑

k=1

1

(1 + 2k)2

k∑

j=1

1

j2

j
∑

i=1

1

1 + 2i
(cyclotomic harmonic sums)

J. Ablinger, J. Blümlein and CS, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063].



Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

n∑

j=1

4jS1(j − 1)
(
2j
j

)
j2

(binomial sums)

J. Ablinger, J. Blümlein, C. G. Raab and CS, J. Math. Phys. 55 (2014) 112301 [arXiv:1407.1822].
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A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

n∑

h=1

2−2h
(
1− η

)h
(
2h

h

) h∑

k=1

22k

k2
(2k
k

) (generalized binomial sums)

J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, CS, K. Schönwald. Nucl.Phys.B 932. 2018. [arXiv:1804.02226].
J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, M. Saragnese, CS, K. Schönwald. Nucl.Phys.B 955. 2020. [arXiv:2004.08916]



Symbolic summation (recurrence solving) 7

A recurrence solver (Sigma.m)

GIVEN a recurrence a0(n), . . . , aδ(n): polynomials in n
h(n): expression in indefinite nested sums

defined over hypergeometric products.

a0(n)F (n) + · · ·+ aδ(n)F (n + δ) = h(n);

together with initial values F (0), . . . , F (δ − 1) ∈ K

DECIDE constructively if F (n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

A more general example:

n∑

k=1

(
k∏

i=1

1 + i+ i2

i+ 1

)
k∑

j=1

1

j
(4j
3j

)2



Symbolic summation (recurrence solving) 8

Example: A master integral from Ladder and V -topologies
[arXiv:1509.08324]

F (ε, n) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzxε/2yε/2(1− z)−

3ε
2
−2z

ε
2
+n+1

(1− xz)ε/2 × (1− yz)ε/2(x+ y − 1)n
︸ ︷︷ ︸

f(ε, n, x, y, z)

Ablinger’s
MultiIntegrate.m





y

(9 hours)

a0(ε, n)F (ε, n) + a1(ε, n)F (ε, n + 1) + · · · + a5(ε, n)F (ε, n + 5) = 0

recurrence solver





y

F (ε, n) = expression in terms of special functions
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Example: A master integral from Ladder and V -topologies
[arXiv:1509.08324]

F (ε, n) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzxε/2yε/2(1− z)−

3ε
2
−2z

ε
2
+n+1

(1− xz)ε/2 × (1− yz)ε/2(x+ y − 1)n
︸ ︷︷ ︸

f(ε, n, x, y, z)

Ablinger’s
MultiIntegrate.m





y

(9 hours)

a0(ε, n)F (ε, n) + a1(ε, n)F (ε, n + 1) + · · · + a5(ε, n)F (ε, n + 5) = 0

refined
recurrence solver





y

F (ε, n) = F−3(n)ε
−3 + F−2(n)ε

−2 + . . .



Symbolic summation (recurrence solving) 9

Ansatz (for power series)

a0(ε, n)
[

F (ε, n)
]

+a1(ε, n)
[

F (ε, n + 1)
]

+

...

+aδ(ε, n)
[

F (ε, n + δ)
]

= h0(n) + h1(n)ε+ h2(n)ε
2 + . . .

given (in terms of indefinite nested sums and products)
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]

= h0(n) + h1(n)ε+ h2(n)ε
2 + . . .

⇓ constant terms must agree

a0(0,n)F0(n) + a1(0, n)F0(n+1) + · · ·+ aδ(0, n)F0(n+δ) = h0(n)
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Ansatz (for power series)
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2 + . . .
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]
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2 + . . .

⇓ constant terms must agree

a0(0,n)F0(n) + a1(0, n)F0(n+1) + · · ·+ aδ(0, n)F0(n+δ) = h0(n)

REC solver: Given the initial values F0(1), F0(2), . . . , F0(δ),
decide if F0(n) can be written in terms of indefinite
nested sums and products.
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]
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]

= h0(n) + h1(n)ε+ h2(n)ε
2 + . . .

⇓ constant terms must agree

a0(0,n)F0(n) + a1(0, n)F0(n+1) + · · ·+ aδ(0, n)F0(n+δ) = h0(n)



Symbolic summation (recurrence solving) 10

a0(ε, n)
[

F1(n)ε+ F2(n)ε
2 + . . .

]

+a1(ε, n)
[

F1(n+1)ε+ F2(n+1)ε2 + . . .
]

+

...

+aδ(ε, n)
[

F1(n+δ)ε + F2(n+ δ)ε2 + . . .
]

= h′0(n) + h′1(n)ε+ h′2(n)ε
2 + . . .



Symbolic summation (recurrence solving) 10

a0(ε, n)
[

F1(n)ε+ F2(n)ε
2 + . . .

]

+a1(ε, n)
[

F1(n+1)ε+ F2(n+1)ε2 + . . .
]

+

...

+aδ(ε, n)
[

F1(n+δ)ε+ F2(n+ δ)ε2 + . . .
]

= h′0(n)
︸ ︷︷ ︸

=0

+h′1(n)ε+ h′2(n)ε
2 + . . .

Devide by ε



Symbolic summation (recurrence solving) 11

a0(ε, n)
[

F1(n) + F2(n)ε+ . . .
]

+a1(ε, n)
[

F1(n+ 1) + F2(n+ 1)ε + . . .
]

+

...

+aδ(ε,n)
[

F1(n+δ) + F2(n+δ)ε+ . . .
]

= h′1(n) + h′2(n)ε+ . . .

Repeat to get F1(n), F2(n), . . .

Remark: Works the same for Laurent series.

Blümlein, Klein, CS, Stan, J. Symbol. Comput. 2012; arXiv:1011.2656[cs.SC]

Ablinger, Blümlein, Round, CS, LL2012, arXiv:1210.1685 [cs.SC]
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Example: A master integral from Ladder and V -topologies
[arXiv:1509.08324]

F (ε, n) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dzxε/2yε/2(1− z)−

3ε
2
−2z

ε
2
+n+1

(1− xz)ε/2 × (1− yz)ε/2(x+ y − 1)n
︸ ︷︷ ︸

f(ε, n, x, y, z)

Ablinger’s
MultiIntegrate.m





y

(9 hours)

a0(ε, n)F (ε, n) + a1(ε, n)F (ε, n + 1) + · · · + a5(ε, n)F (ε, n + 5) = 0

Sigma.m





y

(2 hours)

F (ε, n) = F−3(n)ε
−3 + F−2(n)ε

−2 + · · ·+ F4(n)ε
4 +O(ε5)



Symbolic summation (recurrence solving) 13

We get
F−3(n) =

8(−1)n

3(n+1)(n+2) +
8(2n+3)

3(n+1)2(n+2)



Symbolic summation (recurrence solving) 13

We get
F−3(n) =

8(−1)n

3(n+1)(n+2) +
8(2n+3)

3(n+1)2(n+2)

F−2(n) = −
4(−1)n

(
3n3+18n2+31n+18

)

3(n+1)3(n+2)2
− 4
(
6n3+32n2+51n+26

)

3(n+1)3(n+2)2
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We get
F−3(n) =

8(−1)n

3(n+1)(n+2) +
8(2n+3)

3(n+1)2(n+2)

F−2(n) = −
4(−1)n

(
3n3+18n2+31n+18

)

3(n+1)3(n+2)2
− 4
(
6n3+32n2+51n+26

)

3(n+1)3(n+2)2

F−1(n) = (−1)n
(

2
(
9n5 + 81n4 + 295n3 + 533n2 + 500n + 204

)

3(n+ 1)4(n+ 2)3
+

ζ2

(n+ 1)(n+ 2)

)

+
2
(
18n5 + 150n4 + 490n3 + 755n2 + 536n+ 132

)

3(n+ 1)4(n+ 2)3
+

(2n+ 3)ζ2
(n+ 1)2(n+ 2)

+

(

−
4

(n+ 1)2(n+ 2)
+

4(−1)n

(n+ 1)(n+ 2)

)

S2(n)

+

(
4(−1)n

3(n+ 1)(n+ 2)
−

4(n+ 9)

3(n+ 1)2(n+ 2)

)

S−2(n)



Summary: symbolic summation and integration 14

Find a recurrence and solve it for the integral/sum

F (ε, n) =

∫ 1

0
· · ·
∫ 1

0
Φ(ε, n, x1, x2, . . . , x7)dx1dx2 . . . dx7

?
=F−3(n)ε

−3 + F−2(n)ε
−2 + F−1(n)ε

−1 + . . .

ε-recurrence solver

multivariate
Almquist/Zeilberger
(Jakob Ablinger)

a0(ε, n)F (ε, n) + . . .+ ad(ε, n)F (ε, n + d) = h(ε, n)
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multivariate
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∑

i1

· · ·
∑
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f(ε, n, i1, i2, . . . , i7)

MultiSum Package
(K. Wegschaider)

a0(ε, n)F (ε, n) + . . .+ ad(ε, n)F (ε, n + d) = h(ε, n)
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Summary: symbolic summation and integration 14

Find a recurrence and solve it for the integral/sum

F (ε, n) =

∫ 1

0
· · ·
∫ 1

0
Φ(ε, n, x1, x2, . . . , x7)dx1dx2 . . . dx7

?
=F−3(n)ε

−3 + F−2(n)ε
−2 + F−1(n)ε

−1 + . . .

difference ring approach ε-recurrence solver

multivariate
Almquist/Zeilberger
(Jakob Ablinger)

∑

i1

· · ·
∑

i7

f(ε, n, i1, i2, . . . , i7)

MultiSum Package
(K. Wegschaider)

Holonomic/difference ring approach

a0(ε, n)F (ε, n) + . . .+ ad(ε, n)F (ε, n + d) = h(ε, n)



Summary: symbolic summation and integration 15

Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)

symbolic
summation

symbolic
integration
RE finding

Feynman
integrals

recurrence
solving
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Symbolic summation machinery (recurrence finding and solving) 16

A warm up example:

GIVEN F (ε, n) =

∞∑

k=0

∞∑

j=0

e−eγ

Γ(ε+ 1)
×

×

(

Γ(k + 1)

Γ(k + 2 + n)

Γ( ε
2
)Γ(1− ε

2
)Γ(j + 1− ε

2
)Γ(j + 1 + ε

2
)Γ(k + j + 1 + n)

Γ(j + 1− ε
2
)Γ(j + 2 + n)Γ(k + j + 2)

+
Γ(k + 1)

Γ(k + 2 + n)

Γ(− ε
2
)Γ(1 + ε

2
)Γ(j + 1 + ε)Γ(j + 1− ε

2
)Γ(k + j + 1 + ε

2
+ n)

Γ(j + 1)Γ(j + 2 + ε
2
+ n)Γ(k + j + 2 + ε

2
)

︸ ︷︷ ︸

f(ε, n, k, j)

)

.

Arose in the context of
I. Bierenbaum, J. Blümlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006
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2
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2
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2
)Γ(k + j + 1 + ε

2
+ n)

Γ(j + 1)Γ(j + 2 + ε
2
+ n)Γ(k + j + 2 + ε

2
)

︸ ︷︷ ︸

f(ε, n, k, j)

)

.

FIND the first coefficients of the ǫ-expansion

F (ε, n) = F0(n) + εF1(n) + . . .

Arose in the context of
I. Bierenbaum, J. Blümlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006
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A warm up example:

GIVEN F (ε, n) =

∞∑

k=0

∞∑

j=0

e−eγ

Γ(ε+ 1)
×

×

(
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2
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2
)Γ(j + 1− ε

2
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2
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2
)Γ(j + 1 + ε)Γ(j + 1− ε

2
)Γ(k + j + 1 + ε

2
+ n)

Γ(j + 1)Γ(j + 2 + ε
2
+ n)Γ(k + j + 2 + ε

2
)

︸ ︷︷ ︸

f(ε, n, k, j)

)

.

Step 1: Compute the first coefficients of the ǫ-expansion

f(ε, n, k, j) = f0(n, k, j) + εf1(n, k, j) + . . .

Arose in the context of
I. Bierenbaum, J. Blümlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006
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A warm up example:

GIVEN F (ε, n) =

∞∑

k=0
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j=0

e−eγ

Γ(ε+ 1)
×

×

(

Γ(k + 1)
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Γ( ε
2
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2
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2
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2
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2
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Γ(− ε
2
)Γ(1 + ε

2
)Γ(j + 1 + ε)Γ(j + 1− ε

2
)Γ(k + j + 1 + ε

2
+ n)

Γ(j + 1)Γ(j + 2 + ε
2
+ n)Γ(k + j + 2 + ε

2
)

︸ ︷︷ ︸

f(ε, n, k, j)

)

.

Step 2: Simplify the sums in

∞∑

k=0

∞∑

j=0

f(ε, n, k, j) =

∞∑

k=0

∞∑

j=0

f0(n, k, j) + ε

∞∑

k=0

∞∑

j=0

f1(n, k, j) + . . .

Arose in the context of
I. Bierenbaum, J. Blümlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006



Symbolic summation machinery (recurrence finding and solving) 17

A warm-up example: simplify
∞∑

k=0

∞∑

j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(j)

)

where

S1(n) =

n∑

i=1

1

i
(= Hn)
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f(j)

)

FIND g(j):

f(j) = g(j + 1)− g(j)
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f(j)

)

FIND g(j):

f(j) = g(j + 1)− g(j)

↑ summation package Sigma

g(j) =
(j+k+1)(j+n+1)j!k!(j+k+n)!

(
S1(j)−S1(j+k)−S1(j+n)+S1(j+k+n)

)

kn(j+k+1)!(j+n+1)!(k+n+1)!
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( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(j)

)

FIND g(j):

f(j) = g(j + 1)− g(j)

Summing the telescoping equation over j from 0 to a gives

a∑

j=0

f(j) = g(a+ 1)− g(0)



Symbolic summation machinery (recurrence finding and solving) 17

A warm-up example: simplify
∞∑

k=0

∞∑

j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(j)

)

FIND g(j):

f(j) = g(j + 1)− g(j)

Summing the telescoping equation over j from 0 to a gives

a∑

j=0

f(j) = g(a+ 1)− g(0)

= (a+1)!(k−1)!(a+k+n+1)!(S1(a)−S1(a+k)−S1(a+n)+S1(a+k+n))
n(a+k+1)!(a+n+1)!(k+n+1)!

+S1(k)+S1(n)−S1(k+n)
kn(k+n+1)n! + (2a+k+n+2)a!k!(a+k+n)!

(a+k+1)(a+n+1)(a+k+1)!(a+n+1)!(k+n+1)!
︸ ︷︷ ︸

a→∞
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A warm-up example: simplify
∞∑

k=0

∞∑

j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(j)

)

∞∑

j=0

f(j) =
1

n!

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
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A warm-up example: simplify
∞∑

k=0

∞∑

j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(j)

)

∞∑

k=1

∞∑

j=0

f(j) =
1

n!

∞∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
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Telescoping

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(k)

.

FIND g(k) :

g(k + 1)− g(k) = f(k)

for all 0 ≤ k ≤ n and all n ≥ 0.
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Telescoping

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(k)

.

FIND g(k) :

g(k + 1)− g(k) = f(k)

for all 0 ≤ k ≤ n and all n ≥ 0.

no solution©◦ ◦⌢
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k)

g(n, k + 1)− g(n, k) = f(n, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

no solution©◦ ◦⌢
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Sigma computes: c0(n) = −n, c1(n) = (n+ 2) and

g(n, k) =
kS1(k) + (−n− 1)S1(n)− kS1(k + n)− 2

(k + n+ 1)(n+ 1)2
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) =

a∑

k=1

[

c0(n) f(n, k) + c1(n) f(n+ 1, k)
]
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) =

a∑

k=1

c0(n) f(n, k) +

a∑

k=1

c1(n) f(n+ 1, k)
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) = c0(n)

a∑

k=1

f(n, k) + c1(n)

a∑

k=1

f(n+ 1, k)
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) = c0(n)A(n) + c1(n)A(n+ 1)
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Zeilberger’s creative telescoping paradigm

GIVEN
A(n) :=

a∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n + 1)
︸ ︷︷ ︸

=: f(n, k)

.

FIND g(n, k) and c0(n), c1(n):

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n) f(n+ 1, k)

for all 0 ≤ k ≤ n and all n ≥ 0.

Summing this equation over k from 1 to a gives:

g(n, a+ 1)− g(n, 1) = c0(n)A(n) + c1(n)A(n+ 1)

|| ||
(a+1)(S1(a)+S1(n)−S1(a+n))

(n+1)2(a+n+2) − nA(n) + (2 + n)A(n+ 1)

+ a(a+1)
(n+1)3(a+n+1)(a+n+2)
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(n+ 2)A(n+ 1)− nA(n) =
(n + 1)S1(n) + 1

(n+ 1)3

recurrence finder

A(n) =

∞∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
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(n+ 2)A(n+ 1)− nA(n) =
(n + 1)S1(n) + 1

(n+ 1)3

recurrence solver

A(n) =

∞∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
∈ {c× 1

n(n+ 1)

+
S1(n)

2 + S2(n)

2n(n+ 1)
|c ∈ R}

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑

i=1

1

i2
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(n+ 2)A(n+ 1)− nA(n) =
(n + 1)S1(n) + 1

(n+ 1)3

Summation package Sigma
(based on difference field/ring algorithms/theory

see, e.g., Abramov, Karr 1981, Bronstein 2000, Schneider 2001/2004/2005a–c/2007/2008/2010a–c)

A(n) =

∞∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)
=

0× 1

n(n + 1)

+
S1(n)

2 + S2(n)

2n(n+ 1)

where

S1(n) =
n∑

i=1

1

i
S2(n) =

n∑

i=1

1

i2
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A warm-up example: simplify
∞∑

k=0

∞∑

j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(j)

)

∞∑

k=1

∞∑

j=0

f(j) =
1

n!

∞∑

k=1

S1(k) + S1(n)− S1(k + n)

kn(k + n+ 1)

=
1

n!

S1(n)
2 + S2(n)

2n(n+ 1)

where

S1(n) =

n∑

i=1

1

i
S2(n) =

n∑

i=1

1

i2
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A warm-up example: simplify
∞∑

k=0

∞∑

j=0

( (2j + k + n+ 2)j!k!(j + k + n)!

(j + k + 1)(j + n+ 1)(j + k + 1)!(j + n+ 1)!(k + n+ 1)!

+
j!k!(j + k + n)! (−S1(j) + S1(j + k) + S1(j + n)− S1(j + k + n))

(j + k + 1)!(j + n+ 1)!(k + n+ 1)!
︸ ︷︷ ︸

f(n, k, j)

)

∞∑

k=0

∞∑

j=0

f(n, k, j) =
S1(n)

2 + 3S2(n)

2n(n+ 1)!

where

S1(n) =

n∑

i=1

1

i
S2(n) =

n∑

i=1

1

i2
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1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

A(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;
n: extra parameter

FIND a recurrence for A(n)
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1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

A(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;
n: extra parameter

FIND a recurrence for A(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):
indefinite nested product-sum expressions.

a0(n)A(n) + · · ·+ ad(n)A(n + d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein/Petkovšek/CS, JSC 2021)
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1. Creative telescoping (for the special case of hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

A(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;
n: extra parameter

FIND a recurrence for A(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):
indefinite nested product-sum expressions.

a0(n)A(n) + · · ·+ ad(n)A(n + d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein/Petkovšek/CS, JSC 2021)

3. Find a “closed form”

A(n)=combined solutions in terms of indefinite nested sums.
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(j+1

r

)(−j+n+r−2
s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

Simple sum
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||
(
j + 1

r

)( (−1)r(−j + n− 2)!r!

(n+ 1)(−j + n+ r − 1)(−j + n+ r)!
+

(−1)n+r(j + 1)!(−j + n− 2)!(−j + n− 1)rr!

(n− 1)n(n+ 1)(−j + n+ r)!(−j − 1)r(2− n)j

)
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑

j=0

j+1
∑

r=0

(
j + 1

r

)( (−1)r(−j + n− 2)!r!

(n + 1)(−j + n+ r − 1)(−j + n+ r)!
+

(−1)n+r(j + 1)!(−j + n− 2)!(−j + n− 1)rr!

(n − 1)n(n + 1)(−j + n+ r)!(−j − 1)r(2− n)j

)
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑

j=0

j+1
∑

r=0

(
j + 1

r

)( (−1)r(−j + n− 2)!r!

(n+ 1)(−j + n+ r − 1)(−j + n+ r)!
+

(−1)n+r(j + 1)!(−j + n− 2)!(−j + n− 1)rr!

(n− 1)n(n + 1)(−j + n+ r)!(−j − 1)r(2− n)j

)

||

( n2 − n+ 1

(n− 1)2n2(n+ 1)(2 − n)j
+

j
∑

i=1

(2− n)i
(−i+ n− 1)2(i+ 1)!

(n+ 1)(2 − n)j
+

(−1)j+n(−j − 2)(−j + n− 2)!

(j − n+ 1)(n + 1)2n!

)

(j + 1)!− 1

(n+ 1)2(−j + n− 1)
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑

j=0

(
( n2 − n+ 1

(n− 1)2n2(n+ 1)(2 − n)j
+

j
∑

i=1

(2− n)i
(−i+ n− 1)2(i+ 1)!

(n + 1)(2 − n)j
+

(−1)j+n(−j − 2)(−j + n− 2)!

(j − n+ 1)(n + 1)2n!

)

(j + 1)!− 1

(n+ 1)2(−j + n− 1)

)
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n−2∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(
j+1
r

)(
−j+n+r−2

s

)
(−j + n− 2)!r!

(n− s)(s+ 1)(−j + n+ r)!

||

n−2∑

j=0

(
( n2 − n+ 1

(n− 1)2n2(n+ 1)(2 − n)j
+

j
∑

i=1

(2− n)i
(−i+ n− 1)2(i+ 1)!

(n + 1)(2 − n)j
+

(−1)j+n(−j − 2)(−j + n− 2)!

(j − n+ 1)(n + 1)2n!

)

(j + 1)!− 1

(n+ 1)2(−j + n− 1)

)

||

−n2 − n− 1

n2(n+ 1)3
+

(−1)n
(
n2 + n+ 1

)

n2(n+ 1)3
− 2S−2(n)

n+ 1
+

S1(n)

(n + 1)2
+

S2(n)

−n− 1

Note: Sa(n) =
∑N

i=1
sign(a)i

i|a|
, a ∈ Z \ {0}.
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In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[2]:= << HarmonicSums.m

HarmonicSums by Jakob Ablinger © RISC-Linz

In[3]:= << EvaluateMultiSums.m

EvaluateMultiSums by Carsten Schneider © RISC-Linz
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In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[2]:= << HarmonicSums.m

HarmonicSums by Jakob Ablinger © RISC-Linz

In[3]:= << EvaluateMultiSums.m

EvaluateMultiSums by Carsten Schneider © RISC-Linz

In[4]:= mySum =

n−2
∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(

j+1
r

)(

−j+n+r−2
s

)

(−j + n − 2)!r!

(n − s)(s + 1)(−j + n + r)!
;

In[5]:= EvaluateMultiSum[mySum, {}, {n}, {1}]
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In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[2]:= << HarmonicSums.m

HarmonicSums by Jakob Ablinger © RISC-Linz

In[3]:= << EvaluateMultiSums.m

EvaluateMultiSums by Carsten Schneider © RISC-Linz

In[4]:= mySum =

n−2
∑

j=0

j+1
∑

r=0

n−j+r−2
∑

s=0

(−1)r+s
(

j+1
r

)(

−j+n+r−2
s

)

(−j + n − 2)!r!

(n − s)(s + 1)(−j + n + r)!
;

In[5]:= EvaluateMultiSum[mySum, {}, {n}, {1}]

Out[5]=
−n2 − n− 1

n2(n + 1)3
+

(−1)n
(

n2 + n+ 1
)

n2(n+ 1)3
−

2S[−2, n]

n+ 1
+

S[1, n]

(n + 1)2
+

S[2, n]

−n− 1
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Feynman integral
a 3-loop massive ladder
diagram [arXiv:1509.08324]

n−3∑

j=0

j
∑

k=0

(
n− 1

j + 2

)(
j + 1

k + 1

) ||
×
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
θ(1− x5 − x6)(1− x2)(1− x4)x

−ε
2

(1− x2)
−εx

ε/2−1
4 (1− x4)

ε/2−1xε−1
5 x

−ε/2
6

[

[−x3(1− x4)− x4(1− x5 − x6 + x5x1 + x6x3)]
k

+ [x3(1− x4)− (1− x4)(1 − x5 − x6 + x5x1 + x6x3)]
k

]

× (1− x5 − x6 + x5x1 + x6x3)
j−k(1− x2)

n−3−j

× [x1 − (1− x5 − x6)− x5x1 − x6x3]
n−3−j dx1 dx2 dx3 dx4 dx5 dx6
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= F−3(n)ε
−3 + F−2(n)ε

−2 + F−1(n)ε
−1 + F0(n)
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= F−3(n)ε
−3 + F−2(n)ε

−2 + F−1(n)ε
−1 + F0(n)

Simplify ||
n−3∑

j=0

j
∑

k=0

k∑

l=0

−j+n−3
∑

q=0

−l+n−q−3
∑

s=1

−l+n−q−s−3
∑

r=0

(−1)−j+k−l+n−q−3×

× (j+1
k+1)(

k
l)(

n−1
j+2)(

−j+n−3
q )(−l+n−q−3

s ) (−l+n−q−s−3
r )r!(−l+n−q−r−s−3)!(s−1)!

(−l+n−q−2)!(−j+n−1)(n−q−r−s−2)(q+s+1)
[

4S1(−j + n− 1)− 4S1(−j + n− 2)− 2S1(k)

− (S1(−l + n− q − 2) + S1(−l + n− q − r − s− 3)− 2S1(r + s))

+ 2S1(s− 1)− 2S1(r + s)

]

+ 3 further 6–fold sums
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F0(n) =

7

12
S1(n)

4 +
(17n + 5)S1(n)3

3n(n+ 1)
+
(35n2 − 2n− 5

2n2(n+ 1)2
+

13S2(n)

2
+

5(−1)n

2n2

)

S1(n)
2

+
(

−
4(13n + 5)

n2(n+ 1)2
+
(4(−1)n(2n+ 1)

n(n+ 1)
−

13

n

)

S2(n) +
(29

3
− (−1)n

)

S3(n)

+
(

2 + 2(−1)n
)

S2,1(n)− 28S−2,1(n) +
20(−1)n

n2(n+ 1)

)

S1(n) +
( 3

4
+ (−1)n

)

S2(n)
2

− 2(−1)nS−2(n)
2 + S−3(n)

( 2(3n − 5)

n(n+ 1)
+
(

26 + 4(−1)n
)

S1(n) +
4(−1)n

n+ 1

)

+
( (−1)n(5− 3n)

2n2(n+ 1)
−

5

2n2

)

S2(n) + S−2(n)
(

10S1(n)
2 +

(8(−1)n(2n+ 1)

n(n+ 1)

+
4(3n− 1)

n(n+ 1)

)

S1(n) +
8(−1)n(3n+ 1)

n(n+ 1)2
+
(

− 22 + 6(−1)n
)

S2(n)−
16

n(n+ 1)
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( (−1)n(9n+ 5)

n(n+ 1)
−

29

3n

)

S3(n) +
( 19

2
− 2(−1)n

)

S4(n) +
(

− 6 + 5(−1)n
)

S−4(n)

+
(

−
2(−1)n(9n+ 5)

n(n+ 1)
−

2

n

)

S2,1(n) +
(

20 + 2(−1)n
)

S2,−2(n) +
(

− 17 + 13(−1)n
)

S3,1(n)

−
8(−1)n(2n+ 1) + 4(9n + 1)

n(n+ 1)
S−2,1(n)−

(

24 + 4(−1)n
)

S−3,1(n) +
(

3− 5(−1)n
)

S2,1,1(n)

+ 32S−2,1,1(n) +

(

3

2
S1(n)

2 −
3S1(n)

n
+

3

2
(−1)nS−2(n)

)

ζ(2)
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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)

symbolic
summation
RE finding
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integration
RE finding

Feynman
integrals
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solving
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Motivation: solving recurrences
and D-equations
[coming, e.g., from IBP methods]
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Given invert. A(x) ∈ K(x)λ×λ and R̂1(x), . . . , R̂λ(x) (in terms of special functions)

Determine Î1(x), . . . , Îλ(x) (for given initial values) s.t.

Dx





Î1(x)
. . .

Îλ(x)



 = A(x)





Î1(x)
. . .

Îλ(x)



+





R̂1(x)
. . .

R̂λ(x)





given
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R̂λ(x)












y

uncoupling algorithms
(Zürcher,Abramov/Zima,Gauss,...)

1. Î1(x) is a solution of

b0(x)Î1(x) + b1(x)DxÎ1(x) + · · · + bλ(x)D
λ
x Î1(x) = r̂(x)
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x Î1(x) = r̂(x)

2. For i = 2, . . . , r we get
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Given invert. A(x) ∈ K(x)λ×λ and R̂1(x), . . . , R̂λ(x) (in terms of special functions)
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b0(x)Î1(x) + b1(x)DxÎ1(x) + · · · + bλ(x)D
λ
x Î1(x) = r̂(x)

DE-solver
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K
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DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

H1,−1(x) =

∫ x

0

1

1− τ1

∫ τ1

0

1

1 + τ2
dτ2dτ1 (harmonic polylogarithm)

E. Remiddi, E. and J.A.M. Vermaseren, Int. J. Mod. Phys. A15 (2000) [arXiv:hep-ph/9905237]
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

H2,−2(x) =

∫ x

0

1

2− τ1

∫ τ1

0

1

2 + τ2
dτ2dτ1 (generalized polylogarithms)

S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083];

J. Ablinger, J. Blümlein and CS, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378].
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

∫ x

0

1

1 + τ1 + τ21

∫ τ1

0

1

1 + τ22
dτ2dτ1 (cyclotomic polylogarithms)

J. Ablinger, J. Blümlein and CS, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063].
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

∫ x

0

1√
1 + τ1

∫ τ1

0

1

1 + τ2
dτ2dτ1 (radical integrals)

J. Ablinger, J. Blümlein, C. G. Raab and CS, J. Math. Phys. 55 (2014) 112301 [arXiv:1407.1822].
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

∫ x

0

1

1− τ1 + ητ1

∫ τ1

0

√
1− τ2

√

1− τ2 + ητ2dτ2dτ1
(generalized

radical integrals)
J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, CS, K. Schönwald. Nucl.Phys.B 932. 2018. [arXiv:1804.02226].
J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, M. Saragnese, CS, K. Schönwald. Nucl.Phys.B 955. 2020. [arXiv:2004.08916]
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I. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation b0(x), . . . , bλ(x) ∈ K[x]

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0;

together with initial values f(0), . . . ,Dλ−1f(x)|x=0 ∈ K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

A more general example:

∫ x

0
e

∫ τ1
1

1
1+y+y2

dy
∫ τ1

0

1

1 + τ2
dτ2dτ1
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HarmonicSums can also deal with Liouvillian solutions (i.e., it contains
Kovacic’s algorithm):

(11 + 20x)f ′(x) + (1 + x)(35 + 134x)f ′′(x)

+ 3(1 + x)2(4 + 37x)f (3)(x) + 18x(1 + x)3f (4)(x) = 0



y

{

c1 + c2

∫ x

0

1

1 + τ1
dτ1 + c3

∫ x

0

1

1 + τ1

∫ τ1

0

3
√

1 +
√
1 + τ2

1 + τ2
dτ2dτ1

+ c4

∫ x

0

1

1 + τ1

∫ τ1

0

3
√

1−
√
1 + τ2

1 + τ2
dτ2dτ1 | c1, c2, c3, c4 ∈ K

}
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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)
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Connection: DE ←→ REC
Let

f(x) =
∞∑

n=0

F (n)xn

be a (formal) power series. Then:

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

~
w
�

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)
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Let

f(x) =
∞∑

n=0

F (n)xn

be a (formal) power series. Then:

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

~
w
�algorithmic

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)
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Given invert. A(x) ∈ K(x)λ×λ and R̂1(x), . . . , R̂λ(x) (in terms of special functions)

Determine Î1(x), . . . , Îλ(x) (for given initial values) s.t.

Dx





Î1(x)
. . .

Îλ(x)



 = A(x)





Î1(x)
. . .

Îλ(x)



+





R̂1(x)
. . .

R̂λ(x)












y

uncoupling algorithms
(Zürcher,Abramov/Zima,Gauss,...)

1. Î1(x) is a solution of

b0(x)Î1(x) + b1(x)DxÎ1(x) + · · · + bλ(x)D
λ
x Î1(x) = r̂(x)

DE-solver
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


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

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
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uncoupling algorithms
(Zürcher,Abramov/Zima,Gauss,...)

1. Î1(x) is a solution of

b0(x)Î1(x) + b1(x)DxÎ1(x) + · · · + bλ(x)D
λ
x Î1(x) = r̂(x)

DE-solver REC-solver
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Example 1: Find a power series solution

f(x) =
∞∑

n=0

F (n)xn

for

−
(
x4 − 64x3

)
f (4)(x)− 2

(
5x3 − 144x2

)
f (3)(x)

−
(
25x2 − 208x

)
f ′′(x)− (15x− 8)f ′(x)− f(x) = 0
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8(n+ 1)(2n + 1)3F (n+ 1)− (n+ 1)4F (n) = 0
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Example 1: Find a power series solution

f(x) =
∞∑
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F (n)xn

for

−
(
x4 − 64x3
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f (3)(x)
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

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8(n+ 1)(2n + 1)3F (n+ 1)− (n+ 1)4F (n) = 0



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F (n) =
1

(2n
n

)3 =
(1)n(1)n(1)n(1)n
(
1
2

)

n

(
1
2

)

n

(
1
2

)

n
n!

1

64n
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Example 1: Find a power series solution
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1
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Example 1: Find a power series solution

f(x) =

∞∑

n=0

xn

(2n
n

)3 = 4F3
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1
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1
2 ,

1
2

;
x
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]

for further transormations

see [arXiv:1706.01299]
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Example 2: Find a power series solution

f(x) =

∞∑

n=0

F (n)xn

for
(
x6 − 32x5 + 256x4

)
f (6)(x) +

(
23x5 − 528x4 + 2560x3

)
f (5)(x)

+
(
171x4 − 2552x3 + 6272x2

)
f (4)(x) + 2

(
245x3 − 2002x2 + 1728x

)
f (3)(x)

+ 2
(
253x2 − 786x+ 72

)
f ′′(x) + 4(35x− 12)f ′(x) + 4f(x) = 0
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Example 2: Find a power series solution

f(x) =

∞∑

n=0

F (n)xn

for
(
x6 − 32x5 + 256x4

)
f (6)(x) +

(
23x5 − 528x4 + 2560x3

)
f (5)(x)

+
(
171x4 − 2552x3 + 6272x2

)
f (4)(x) + 2

(
245x3 − 2002x2 + 1728x

)
f (3)(x)

+ 2
(
253x2 − 786x+ 72

)
f ′′(x) + 4(35x− 12)f ′(x) + 4f(x) = 0


y

(n+2)(n+1)3F (n)−4(n+2)(2n+1)2(2n+3)F (n+1)+16(2n+1)2(2n+3)2F (n+2) = 0



ySigma.m

F (n) =
1

(2n
n

)2

(

c1 + c2S1(n)
)

=
(1)n(1)n(1)n
(
1
2

)

n

(
1
2

)

n
n!

1

16n

(

c1 + c2S1(n)
)
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Example 2: Find a power series solution

f(x) = c1 · 3F2

[
1, 1, 1
1
2 ,

1
2

;
x

16

]

+ c2

∞∑

n=0

S1(n)
(2n
n

)2 x
n

for
(
x6 − 32x5 + 256x4

)
f (6)(x) +

(
23x5 − 528x4 + 2560x3

)
f (5)(x)

+
(
171x4 − 2552x3 + 6272x2

)
f (4)(x) + 2

(
245x3 − 2002x2 + 1728x

)
f (3)(x)

+ 2
(
253x2 − 786x+ 72

)
f ′′(x) + 4(35x− 12)f ′(x) + 4f(x) = 0


y

(n+2)(n+1)3F (n)−4(n+2)(2n+1)2(2n+3)F (n+1)+16(2n+1)2(2n+3)2F (n+2) = 0



ySigma.m

F (n) =
1

(2n
n

)2

(

c1 + c2S1(n)
)

=
(1)n(1)n(1)n
(
1
2

)

n

(
1
2

)

n
n!

1

16n

(

c1 + c2S1(n)
)
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Definition: A a formal power series f(x) ∈ K[[x]] is called holonomic if

there exist b0(x), . . . , bλ(x) ∈ K[x] (not all zero) with

b0(x)f(x) + · · · + bλ(x)D
λf(x) = 0 (DE)

Definition: sequence (F (n))n≥0 ∈ KN is called holonomic if

there exist a0(x), . . . , aδ(x) ∈ K[x] (not all zero) with

a0(n)F (n) + · · ·+ aδ(n)F (n+ δ) = 0 (RE)

symbolic
summation

RE&DE finding

symbolic
integration

RE&DE finding

Feynman
integrals

recurrence
solving

DE
solving
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DE
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DE&RE
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coupled systems

for f(x) =

∞∑

n=0

P (n)xn

SolveCoupledSystem.m

��

large no. of moments,
say P (0), . . . , P (10000)
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indefinite nested sums
over hypergeo. products

indefinite nested sums
over pFqs (e.g., elliptic fus)
[iterative-noniterative sums]
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coupled systems

for f(x) =

∞∑

n=0

P (n)xn

SolveCoupledSystem.m

��

large no. of moments,
say P (0), . . . , P (10000)

guessing (ore algebra in Sage)

��
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✈✈
✈

indefinite nested sums
over hypergeo. products



Guess and solve 41

Example (J. Blümlein, P. Marquard, CS, K. Schönwald. Nucl. Phys. B 971, pp. 1-44. 2021)

In[6]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[7]:= initial =<< iFile16



Guess and solve 41

Example (J. Blümlein, P. Marquard, CS, K. Schönwald. Nucl. Phys. B 971, pp. 1-44. 2021)

In[6]:= << Sigma.m

Sigma - A summation package by Carsten Schneider © RISC-Linz

In[7]:= initial =<< iFile16

Out[7]=
{

37, 34577/1296, 7598833/151875, 13675395569/230496000,

475840076183/7501410000, 1432950323678333/21965628762000,

21648380901382517/328583783127600,

52869784323778576751/802218994536960000,

49422862094045523994231/753773992230616156800,

33131879832907935920726113/509557943985299969760000,

5209274721836755168448777/80949984111854180459136,

56143711997344769021041145213/882589266383586456384353664,

453500433353845628194790025124807/7217228048879468556886950000000,

14061543374120479886110159898869387/226643167590350326435656036000000,

715586522666491903324905785178619936571168370307700222807811495895030000000,

16286729046359273892841271257418854056836413/269396588055480390401343344736943104000000,

1428729642632302467951426905844691837805299/23940759575034122827861315961573673600000,

498938690219595294505102809199154550783080767/8468883667852979813171262304054002720000000,

555296381919643885816767597997123847103620469689/9546343089354642655682952088937477747472000000
}

;



Guess and solve 42

In[8]:= rec =<< rFile16

Out[8]= (n + 1)
4
(n + 2)

2
(2n + 3)(2n + 5)(2n + 7)(2n + 9)(2n + 11)

(

309237645312n
32

+ 38256884318208n
31

+

2282100271087616n
30

+ 87428170197762048n
29

+ 2417273990256001024n
28

+ 51388547929265405952n
27

+

873862324676687036416n
26

+ 12209268055143308328960n
25

+ 142860861222820240162816n
24

+

1419883954103469621510144n
23

+ 12115561235109256405319680n
22

+ 89479384946084038000803840n
21

+

575561340618928527623274496n
20

+ 3239547818363227419971647488n
19

+ 16009805333085271423330779136n
18

+

69631814641718655426881659392n
17

+ 266892117418348771052573667328n
16

+

901901113782416884441719270144n
15

+ 2685821385767154471801366647296n
14

+

7038702625583766161604414471744n
13

+ 16195069575749412648646633248128n
12

+

32602540883321212533013752639288n
11

+ 57154680141624618025310553466704n
10

+

86710462147941775492301231896818n
9
+ 112917328975807075881545543668548n

8
+

124873767581470867343743078943772n
7
+ 115624836314544572769501784072647n

6
+

87938536330971046886456627610048n
5
+ 53481897815980319933589323279298n

4
+

25000430622737750756669804052204n
3
+ 8430930497463933665464836129855n

2
+

1825177817831282261293155379650n + 190428196025667395685609855000

)

(2n + 1)
4P[n]



Guess and solve 43

−(n + 2)
3
(2n + 3)

3
(2n + 7)(2n + 9)(2n + 11)

(

12369505812480n
38

+ 1613151061671936n
37

+

101748284195864576n
36

+ 4135139115563745280n
35

+ 121713599527855849472n
34

+

2765050919624810430464n
33

+ 50453046277771391664128n
32

+ 759760507477065230974976n
31

+

9628262076527899425374208n
30

+ 104191253579306374131613696n
29

+ 973595596739520084325171200n
28

+

7924537790312611436520013824n
27

+ 56571687381518195331462463488n
26

+

356133102136059681954436399104n
25

+ 1985507231916669869451824553984n
24

+

9836060321685410187563260035072n
23

+ 43406506634905372676489415905280n
22

+

170945808151999530921656848106496n
21

+ 601507760131008511164113355409920n
20

+

1892149418896523531194676203153920n
19

+ 5321173806292333448534132495165440n
18

+

13370912745727662541153592039812160n
17

+ 29987002021632029091547005084057760n
16

+

59921270253255984811455083696758912n
15

+ 106434458966741189159011567116493072n
14

+

167533688453539238956436945725341004n
13

+ 232781742346547554435545097479210510n
12

+

284125621128876904663642986868770746n
11

+ 302806836393712159148051277734975424n
10

+

279679164311116651162116055961513301n
9
+ 221781415386984655607595031093415136n

8
+

149214365004640710156345950062395186n
7
+ 83882523964213110328265187672574356n

6
+

38609679702395410742361774562392789n
5
+ 14149471988638475521561721269939086n

4
+

3963748138857399502678254252169734n
3
+ 795659668131014454843348852372480n

2
+

101701393436276172443717692853400n + 6204709909986751913151675960000

)

P[n+1]



Guess and solve 44

+2(n+ 3)
2
(2n+ 5)

3
(2n+ 9)(2n+ 11)

(

24739011624960n
40

+ 3317836466356224n
39

+ 215508170284466176n
38

+9032884062187945984n
37

+

274636134389959884800n
36

+ 6455501959255126179840n
35

+ 122094572934385260036096n
34

+ 1909387225793663151898624n
33

+

25180108291969215434326016n
32

+ 284171960705270647479074816n
31

+ 2775794400720227034854326272n
30

+

23677622163992853854566219776n
29

+ 177624312783583749157935120384n
28

+ 1178515602115604757944201871360n
27

+

6947091965313419323781358354432n
26

+ 36515023100308314818702129258496n
25

+ 171621148571344894953594594017280n
24

+

722837793013976317556258102507520n
23

+ 2732534027077907914497042720534528n
22

+ 9281028665970648470895368668485120n
21

+

28337819215557708948254385336117248n
20

+77786125749274632150536464583130752n
19

+191877161455672780973502244537632256n
18

+

424953221702140663089937921965135648n
17

+ 843818276409975584824720931649555264n
16

+

1499359936674956711935311062995422344n
15

+ 2378007025570977662661938772843220240n
14

+

3355671771434535852147325502571953770n
13

+ 4196375762867184563407432891655585484n
12

+

4627675779563752366067861596232781096n
11

+ 4473175960511956000526499430851993603n
10

+

3761696365025837909581516781307249585n
9

+ 2726553473467254373993685951699145492n
8

+

1683383212304999468664293798012773485n
7

+ 871926653651504419744271839781064837n
6

+

371307437598003570058538796122994147n
5

+ 126427972742886389602285855482966072n
4

+ 33048762330145623969058704448697313n
3

+

6217924746857741077419160100404560n
2

+ 748298077423337427195946099994100n + 43181089548034246077698611794000
)P[n+2]



Guess and solve 45

−2(n+ 4)
2
(2n+5)(2n+ 7)

3
(2n+ 11)

(

24739011624960n
40

+3322784268681216n
39

+ 216160919414112256n
38

+9074528155284275200n
37

+

276348048819456311296n
36

+ 6506479077331107315712n
35

+ 123266585640616142569472n
34

+ 1931040885785102661976064n
33

+

25510503383281445462081536n
32

+ 288418124175428279391485952n
31

+ 2822442799033603081019326464n
30

+

24120717233320712351821332480n
29

+ 181295944719289040999116701696n
28

+ 1205246297785423925076555694080n
27

+

7119049557560114436136213413888n
26

+ 37496933571993839665392189775872n
25

+ 176616172467048982234270428880896n
24

+

745539218875020737621728364206080n
23

+ 2824909633156578132652259733712896n
22

+ 9618101958268071244680677589035520n
21

+

29441860528446423517613263360742912n
20

+81033563306363873505877563416477312n
19

+200454769103641040142838133702338304n
18

+

445286624972461749049425309485328992n
17

+ 887028447418790661018847407251573152n
16

+

1581538101499869694224895701784875304n
15

+ 2517550244392724509968791166585362672n
14

+

3566593026520465155504695877897282630n
13

+ 4479066125207404898722179511912639638n
12

+

4962006990874351800791769650243464872n
11

+ 4819992643914265990647887896664485209n
10

+

4074895386694182240941538222230233221n
9

+ 2970477229398746689186622534784613554n
8

+

1845274131994015990683957902602775337n
7

+ 962091291302144537393228847830431614n
6

+

412595107814836563208757757032740146n
5

+ 141540723940232563767779647013785485n
4

+ 37292931812630561528276365992452010n
3

+

7074865777225416725452872895397100n
2

+ 858794112392644074221312049837000n + 49997386738260112603615104780000
)P[n+3]



Guess and solve 46

+(n + 5)
3
(2n + 5)(2n + 7)(2n + 9)

4
(

12369505812480n
38

+ 1546355730284544n
37

+ 93441851805138944n
36

+

3636063211393908736n
35

+ 102413434086873890816n
34

+ 2225107112182077718528n
33

+

38808234188348931964928n
32

+ 558299807912629375074304n
31

+ 6755648626273815474733056n
30

+

69769132238801205785001984n
29

+ 621900006220029229458259968n
28

+ 4826558182244413850688946176n
27

+

32840774268722977511855751168n
26

+ 196981883700048989849717882880n
25

+

1046061529031136798450810839040n
24

+ 4934888224954929426023144030208n
23

+

20735286278224836075286873214976n
22

+ 77745549200390911029444008457216n
21

+

260448286122609254214904458392064n
20

+ 780087654447729149285799146869248n
19

+

2089276462852113795051294249728512n
18

+ 5001455921015163002705347586646080n
17

+

10691068512696184477385875851523744n
16

+ 20374769440121072185247660725156544n
15

+

34542976501702600883669655947085712n
14

+ 51947527795197316142253213880200764n
13

+

69039779136078090572935768218052854n
12

+ 80712286124402599779679594199103258n
11

+

82519759833385882007812859351392458n
10

+ 73248127158607338722648198918322201n
9
+

55935262205790259307904762197107653n
8
+ 36322355479155199114489624391144238n

7
+

19756597118002557191991191826327042n
6
+ 8822212911433711339358062994077203n

5
+

3145597282374650512689680780380605n
4
+ 859907105684964990690798899478888n

3
+

168963309995629650025632011492580n
2
+ 21205680751316222158938757272000n +

1274120732351744651125603886400

)

P[n+4]



Guess and solve 47

−(n + 5)
2
(n + 6)

4
(2n + 5)(2n + 7)(2n + 9)

3
(2n + 11)

4
(

309237645312n
32

+ 28361279668224n
31

+

1249518729297920n
30

+ 35220794552352768n
29

+ 713726163159089152n
28

+ 11076866026783113216n
27

+

136959486138712588288n
26

+ 1385658801437173350400n
25

+ 11691772665924577918976n
24

+

83438339505976242995200n
23

+ 508989054278115477684224n
22

+ 2675508113418826174332928n
21

+

12193213796145039633072128n
20

+ 48399020537651722726242304n
19

+ 167881257973769248139515904n
18

+

510012482113388176546187776n
17

+ 1358662126092561923541267968n
16

+ 3174925021159974655053814528n
15

+

6504205668151125355938798848n
14

+ 11663792381020901870157176128n
13

+

18263581057905911985340656960n
12

+ 24881010123632244515458585528n
11

+

29346856353503020415409305704n
10

+ 29775859546803351930591002266n
9
+ 25770328899499991754425455738n

8
+

18817114309842270306167785140n
7
+ 11424980760825630752861027739n

6
+ 5656051955667821083952617134n

5
+

2221448212382554437709999491n
4
+ 664859653803075491350122060n

3
+ 142190920852333874895041748n

2
+

19313175036907229252501700n + 1248723341516324359641600

)

P[n+5]==0



Guess and solve 48

In[9]:= recSol = SolveRecurrence[rec,P[n]]



Guess and solve 48

In[9]:= recSol = SolveRecurrence[rec,P[n]]

Out[9]= {{0,
(3+ 2n)(3 + 4n)

(1+ n)2(1+ 2n)2
}

{0,−
(3+ 2n)

(

− 8− 9n+ 2n2
)

(1+ n)2(1+ 2n)2
}

{0,−
(3+ 2n)

(

− 5+ 8n2
)

2(1+ n)2(1 + 2n)2
+

(3+ 2n)

n∑

i=1

1

i

(1+ n)(1 + 2n)
+

2(3+ 2n)

n∑

i=1

1

−1 + 2i

(1 + n)(1 + 2n)
}

{0,
(3+ 2n)

(

− 513− 2184n − 2416n2 + 768n4
)

2(1 + n)3(1+ 2n)3
+

14(3 + 2n)
∑n

i=1
1

i2

(1+ n)(1 + 2n)
+
(

−

2(3 + 2n)
(

3+ 44n + 48n2
)

(1+ n)2(1+ 2n)2
+

48(3 + 2n)
∑n

i=1
1

−1+2i

(1+ n)(1 + 2n)

)

n
∑

i=1

1

i
+

12(3 + 2n)
(
∑n

i=1
1
i

)2

(1 + n)(1 + 2n)
+

56(3 + 2n)
∑n

i=1
1

(−1+2i)2

(1+ n)(1 + 2n)
−

4(3 + 2n)
(

3+ 44n + 48n2
)
∑n

i=1
1

−1+2i

(1 + n)2(1+ 2n)2
+

48(3 + 2n)
(
∑n

i=1
1

−1+2i

)2

(1+ n)(1 + 2n)
}



Guess and solve 49

{0,
1

16(1 + n)4(1 + 2n)4

(

72519 + 572343n + 1814716n
2
+ 2918100n

3
+ 2442240n

4
+ 912896n

5
+ 24576n

6
−

49152n
7)

+
16(3 + 2n)

∑n
i=1

1

i3

3(1 + n)(1 + 2n)
+

(

−
(3 + 2n)

(

29 + 307n + 322n2
)

4(1 + n)2(1 + 2n)2
+

44(3 + 2n)
∑n

i=1
1

−1+2i

(1 + n)(1 + 2n)

)

n
∑

i=1

1

i2
+

( (3 + 2n)
(

91 + 259n + 974n2 + 1784n3 + 1024n4
)

4(1 + n)3(1 + 2n)3
+

22(3 + 2n)
∑n

i=1
1

i2

(1 + n)(1 + 2n)
+

24(3 + 2n)
∑n

i=1
1

(−1+2i)2

(1 + n)(1 + 2n)
−

4(3 + 2n)
(

− 13 − 4n + 16n2
)
∑n

i=1
1

−1+2i

(1 + n)2(1 + 2n)2
+

16(3 + 2n)
(
∑n

i=1
1

−1+2i

)

2

(1 + n)(1 + 2n)

)

n
∑

i=1

1

i
+

(

−

(3 + 2n)
(

19 + 92n + 80n2
)

(1 + n)2(1 + 2n)2
+

40(3 + 2n)
∑n

i=1
1

−1+2i

(1 + n)(1 + 2n)

)(

n
∑

i=1

1

i

)2
+

20(3 + 2n)
(
∑n

i=1
1
i

)

3

3(1 + n)(1 + 2n)
+

64(3 + 2n)
∑n

i=1
1

(−1+2i)3

3(1 + n)(1 + 2n)
−

3(3 + 2n)
(

63 + 209n + 150n2
)
∑n

i=1
1

(−1+2i)2

(1 + n)2(1 + 2n)2
+

( (3 + 2n)
(

347 + 1795n + 4302n2 + 4856n3 + 2048n4
)

2(1 + n)3(1 + 2n)3
+

48(3 + 2n)
∑n

i=1
1

(−1+2i)2

(1 + n)(1 + 2n)

)

n
∑

i=1

1

−1 + 2i
−

4(3 + 2n)
(

19 + 92n + 80n2
)(∑n

i=1
1

−1+2i

)

2

(1 + n)2(1 + 2n)2
+

32(3 + 2n)
(∑n

i=1
1

−1+2i

)

3

3(1 + n)(1 + 2n)
−

8(3 + 2n)
∑n

i=1

(

∑i
j=1

1
j

)

2

i

(1 + n)(1 + 2n)
−

16(3 + 2n)
∑n

i=1

(

∑i
j=1

1
j

)

2

−1+2i

(1 + n)(1 + 2n)

−
32(3 + 2n)

∑n
i=1

(

∑i
j=1

1
j

)

∑i
j=1

1
−1+2j

i

(1 + n)(1 + 2n)
+

64(3 + 2n)

n
∑

i=1





i
∑

j=1

1

j





i
∑

j=1

1

−1 + 2j

−1 + 2i

(1 + n)(1 + 2n)
+

32(3 + 2n)
∑n

i=1

(

∑i
j=1

1
−1+2j

)

2

i

(1 + n)(1 + 2n)
+

64(3 + 2n)
∑n

i=1

(

∑i
j=1

1
−1+2j

)

2

−1+2i

(1 + n)(1 + 2n)
}, {1, 0}}



Guess and solve 50

In[10]:= sol = FindLinearCombination[recSol,{0, initial},n, 7,MinInitialValue → 1]



Guess and solve 50

In[10]:= sol = FindLinearCombination[recSol,{0, initial},n, 7,MinInitialValue → 1]

Out[10]=
1

3(1 + n)4(1 + 2n)4

(

111 + 1920n + 11765n
2

+ 32545n
3

+ 46476n
4

+ 35376n
5

+ 13440n
6

+ 1968n
7)

+

32(3 + 2n)
∑n
i=1

1

i3

9(1 + n)(1 + 2n)
−

(3 + 2n)
(

− 3 + 101n + 126n2
)
∑n
i=1

1

i2

3(1 + n)2(1 + 2n)2
−

(3 + 2n)
(

115 + 921n + 1967n2 + 1524n3 + 340n4
) ∑n

i=1
1
i

3(1 + n)3(1 + 2n)3
+

44(3 + 2n)
( ∑n

i=1
1

i2

) ∑n
i=1

1
i

3(1 + n)(1 + 2n)
−

(3 + 2n)
(

23 + 139n + 130n2
)(

∑n
i=1

1
i

)2

3(1 + n)2(1 + 2n)2
+

40(3 + 2n)
(
∑n
i=1

1
i

)3

9(1 + n)(1 + 2n)
+

128(3 + 2n)
∑n
i=1

1

(−1+2i)3

9(1 + n)(1 + 2n)
−

4(3 + 2n)
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In[11]:= << HarmonicSums.m

HarmonicSums by Jakob Ablinger © RISC-Linz

In[12]:= sol = TransformToSSums[sol];

In[13]:= sol = ReduceToBasis[MultipleSumLimit[sol,

n, 2]//ToStandardForm,n]//CollectProdSum;
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Special function algorithms

◮ HarmonicSums package
Ablinger, Blümlein, CS, J. Math. Phys. 54, 2013, arXiv:1302.0378 [math-ph]
Ablinger, Blümlein, CS, J. Math. Phys. 52, 2011, arXiv:1302.0378 [math-ph]
Ablinger, Blümlein, CS, ACAT 2013, arXiv:1310.5645 [math-ph]
Ablinger, Blümlein, Raab, CS, J. Math. Phys. 55, 2014. arXiv:1407.1822 [hep-th]

◮ RICA package
Blümlein, Fadeev, CS. ACM Communications in Computer Algebra 57(2), pp. 31-34. 2023.



Guess and solve 52

coupled systems

for f(x) =

∞∑

n=0

P (n)xn

SolveCoupledSystem.m

��

large no. of moments,
say P (0), . . . , P (10000)

uu❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦ guessing (ore algebra in Sage)

��

numerics recurrence

tt✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐✐

RE solving

{{✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈

##●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

asymptotics

indefinite nested sums
over hypergeo. products

indefinite nested sums
over pFqs (e.g., elliptic fus)
[iterative-noniterative sums]



Guess and solve 52

coupled systems

for f(x) =

∞∑

n=0

P (n)xn

SolveCoupledSystem.m

��

large no. of moments,
say P (0), . . . , P (10000)

guessing (ore algebra in Sage)

��

numerics recurrence

tt✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐✐

RE solving

{{✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈✈
✈

##●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

//
DE

��

asymptotics analytic continuation

indefinite nested sums
over hypergeo. products

indefinite nested sums
over pFqs (e.g., elliptic fus)
[iterative-noniterative sums]



Analytic continuation using DEs 53

The easy (quarkonic) case of our Form Factor project
Evaluate beyond 0

convergency
radius

r = 1

0• 1•

∞∑

n=0

fn(1− x)n

given fn ∈ Q
by a guessed rec

of order 55

J. Blümlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.
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The easy (quarkonic) case of our Form Factor project
Matching evaluations at a common point x

r = 0.078 convergency
radius
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6∑

j=0

log(x)j
∞∑

n=−2
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n

500000∑
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of order 55
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The easy (quarkonic) case of our Form Factor project
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log(x)j
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500000∑
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of order 55
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Analytic continuation using DEs 53

The easy (quarkonic) case of our Form Factor project
Matching evaluations at a common point x

r = 0.078 convergency
radius

r = 1

0• x < 0.078• 1•

6∑

j=0

log(x)j
10000∑

n=−2

gj,nx
n DE (order 48,

deg 2800)

500000∑

n=0

fn(1− x)n

find gj,n ∈ R
given fn ∈ Q

by a guessed rec
of order 55

J. Blümlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.
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The easy (quarkonic) case of our Form Factor project
Matching evaluations at a common point x

r = 0.078 convergency
radius

r = 1

0• x = 0.005• 1•

6∑

j=0

log(x)j
10000∑

n=−2

gj,nx
n DE (order 48,

deg 2800)

500000∑

n=0

fn(1− x)n

find gj,n ∈ R

1400 digits precision

given fn ∈ Q
by a guessed rec

of order 55

J. Blümlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.



Analytic continuation using DEs 53

The easy (quarkonic) case of our Form Factor project
Matching evaluations at a common point x

r = 0.078 convergency
radius

r = 1

0• x = 0.005• 1•

6∑

j=0

log(x)j
10000∑

n=−2

gj,nx
n DE (order 48,

deg 2800)

500000∑

n=0

fn(1− x)n

find gj,n ∈ R

1400 digits precision

PSLQ

��

given fn ∈ Q
by a guessed rec

of order 55

gj,n ∈ Q(π, ζ3, ...)

J. Blümlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.
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◮ a prototype method to solve partial linear DE/RE equations in QCD

2. Interplay: DE solver ←→ RE solver

3. Guess & solve strategies open up new applications in QCD

4. Analytic continution methods applied to “world record” REs/DEs

5. Results are contained in about 100 articles produced jointly within the
RISC–DESY cooperation


