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Definition: A function f: K — K is called holonomic if

there exist by(z), ...,bx(z) € K[z] (not all zero) with

bo(@)f () + -+ + ba(x) D f(x) = 0

(DE)




Definition: A a power series f(z) € K[[z]] is called holonomic if

there exist by(z),...,bx(x) € K[z] (not all zero) with

bo(2) f(x) + -+ bx(x) D f(x) = 0

(DE)




Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ..., bx(x) € K[z] (not all zero) with

bo(z)f(z) 4 --- + bx(z) D f(x) =0 (DE)




Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(@) () + -+ + ba(z) D f(x) = 0 (DE)

Definition: sequence (F'(n)),>0 € K" is called holonomic if

there exist ag(z), ..., as(z) € K[z] (not all zero) with

ag(n)F(n)+---+as(n)F(n+46) =0 (RE)




Symbolic Symbolic

summation integration

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' w alled holonomic if
nman

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dw/o dy/o dza/2yf2(1 — 2) 5 2540t

(1- acz:)‘f/2 x (1— yz)a/z(ac +y—1)"

f(€’n7w7y7z)



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dw/o dy/o dza®/2y72(1 — )~ 5 250t

(1- acz)a/z x (1— yz)a/z(ac +y—1)"

f(€’n7w7y7z)
The integrand is
> hyperexponential in X,y,z:
Dxf(gan7x7y7z)
f(67 n’ w’ y’ z)

e Q(S’ n’ w’ y’ Z)



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dw/o dy/o dza®/2y72(1 — )~ 5 250t

(1- acz)a/z x (1— yz)a/z(ac +y—1)"

f(€’n7w7y7z)
The integrand is
> hyperexponential in z,,z2:
Dyf(Ean7x7y7Z)
f(67 n’ w’ y’ z)

e Q(S’ n’ w’ y’ Z)



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dw/o dy/o dza®/2y72(1 — )~ 5 250t

(1- acz)a/z x (1— yz)a/z(ac +y—1)"

f(eﬂ n’ w’ y’ Z)
The integrand is
» hyperexponential in x,y,2:
sz(€7 Tl, .’L', y) Z)
f(67 n’ w’ y’ z)

e Q(67 n’ w’ y’ z)



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dﬂf/o dy/o dza®/2y72(1 — )~ 5 250t

(1- :cz:)a/2 x (1— yz)a/z(:c +y—1)"

fle,n,z,y, 2)
The integrand is
> hyperexponential in x,y,2:
> hypergeometric in n:
fle,n+ 1,2y, 2)

e b 9 9 9
fenaye) ©AEmoy3)




Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1509.08324]

F(e,n) / dm/ dy/ dza®?y/%(1 )—3?5—22%+n+1

(1- :cz:)‘a/2 x (1— yz)a/Q(cc +y—1)"
f(€’ n?‘,a:? y? Z)

The integrand is
> hyperexponential in x,y,2:
> hypergeometric in n:
fle,n+ 1,2y, 2)
f(s? n’ $, y’ Z)

€ Q(Ea n,x,y, Z)

Holonomic theory shows that there exists a holonomic recurrence!
[Multi-Variable Zeilberger and Almkvist-Zeilberger Algorithms and the Sharpening of Wilf-Zeilberger Theory; Moa Apagodu

(formerly Mohamud Mohammed) and Doron Zeilberger]



Symbolic integration (recurrence finding) 3

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dw/o dy/o dza®/2y72(1 — )~ 5 250t

(1- acz)a/z x (1— yz)a/z(ac +y—1)"

f(€’n7w7y7z)

Ablinger's (9 hours)
Multilntegrate.m

ap(e,n)F(e,n) +ai(e,n)F(e,n+ 1)+ - +as(e,n)F(e,n+5)=0



Symbolic integration (recurrence finding)

ao(n,e) = (n+ 1)(n + 2) (8% + 104¢° (n + 3) + 4¢®(96n2 + 601n + 887)
+4€7(12n3 + 414n2 + 1583n + 1393)
— 8¢%(264n* + 2436n° + 8643n> + 14518n + 9947)
— 16€® (156n° + 1690n* + 6847n> + 12661n? + 9537n + 717)
+ 32e* (68n° + 1158n° + 8155n* + 30114n® + 61712n° + 676160 + 31693)
+ 643 (40n" + 560n8 + 2755n° + 3729n* — 14194n% — 61920n? — 89140n — 46600)
—128¢%(n + 2)(12n7 + 254n5 + 2249n° + 10758n" + 30173n3 + 50610n>
+49122n + 22706)
+ 2565(n + 2)%(n + 3)(n + 4) (44n* + 501n® + 2044n? + 3455n + 1976)
—512(n + 1)(n + 2)*(n + 3)%(n + 4) (6n* + 47n + 95)),



Symbolic integration (recurrence finding)

ar(n,e) = (n+2)( — 22e' — 2e1°(157n + 435) — £°(1500n? + 8611n + 11745)

— £8(2548n3 + 2293602 + 63597n + 54229)

+ 47 (266n* + 1857n> + 6065n? + 14351n + 15987)

+82%(994n° + 12961n* + 67246n° + 174692n> + 226821n + 116092)
+162°(336n° + 5348n° + 33569n* + 104918n> + 165290n? + 108259n + 6100)
— 16e* (404n” + 7578n5 + 61778n° + 284762n* + 802660n> + 1382074n2
+ 13404557 + 560287)

— 64 (94n® + 1823n7 + 14305n° + 5587005 + 96299n* — 372561

— 447044n® — 704959n — 379338)

+ 1282 (n + 3) (30n® + 71507 + 766708 + 48253n° + 194086n* + 507439n3
+ 835393n? + 785327n + 320382)

— 256¢(n + 2)(n + 3)% (10708 + 2070n° + 16342n* + 67226n° + 151557n>
+176932n + 83196)

+256(n + 2)3(n + 3)3(n + 4) (30n> + 331n? + 1193n + 1386)),



Symbolic integration (recurrence finding)

az(n,e) = (12e'2 + 12e1 (17n + 45) + 2610 (620n? + 3553n + 4795)

+2¢%(1504n> + 1419002 + 41901n + 38907)

+ 48 (172n* + 4983n® + 30942n? 4 69119n + 50850)

— 47 (1996n° + 24056n* + 113313n® + 269119n? + 337198n + 185290)

— 165 (450n8 + 8210n° + 59749n? + 22738603 + 486841n? + 563176n + 275664)
+ 16€” (340n" + 431405 + 19137n° + 25532n* — 551050 — 206516n% — 191528n
— 23458)

+ 32e* (140n® 4 2940n7 + 26550n° + 139926n° + 493839n* + 1240186n3

+ 216169902 + 2304248n + 1100084)

+ 643 (4n° + 506n® + 865117 + 63510n° 4- 236215n° 4 395334n? — 105413n>

— 1551017n% — 2362944n — 1217770)

—128%(n + 3)(12n° + 314n% + 3782n" + 29105n° + 16072705 + 640273n*
+1750874n% + 305250502 + 3017094n + 1276604)

+2562(n + 2)(n + 3)(n + 4) (26n° + 825n° + 8967n* + 46529n° + 125411n?

+ 168628n + 88652)

—512(n + 1)(n + 2)%*(n + 3)%(n + 4)% (6n® + 98n? + 459n + 655)),



Symbolic integration (recurrence finding)

az(n,e) = (— 642 — 81 (113n + 298) — 8% (519n? + 2948n + 3896)

— 4¢%(1444n® + 1383902 + 39746n + 34305)

+ 428 (1948n* + 17868n° + 63837n* + 112966n + 84655)

+ 167 (1456n° + 20460n* + 11236503 + 304963n? + 412258n + 221769)

— 8¢5(320n8 +2050n° + 4192n* + 27408n3 + 17490102 + 411759n + 324872)
— 165 (1756n" + 33154n° + 265889n° + 1186719n" + 3218059n° + 5349388n>
+5071913n + 2113696)

+ 32 (188n® + 4802n" + 59527n8 + 439922n° + 2025336n* + 5813984n°
+10076450n2 + 9621283n + 3878602)

+ 64 (140n° + 2768n% + 22500n7 + 99545n° + 287700n° + 723136n*

+ 185457203 + 3714620n? + 4272517n + 2031600)

— 12822 (24n'0 + 830n° + 14362n® + 152630n" + 1053620n° + 4834279n°

+ 14824351n* + 29964399n° + 38244797n? + 278758967 + 8824032)

+ 256g(n + 2)(n + 3)(n + 4) (118n7 + 2639n5 + 24247n° + 118311n* + 329565n3
+ 52030602 + 426076n + 136854)

—512(n + 1)(n +2)*(n + 3)%(n + 4)%(n + 5) (12n® + 97n? + 230n + 144)),



Symbolic integration (recurrence finding)

as(n,e) = (64e'? + 192e'* (5n + 14) + 16e'° (29702 + 1769n + 2451)

+ 16¢? (453n° + 4462n? + 13094n + 11244)

— 8¢%(1084n* + 11117n® + 47258n> + 103981n + 94650)

— 8¢7(3304n° + 51138n + 311957n® + 948722n> + 14401050 + 858544)

+ 16¢° (420n® + 5507n° + 362750 + 169650n° + 536911n% + 952507n + 694370)
+ 167 (1828n" + 38868n5 + 353301n° + 1801014n* 4 5604391n° + 10664390n>

+ 11433064n + 5260048)

— 32e*(316n® + 8356n" + 105800n° + 802421n° + 3836854n" + 11588223n°

+ 2140155802 + 22066744n + 9745752)

— 64 (11602 + 2424n® + 19923n" + 82966n° + 208191n° + 530980n + 1847484n>
+ 4687014n? + 6120858 + 3111104)

+ 1282 (24n0 + 826n° + 14897n® + 17200007 + 1314686n° + 6710299n°
+22873183n" + 51298261n° + 72551278n> + 58573022n + 20544948)

— 256e(n + 2)(n + 3) (106n® + 3278n" + 42903n° + 310942n° + 1366350n*

+ 3729418n3 + 617315902 + 5657732n + 2191212)

+512(n + 1)(n + 2)%(n + 3)2(n + 4)(n + 5)(n + 6) (12n® + 121n? + 396n + 431)),



Symbolic integration (recurrence finding)

as(n,e) = (n+5)( — 128" — 128¢1°(11n + 26) — 32¢” (1150 + 592n + 647)

+ 32¢% (63n® + 430n? + 1665n + 2384)

+ 167 (714n* + 7881n® + 33802n? + 66225n + 47654)

— 1625 (23405 + 2444n* + 1398903 + 50862n2 + 104083n + 87848)

— 16¢° (580n° + 10181n° + 76586n" + 319207n® + 772120n% + 1012046n + 547832)
+ 16 (244n” + 5456n° + 61605n° + 401216n* + 1536277n® + 3408574n2

+ 40664361 + 2026928)

+ 643 (26n® + 357n" + 583n° — 11139n° — 65193n* — 120264n3 + 11864n2

+ 272830n + 222624)

—64e?(n + 3) (12n° + 298n" + 4684n° + 49024n® + 306907n* + 1122441n°

+ 235065002 + 2607576n + 1185072)

+ 256g(n + 2)(n + 3)(25n7 + 743n° + 8856n° + 55358n* + 197497n® + 404131n>
+439902n + 196128)

—256(n + 1)(n +2)%(n + 3)%(n + 4)(n + 6)(n + 7) (6n? + 35n + 54)).



Symbolic integration (recurrence finding) 5

Example: A master integral from Ladder and V-topologies
[arXiv:1500.08324]

1 1 1
F(e,n) :/0 dw/o dy/o dza®/2y72(1 — )~ 5 250t

(1- acz)a/z x (1— yz)a/z(ac +y—1)"

f(€’n7w7y7z)

Ablinger's (9 hours)
Multilntegrate.m

ap(e,n)F(e,n) +ai(e,n)F(e,n+ 1)+ - +as(e,n)F(e,n+5)=0



Symbolic integration (recurrence finding) (¢

Symbolic Symbolic

summation integration

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' w alled holonomic if
nman

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Symbolic integration (recurrence finding) (¢

Symbolic Symbolic

summation integration

recurrence
solving

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' alled holonomic if

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)
GIVEN a recurrence

ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ao(n)F(n) +--- + as(n)F(n +6) = h(n);

together with initial values F'(0),...,F(d —1) e K




Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)
GIVEN a recurrence

ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ap(n)F'(n) +--- + as(n)F(n + 8) = h(n);
together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

S.A. Abramov, M. Bronstein, M. Petkoviek, CS. J. Symb. Comput. 107, pp. 23-66. 2021.



Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)

GIVEN a recurrence ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ap(n)F'(n) +--- + as(n)F(n + 8) = h(n);
together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

Sa.1(n Z Z (harmonic sums)

J. Blimlein and S. Kurth, Phys. Rev. D 60 (1999) 014018 [arXiv:hep-ph/9810241];
J.A.M. Vermaseren, Int. J. Mod. Phys. A 14 (1999) 2037 [arXiv:hep-ph/9806280].



Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)

GIVEN a recurrence ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ap(n)F'(n) +--- + as(n)F(n + 8) = h(n);
together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

QLSRR ITT)
kz_:l - ; — Jz:; T (generalized harmonic sums)

S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083];
J. Ablinger, J. Blimlein and CS, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378].



Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)
GIVEN a recurrence

ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ap(n)F'(n) +--- + as(n)F(n + 8) = h(n);
together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

n k j
Z (1+ Qk Z Z 112 (cyclotomic harmonic sums)
i

J. Ablinger, J. Bliimlein and CS, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063].



Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)
GIVEN a recurrence

ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ap(n)F'(n) +--- + as(n)F(n + 8) = h(n);
together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

T 481(j—1)
L)

J. Ablinger, J. Bliimlein, C. G. Raab and CS, J. Math. Phys. 55 (2014) 112301 [arXiv:1407.1822].

(binomial sums)



Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)

GIVEN a recurrence ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ap(n)F'(n) +--- + as(n)F(n + 8) = h(n);
together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

Special cases of indefinite nested sums over hypergeometric products:

n h 2k

_ h(2h 2 . N

E 2 2h(1 —n) g — (generalized binomial sums)

h) =R
h=1 k=1 k

J. Ablinger, J. Bliimlein, A. De Freitas, A. Goedicke, CS, K. Schénwald. Nucl.Phys.B 932. 2018. [arXiv:1804.02226].

J. Ablinger, J. Bliimlein, A. De Freitas, A. Goedicke, M. Saragnese, CS, K. Schonwald. Nucl.Phys.B 955. 2020. [arXiv:2004.08916]



Symbolic summation (recurrence solving)

A recurrence solver (Sigma.m)
GIVEN a recurrence

ao(n),...,as(n): polynomials in n
h(n): expression in indefinite nested sums
defined over hypergeometric products.

ao(n)F(n) +--- + as(n)F(n +6) = h(n);

together with initial values F'(0),...,F(d —1) e K

DECIDE constructively if F'(n) can be expressed in terms indefinite
nested sums defined over hypergeometric products.

A more general example:




Symbolic summation (recurrence solving) 8

Example: A master integral from Ladder and V-topologies
[arXiv:1509.08324]

F(e,n) / dl’/ dy/ dza®?y/%(1 )—3?5—22%+n+1

(1—22)? x (1—y2) (@ +y—1)"

f(eﬂ n’ m’ y’ Z)

Ablinger's (9 hours)
Multilntegrate.m

ap(e,n)F(e,n) +ai(e,n)F(e,n+ 1)+ - +as(e,n)F(e,n+5)=0

recurrence soIverl

F(e,n) = expression in terms of special functions



Symbolic summation (recurrence solving) 8

Example: A master integral from Ladder and V-topologies
[arXiv:1509.08324]

F(e,n) / dl’/ dy/ dza®?y/%(1 )—375—22%+n+1

(1—22)? x (1—y2) (@ +y—1)"

f(eﬂ n’ m’ y’ Z)

Ablinger's (9 hours)
Multilntegrate.m

ap(e,n)F(e,n) +ai(e,n)F(e,n+ 1)+ - +as(e,n)F(e,n+5)=0

refined
recurrence solver

F(e,n) = F_3(n)e >+ F_a(n)e > +...



Symbolic summation (recurrence solving)

Ansatz (for power series
ao(e,m) [ F(e,n)]
+ai(e,n) [F(s, n+ 1)}
4

+as(e,n) [F(s, n+ 6)}
= ho(n) + h1(n)€ + hg(n)EZ + ...

iVen (in terms of indefinite nested sums and products)



Symbolic summation (recurrence solving)

Ansatz (for power series
ag(e,n) [Fo(n) +F(n)e + Fy(n)e + .. ]

+ai(e,n) [F(s, n+ 1)}
+

+as(e,n) [F(s, n+ 6)}
= ho(n) + h1(n)€ + hg(n)EZ + ...

iVen (in terms of indefinite nested sums and products)



Symbolic summation (recurrence solving)

Ansatz (for power series
ag(e,n) [Fo(n) +F(n)e + Fy(n)e + .. ]

+ai(e,n) [Fg(n + 1)+ Fi(n+1)e+ Fa(n+1)e? + .. ]
_.l_

+as(e,n) [F(s, n+ 6)}
= ho(n) + hl(n)e + hg(n)EZ + ...

iVen (in terms of indefinite nested sums and products)



Symbolic summation (recurrence solving)

Ansatz (for power series
%@m@mmwwm+5mW+”}

+ai(e,n) [Fg(n + 1)+ Fi(n+1)e+ Fa(n+1)e? + .. ]
_.l_

+%@mﬂ%m+®+Fmﬁwk+5m+®g+“}
= ho(n) + hl(n)e + hg(n)EZ + ...

iVen (in terms of indefinite nested sums and products)



Symbolic summation (recurrence solving)

Ansatz (for power series
ag(e,n) [Fo(n) +F(n)e + Fy(n)e + .. ]

+ai(e,n) [Fg(n + 1)+ Fi(n+1)e+ Fa(n+1)e? + .. ]
_.l_

tag(e,n) [Fo(n £O) + Fy(n+8)e + Fy(n+0)e + .. ]
= ho(n) + hl(n)e + hg(n)€2 —+ ...

|l constant terms must agree

[a0(0.0) Fo(n) + a1(0, ) Fy(n+1) + - + as(0,n) Fo(n+0) = ho(n)]




Symbolic summation (recurrence solving)

Ansatz (for power series
ag(e,n) [Fo(n) +F(n)e + Fy(n)e + .. ]

+ai(e,n) [Fg(n + 1)+ Fi(n+1)e+ Fa(n+1)e? + .. ]
_.l_

tag(e,n) [Fo(n £O) + Fy(n+8)e + Fy(n+0)e + .. ]
= ho(n) + hl(n)e + hg(TL)EQ —+ ...

|l constant terms must agree

[a0(0.0) Fo(n) + a1(0, ) Fy(n+1) + - + as(0,n) Fo(n+0) = ho(n)]

REC solver:  Given the initial values Fy(1), Fo(2),. .., Fp(0),
decide if Fy(n) can be written in terms of indefinite
nested sums and products.



Symbolic summation (recurrence solving)

Ansatz (for power series
ag(e,n) [Fo(n) +F(n)e + Fy(n)e + .. ]

+ai(e,n) [Fg(n + 1)+ Fi(n+1)e+ Fa(n+1)e? + .. ]
_.l_

tag(e,n) [Fo(n £O) + Fy(n+8)e + Fy(n+0)e + .. ]
= ho(n) + hl(n)e + hg(n)€2 —+ ...

|l constant terms must agree

[a0(0:) Fo(n) + a1(0,n) Fo(n+1) + -+ + as(0,n) Fo(n+6) = ho(n)|




Symbolic summation (recurrence solving)

Ansatz (for power series
ap(e, n) |:F0(’I’L) + Fi(n)e +

+ai(e,n) [Fg(n +1)+ Fi(n+1)e

_.l_

tag(e,n) [Fo(n 'L 8) 4+ Fy(n+8)e + Fy(n+0)e
= ho(n) + hl(n)e + hg(n)€2 —+ ...

|l constant terms must agree

[a0(0:) Fo(n) + a1(0,n) Fo(n+1) + -+ + as(0,n) Fo(n+6) = ho(n)|




Symbolic summation (recurrence solving)

ap(e,n) [Fl(n)s + Fy(n)e? + ... }
+ai(e,n) [Fl(n—i— e + Fy(n+1)e + ... ]
+

+as(e,n) [Fl(n—i—é)s + Fy(n + 6)e* + .. }
= hj(n) + Ky(n)e + hy(n)e? + ...



Symbolic summation (recurrence solving)

ap(e,n) {Fl (n)e + Fy(n)e® + ... ]

+ai(g,n) {Fl (n+1)e + Fo(n+1) + .. ]
+

+ags(e,n) {Fl (n+d

Devide by ¢



Symbolic summation (recurrence solving)

ap(e,n) {Fl (n) + Fa(n)e + .. }

+ai(e,n) [Fl(n +1)+ F(n+1)e+.. ]
+

+as(e,n) [Fl (n+9) + Fa(n+0)e + .. } = hi(n) + hy(n)e + ...

‘Repeat to get Fi(n), Fx(n),... ‘

Remark: Works the same for Laurent series.

Bliimlein, Klein, CS, Stan, J. Symbol. Comput. 2012; arXiv:1011.2656[cs.SC]
Ablinger, Bliimlein, Round, CS, LL2012, arXiv:1210.1685 [cs.SC]



Symbolic summation (recurrence solving) 12

Example: A master integral from Ladder and V-topologies
[arXiv:1509.08324]

F(e,n) / dl’/ dy/ dza®?y/%(1 )—375—22%+n+1

(1—22)? x (1—y2) (@ +y—1)"

f(eﬂ n’ m’ y’ Z)

Ablinger's (9 hours)
Multilntegrate.m

ap(e,n)F(e,n) +ai(e,n)F(e,n+ 1)+ - +as(e,n)F(e,n+5)=0

Sigma.m l (2 hours)

F(e,n) =F 3(n)e 3+ F o(n)e 24 - + Fy(n)e* + O(eP)



Symbolic summation (recurrence solving)

We get

(—1n 8(2n+3
Fo3(n) = (n+1)(21+2) + 3(n-£13l2(n)+2)




Symbolic summation (recurrence solving)

W t
Fe o — _8(=1" 8(2n+3)
—3(n) = 3D (nrD) T 3t D242
4(-1)" (3n®+18n2431n418)  4(6n®+32n2 1510426
Foa(n) = - 3(n+1)3(n+2)2 - )

3(n+1)3(n+2)?



Symbolic summation (recurrence solving)

We get (-1) (2n+3)
__ 8(=1n 8(2n+3
Fg(n) = Sn+D(nr2) T 3(n+1312(n+2)
_4(-1)" (3n®+18n2431n+18)  4(6n®+32n2 +51n+26)
Flo(n) = — 31 (112) T T 3P (nr2)?
B [ 2(97° + 81n* +295n” + 533n” + 500n + 204) G
Foan) = (=1) ( 3(n+1)4(n +2)3 TR

N 2(18n° + 150n* + 490n® + 755n> + 536n + 132)

(2n +3)¢
3+ 1)in 1 2)°

(n+1)2(n+2)

4 4(—1)"
+ (_(n—i- D2nt2) ¥ 1)(n+2)> Sa(n)
a1 4n+9)
* (3(

nt)(n+2) 3n+1)2n+ 2)) S-2(n)




Summary: symbolic summation and integration

Find a recurrence and solve it for the integral /sum

(e,n) / / (e,n,x1,22,...,x7)dr1dxs . .. d2y

KF;), B L Foon)e P+ Fo(n)e 4. —

e-recurrence\solver

multivariate
Almquist/Zeilberger
(Jakob Ablinger)

lag(e,n)F(e,n) + ... + ag(e,n)F(e,n + d) = h(e,n)




Summary: symbolic summation and integration

Find a recurrence and solve it for the integral /sum

(e,n) / / (e,n,x1,22,...,x7)dx1dxs . .. dIy

KF;), S L F on)e 2+ Foy()e + .. —

e-recurrence\solver

multivariate
Almquist/Zeilberger

(Jakob Ablinger) Z . Z fle,n, iy, ig, ... i7)
3 %

MultiSum Package
(K. Wegschaider

ao(e,n)F(g,n) .. + aq(e,n)F(e,n + d) = h(e,n)




Summary: symbolic summation and integration

Find a recurrence and solve it for the integral /sum

F(e,n) = / / (e,n,x1,22,...,x7)dx1dxs . .. dIy

ZF 3(n)e 3+ Fo(n)e 2+ Foy(e + ..

e-recurrence\solver

multivariate
Almquist/Zeilberger

(Jakob Ablinger) Z . Z fle,n, iy, ig, ... i7)
3 %

MultiSum Package Holonomic/difference ring approac
(K. Wegschaider

ao(e,n)F(g,n) .. + aq(e,n)F(e,n + d) = h(e,n)




Summary: symbolic summation and integration

Find a recurrence and solve it for the integral /sum

(e,n) / / (e,n,x1,22,...,x7)dx1dxs . .. dIy

KF;),( _3\+F o(n)e 2+ Foy(m)e ™ 4. —

differencg ring approach e-recurrence\solver

multivariate
Almquist/Zeilberger

(Jakob Ablinger) Z . Z fle,n, iy, ig, ... i7)
3 %

MultiSum Package Holonomic/difference ring approac
(K. Wegschaider

ao(e,n)F(g,n) .. + aq(e,n)F(e,n + d) = h(e,n)




Summary: symbolic summation and integration

Symbolic

Symbolic

summation

integration

recurrence
solving

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' alled holonomic if

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Summary: symbolic summation and integration

Symbolic

Symbolic

summation

integration

recurrence
solving

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' alled holonomic if

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Symbolic summation machinery (recurrence finding and solving)

A warm up example:

GIVEN F(e,n) = E;Z;FE+1

P(k+1) TP =G +1- HTG+1+ 50k +j+1+n)
Tk +2+7) TG+ 1- 500 + 2+ Wk +5+2)

Ck+1) TEHPA+5PG+1+aT(+1-5)T(k+j+1+5+n)
I'(k+2+n) FrG+TG+2+5s+n)lk+j+2+%) '

f(€7n7k7j)

Arose in the context of
I. Bierenbaum, J. Bliimlein, and S. Klein, Evaluating two-loop massive operator matrix
elements with Mellin-Barnes integrals. 2006



Symbolic summation machinery (recurrence finding and solving)

A warm up example:

GIVEN F(e,n) = kZ:O;FeH

( P(k+1) DETA- 50 +1- TG+ 1+ 50(k+j+1+n)
(

L(k+2+n) PG+1-35I0G+2+n)l(k+j+2)

Dk+1) D(=5TA4+9TG+1+e)TG+1-5(k+i+1+5+n)

I'(k+2+n) FrG+TG+2+5s+n)lk+j+2+%) '
f(€7n7k7j)

FIND the first coefficients of the e-expansion

F(e,n) = Fyo(n) +eFi(n) +

Arose in the context of
|. Bierenbaum, J. Bliimlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006



Symbolic summation machinery (recurrence finding and solving)

A warm up example:

GIVEN F(e,n) = kZ:O;FeH

I'(k+2+n) PG+1-35TG+2+n)l(k+j+2)

( P(k+1) DETA- 50 +1- TG+ 1+ 50(k+j+1+n)

Fk+1) T(=5HTA+5)TG+1+e)TG+1-5)TTk+7+14+5+n)

T(k+2+n) TG+LG+2+c+n(k+j+2+

3)

f(€7n7k7j)

).

Step 1: Compute the first coefficients of the e-expansion

f(e,n,k,j): fo(n,k,j)-i- Efl(nvkvj)+

Arose in the context of

I. Bierenbaum, J. Bliimlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006



Symbolic summation machinery (recurrence finding and solving)

A warm up example:

GIVEN F(e,n) = E;Z;FE+1

P(k+1) TP =G +1- HTG+1+ 50k +j+1+n)
Tk +2+7) TG+ 1- 500 + 2+ Wk +5+2)

Ck+1) TEHPA+5PG+1+aT(+1-5)T(k+j+1+5+n)
I'(k+2+n) FrG+TG+2+5s+n)lk+j+2+%) '

f(€7n7k7j)

Step 2: Simplify the sums in

o o [o.¢]
ZZf(€7n7k.7 ZZfOnk] Zz.fl(n7k7.7)+
k=0 j=0 k=0 j=0 k=0 j=0

Arose in the context of

I. Bierenbaum, J. Bliimlein, and S. Klein, Evaluating two-loop massive operator matrix
elements with Mellin-Barnes integrals. 2006



Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify

te (2 + k + 1+ 2)j%!(j + k + n)!
ZZ((J+’€+1)(J+n+1)(j+k+1)!(j+n+1)!(k—|—n—|—1)!

k=05=0
+j!k!(j +h+n)! (=510) +S1(G+k)+ 51 +n) —Si(j+k+n)) )
GH+E+DIG+n+ 1) (k+n+1)!
f@)
where

Sitn) =S5 (= Ho)



Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify
ii( (2 + k+n+2)5k!(j +k+n)!
G+ek+D)G+n+0)G+E+DIG+n+ 1) (k+n+1)
+j!k!(j +h+n)(=S1() + 51+ k) +51(+n) = Si(j +k+n)) )
GH+E+DIG+n+ 1) (k+n+1)!

f@)

k=0j=0

FIND ¢(j):

fG)=9G+1)—g()




Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify
ii( (25 +k+n+2)kl(j+k+n)
G+ek+D)G+n+0)G+E+DIG+n+ 1) (k+n+1)
+j!k!(j +h+n)(=S1() + 51+ k) +51(+n) = Si(j +k+n)) )
G+Ek+D)G+n+DI(k+n+1)

f)

k=0j=0

FIND ¢(j):

fG)=9G+1)—g()

1 summation package Sigma

N\ GHEAD Gnt) RGk+n)! (S1() =51 (k)= S1 (+n) 51 (j+k+n) )
9(j) = EnGHR D) G+n D) (g 1!



Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify

ZZ (27 + k +n+2)j%!(j + k +n)!
G+E+D)G+n+0D)G+k+DIG+n+DI(k+n+1)

k=05=0
+]!k!(]—|—k+n)( Sl(')+Sl(j+k)+51(j+n)—Sl(j+k+n)))
G+k+DG+n+D(k+n+1)!
f()
FIND ¢(j):

fG)=9G+1)—g()

Summing the telescoping equation over j from 0 to a gives

Zf gla+1) — g(0)



Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify

e (25 + k +n+ 2k + k +n)!
ZZ((J'HH1)(J'+n+1)(j+k+1)!(j+n+1)!(k+n+1)!

k=0j=0
+j!k!(j +h+n)! (=510) +S1(G+k)+ 51 +n) —Si(j+k+n)) )
GHE+DIG+n+D(k+n+1)
f()
FIND ¢(j):

fG)=90G+1)—g(j)

Summing the telescoping equation over j from 0 to a gives

D 1) =gla+1)—g(0)
=0

(a+ D) (k=D (a+k+n+1)!1(S1(a)—S1(a+k)—S1(a+n)+S1(a+k+n))
n(a+k+1)!(a+n+1)!(k+n+1)!
S1(k)+S1(n)—S1(k+n) + (2a+k+n+2)alk!(a+k+n)!
kn(k+n+1)n! (a+k+1)(a+n+1)(a+k+1)(a+n+1)!(k+n+1)

~
a—o0

_|_

!
>




Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify
ii( (2 + k+n+2)5k!( +k+n)!
G+ek+D)G+n+0)G+E+DIG+n+ 1) (k+n+1)
+j!k!(j +h+n)(=S1() + 51+ k) +51(+n) = Si(j +k+n)) )
GH+E+DIG+n+ 1) (k+n+1)!

f@)

k=05=0

if(j) _ 1 Si(k) + S1(n) = Si(k+n)

j=0 n! kn(k+n+1)



Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify
ZZ (2j+k+n+2)7K(G+k+n)

G+E+D)G+n+0D)G+k+DIG+n+DI(k+n+1)

'k'(j—f—k—i—n) (—=S1(j )+51(]+k)+51(]+n)—Sl(j—i—k—i-n)))
G+k+DG+n+D(k+n+1)!

f@)

k=05=0

e S1(k) + Si(n) — Si(k +n)
sz( n'z kn( k—i—n—l—l)

k=15=0



Symbolic summation machinery (recurrence finding and solving)

Telescoping
GIVEN a4

Alm) =3 kn(k+n+ 1) '

k=1 C

FIND g(k) :

lg(k +1) — g(k) | = | f(k)|

forall0 <k <mnandalln>0.

L f(K)



Symbolic summation machinery (recurrence finding and solving)

Telescoping

GVEN o= 0SB+ Sul) = Sk )

— kn(k —};TH— 1)
=: f(k)

FIND g(k) :

lg(k +1) — g(k) | = | f(k)|

forall0 <k <mnandalln>0.

no solution @



Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN & SiR) + Si(n) = Sl )
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)
FIND g(n, k)

lg(n.k+1) —g(n.k)|=| f(n. k)]

forall 0 <k <nandalln>0.

no solution @



Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.



Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.

‘Sigma computes: ‘ co(n) = —n, c1(n) = (n+2) and

kS1(k) + (—n — 1)S1(n) — kS1(k +n) — 2

9(n k) = tnt D+ 12




Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.

Summing this equation over k from 1 to a gives:

a

[9n.a+1) =g 1)]=| 3" [co(n) £, k) + ex(m) 0+ 1,K)

k=1




Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.

Summing this equation over k from 1 to a gives:

a a

lo(na+1) —g(n 1) |=| Y eo(n) f(n,K) + D ex(n) f(n+1,k)

k=1 k=1




Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.

Summing this equation over k from 1 to a gives:

a

l9(n,a+1) —g(n, 1) |=|co(n) > fn,k) +c1(n) D f(n+1,k)
k=1 k

=1




Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kz:i kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.

Summing this equation over k from 1 to a gives:

l9(n.a+1) —g(n, 1) | =|co(n) A(n) + c1(n) A(n + 1) |




Symbolic summation machinery (recurrence finding and solving)

Zeilberger's creative telescoping paradigm

GIVEN SR+ Sin) = Sulk 4 n)
Aln) = kzzi kn(k+n+1) '
=: ‘(,n, k)

FIND g(n, k) and co(n), c1(n):

lg(n.k +1) —g(n.k)|= [con)f(n. k) +cr(n) f(n+ 1, k)|

forall 0 <k <nandalln>0.

Summing this equation over k from 1 to a gives:

l9(n.a+1) —g(n, 1) | =|co(n) A(n) + c1(n) A(n + 1) |
[ [

T —nA(n) + (2+n)A(n +1)

+ a(a+1)
(n+1)3(a+n+1)(a+n+2)




Symbolic summation machinery (recurrence finding and solving)

(n+1)Sy(n) + 1
(n+1)3

(n+2)A(n+1) —nA(n) =

recurrence finder

kn(k +n+1)

k=1




Symbolic summation machinery (recurrence finding and solving)

(n+1)Sy(n) + 1

(n+2)A(n+1) —nA(n) =

(n+1)3
recurrence solver
[ 1 1
A(n): S1(/€)+Sl(n)—51(k’+n) c {CX 7n(n+1)
— kn(k+n+1) S1(n)? + So(n) cCR)
2n(n+1)
where



Symbolic summation machinery (recurrence finding and solving)

(n+1)Sy(n) + 1

(n+2)A(n+1) —nA(n) = ot 1)

Summation package Sigma

(based on difference field/ring algorithms/theory
see, e.g., Abramov, Karr 1981, Bronstein 2000, Schneider 2001/2004/2005a—c /2007 /2008/2019a—c)

1 ¥
N Suk) £ 8i(n) = Si(k+n) | n(n
A(n) = =1 kn(k +n+1) - S ((n);—i)&(”)
2n(n + 1)
where n "
Sl(n):Z% Sa(n) = 112



Symbolic summation machinery (recurrence finding and solving)

A warm-up example: simplify

ZZ 2j+k+n+2)5K(G+k+n)
G+E+D)G+n+0D)G+k+DIG+n+DI(k+n+1)

LG Rt ) (=51 )+Sl(]+k)+51(]+n)—51(j+l~c+n)))
G+k+DG+n+D(k+n+1)!

f)

k=05=0

e S1(k) + Si(n) — Si(k +n)
sz( n'z kn( k—i—n—l—l)

J—1j—=0
_ l Sl(n) + Sa(n)
“n!l 2n(n+1)

where

S =3¢ Sm=Y 4

i=1 i=1



Symbolic summation machinery (recurrence finding and solving)
A warm-up example: simplify
ii( (2 + k+n+2)5k!( +k+n)!
G+ek+D)G+n+0)G+E+DIG+n+ 1) (k+n+1)
+j!k!(j +h+n)(=S1() + 51+ k) +51(+n) = Si(j +k+n)) )
G+Ek+D)G+n+DI(k+n+1)

f(n,k, j)

k=05=0

i i f(n,k,j) = S1(n)? 4 3S2(n)

|
k=04=0 2n(n + 1)!

where

Sl(n)zz% SQ(n):Z%2

i=1 P



Symbolic summation machinery (recurrence finding and solving)

1. Cl’eative teleSCOpIng (for the special case of hypergeometric terms see Zeilberger's algorithm (1991))

GIVEN a definite sum

n: extra parameter

n
A(n) = Z f(n, k); f(n,k): indefinite nested product-sum in k;
k=0

FIND a recurrence for A(n)




Symbolic summation machinery (recurrence finding and solving)

1. Creative teleSCOplng (for the special case of hypergeometric terms see Zeilberger's algorithm (1991))

GIVEN a definite sum

n: extra parameter

n
A(n) = Z f(n’ ]{); f(n,k): indefinite nested product-sum in k;
k=0

FIND a recurrence for A(n)

2. Recurrence solving

GIVEN a recurrence ao(n), ..., aq(n), h(n):
indefinite nested product-sum expressions.

ap(n)A(n) + -+ + aq(n)A(n + d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein /Petkoviek/CS, JSC 2021)




Symbolic summation machinery (recurrence finding and solving)
1. Creatlve teleSCOplng (for the special case of hypergeometric terms see Zeilberger's algorithm (1991))

GIVEN a definite sum

n: extra parameter

n
A(n) = Z f(n’ k); f(n,k): indefinite nested product-sum in k;
k=0

FIND a recurrence for A(n)

2. Recurrence solving

GIVEN a recurrence ao(n), ..., aq(n), h(n):
indefinite nested product-sum expressions.

ag(n)A(n) + - - + ag(n)A(n + d) = h(n);

FIND all solutions expressible by indefinite nested products/sums
(Abramov/Bronstein /Petkoviek/CS, JSC 2021)

3. Find a “closed form”

A(n)=combined solutions in terms of indefinite nested sums.




Symbolic summation machinery (recurrence finding and solving)

n—2j+1 n—j+r—2 1)r+s <]+1) (—j+”+7"_2)(—j +n—2)r!

ZZ Z —$)(s+1)(—j+n+r)

7j=0r=0 s=0

Simple sum



Symbolic summation machinery (recurrence finding and solving)

n—2 j+1n—jt+r—2 1)r+s (]+1) (—J'+”+T_2)(_j +n—2)lr!

ZZ Z )(s—i—ls)(—j—l-n—i-r)!

j=0r=0 s=0 H

n—2j+1|n—j+r—2 (_1)r+s (j+1) (—j+n+r—2) (—j+n—2)r!

ZZ Z (n—rs)(s—i-ls)(—ijn—i—r)!




Symbolic summation machinery (recurrence finding and solving)

n—2j+1 n—j+r— 2 )r+s (]—i—l) (—j+n+r—2) (—j+n—2)r!

ZZ Z )(s+1$)(—j+n+r)!

j=0r=0 s=0 H

n—2j+1|n—j+r—2 (_1)r+s (j—i—l) (—j—i—n—i—r—?) (—j+n—2)r!

ZZ Z (n—rs)(s+1s)(—j+n+r)!
I

j+1 (=) (=j +n—2)lr!
( r )((714—1)(—3'4—714—7‘—1)(—j+n—i—r)!+
(=)™ G+ DN (=j+n—=2)(=j+n—1)r! )
(n—Dn(n+1)(=j +n+r)(=j—1):(2 —n);




Symbolic summation machinery (recurrence finding and solving)

n—2 j+1n—jt+r—2 1)r+s (]+1) (—J'+”+7"_2)(_j +n—2)lr!

ZZ Z )(s—i—ls)(—j—l-n—i-r)!

j=0r=0 s=0 H

j+1 . .
Jj+1 (=1)"(=j+n—2)r!
g( r )<(n+1)(—j+n+r—1)(_j+n+r)!+
= ()" G+ D= +n—2)(—j+n—1)7! )
(n = Dn(n+D(=j +n+7r)(=j—1)(2-n),

M
|
[\v)




Symbolic summation machinery (recurrence finding and solving)

n—2j+1ln—j4r-2 (_1)r+s (j—i—l) (—j+n+r—2) (—j+mn—2)r!
T S

ZZ Z —s)(s+1)(—j+n+r)!

7=0r=0 s=0 (n H

J+1 . .
j+1 (=1)"(—j +n — 2)lr!

2::0( r )((n+1)(—j+n+r—1)(—j+n+r)!+
()" (G + D=7 +n—2)(=j +n—1),7! )

[\

n—

(n=Dn(n+1(=j +n+r)l(=j - Dr(2-n),
|
/ —n);
n?—n+1 ; z—i—n—l )2(i 4+ 1)!

(Gt ne=m, * mr e =

(1) (=) —2)(=j+n -2\ 1
(j—n+1)(n+1)n! )(J+1)!_ (n+1)2%(—j+n-1)




Symbolic summation machinery (recurrence finding and solving)

n—2 j+1n—jt+r—2 1)r+s (]+1) (—J'+”+7"_2)(_j +n—2)lr!

ZZ Z )(s—i—ls)(—j—l-n—i-r)!

j=07r=0 s=0 H

J

Q—TL)i
n—2 n2—n+1 ; —i+n—1)2>i+1)!
<< (n—1)2n2(n+1)(2 — n); * (n+1)(2—n);

+

“M

(=1 (—j —2)(—j +n—2)\, . 1
G-+ D+ )(3+1)!‘<n+1>2<—j+n—1>>




Symbolic summation machinery (recurrence finding and solving)

n—2 j+1n—j+r—2 1)r+s (]+1) (—J'+”+7"_2)(_j +n—2)lr!

ZZ Z )(s—i—ls)(—j—l—n—i-r)!

j=0r=0 s=0 H

i
[\

J (Q—TL)i
%

2 —nal — (—it+n—1)2(+1)
<<(n—1)2n2(n+1)(2—n)]~ + (n+1)(2—n);

—+

J
(=1)7F (= —2)(—=j +n—2)l\ . 1
(j—n+1)(n+1)n! )(J+1)!_ (n+1)2(—j+n—1)>

I
—n?—n—-1 (-D)"(n*4+n+1) 25 5(n) S1(n) Sa(n)
n?(n+1)3 + n?(n+1)3 a n—iz—l + (n:—l)2 + —7’2L—1

la|

Note: Sq(n) = Zf\il Sigi"(a)i, aeZ\{0}.



Symbolic summation machinery (recurrence finding and solving)

In[l]:= << Sigma.m

‘ Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

2= << HarmonicSums.m

‘ HarmonicSums by Jakob Ablinger (©) RISC-Linz ‘

3= << EvaluateMultiSums.m
‘ EvaluateMultiSums by Carsten Schneider (©) RISC-Linz ‘




Symbolic summation machinery (recurrence finding and solving)

In[l]:= << Sigma.m
‘ Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

2= << HarmonicSums.m

‘ HarmonicSums by Jakob Ablinger (©) RISC-Linz ‘

3= << EvaluateMultiSums.m
‘ EvaluateMultiSums by Carsten Schneider (©) RISC-Linz ‘

n—2j4+1n—j4r—2 r+4s (i+1\ /—j+n4r—2 .
(D)) () (=i + 0 — 2)t!
In[4]:= mySum = Z Z Z RS TPRr Y sy

j=0 r=0 s=0

b

In[s]:= EvaluateMultiSum[mySum, {}, {n}, {1}]



Symbolic summation machinery (recurrence finding and solving)

In[l]:= << Sigma.m
‘ Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

2= << HarmonicSums.m

‘ HarmonicSums by Jakob Ablinger (©) RISC-Linz ‘

3= << EvaluateMultiSums.m
‘ EvaluateMultiSums by Carsten Schneider (©) RISC-Linz ‘

n—2j4+1n—j4r—2 r+s (j+1\ (—j+n+r—2 .
(D)) () (=i + 0 — 2)t!
Inf4:= mySum = Z Z Z G I (Gt o!

j=0 r=0 s=0

b

In[s]:= EvaluateMultiSum[mySum, {}, {n}, {1}]

—n?2-n-1 (-1)*(@®>+n+1) 25[-2,n]  S[1,1] S[2,n]
n?(n+1)3 n2(n+1)3 T Tn+1 (n+1)2 -n-1

Out[5]=



Symbolic summation machinery (recurrence finding and solving)

Feynman integral

Syl

7=0 k=0

x/01/01/01/01/01/010(1—x5—x6>(1—xﬂ(l—u)w?

(1 o mg)_€$i/2_1(1 o m4)s/2—1mg—1$g€/2

a 3-loop massive ladder
diagram [arXiv:1509.08324]

[—23(1 — 24) — 24(1 — 25 — @6 + 571 + T673)]"

+[z3(1 —24) — (1 —24)(1 — x5 — w6 + x521 + xgccg)]k

X (1 — x5 — wg + w521 + mﬁmg)j_k(l — wg)"_?’_j

X [IL‘l — (1 — X5 — 1‘6) — 51 — 1‘6$3]n_3_j dl‘l dl‘z dl‘g d1‘4 d1‘5 dl‘e,



Symbolic summation machinery (recurrence finding and solving)




Symbolic summation machinery (recurrence finding and solving)

zj: Z Z Z i_ ) (—1) I Hk—ltn—q=3,

k=0 [=0 r=0

0
(iﬁ)(’f (Ge %)( ”q" ) “"s ) (g r—s—3)l(s—1)!
ClHn—q—2)(—j+n—1)(n—q—r—s—2)(q+5+1)

45’1(—j—|—n—1)—45’1(—j—|—n—2)—25’1(k)
—(Si(~l+n—-—q¢g—2)+S1(-l+n—qg—r—5—3)—251(r+s))

+2S1(s—1) —2S1(r +s)| + 3 further 6-fold sums




Symbolic summation machinery (recurrence finding and solving)

Fo(n) =

(17n +5)S1(n)?  ,35m% —2n—5  13S3(n)  5(—1)"
3n(n+1) ( 2n2(n + 1)2 2 2n2

A (R By (3= s

20(—1)"

+ (2+2(-1)")S2,1(n) —285_2.1(n) + n2(n+ 1)

21" o) + S a(m) ("D (26 4 4(-1)") S () +

n(n+1)
43— 1) 8(-1)"(3n+ 1) =

n(n+1) )S1(n) + n(n +1)2 B n(n—i—l))

+ (EREEEE B shm) + (55 = 20207 San) + (= 64 5(-1)")Sa(m)
4 (= 2O D) 2y )+ (204 20-1)") S0 a(r) + (~ 174 13(-1)") Sy4(n)

- 8(_1)71(2’;;;2 54(9" D G g1 (n) = (244 4(=1)") S5 (n) + (3 — 5(=1)")S2.1.1(n)

7
g 4
i+

)S1(n)?

+ (-

J100) + (5 4 (1)) S2(m)?

4D
n+1 )
8(-1)"(2n+1)
n(n+1)

+(—22+6(-1)")S2(n)

432591 (n) + <§sl<n>2 Bl 2(—1>"s_z<n>)<(2)

n



Symbolic summation machinery (recurrence finding and solving)

LA +(17n+5)S1(n)3 35n2 —2n —5  13S2(n)  5(—1)"

" o ( 2n2(n + 1) 2 oz )51
w n
+ ( et Sl(n) _ Z% 2 1)+ n L?’)s (n) + (§ — (=1)")S3(n)
+(2+2 =L - 2;’(( i+ (o ) sao?
n 2(3n — n 4(_1)n
—2(=1)"S-2(n)* + S_3(n)( AT D 5) | (26 + 4(~1)") S (n) + 5200
(=1)"(5 —3n) 8(—1)"(2n + 1)
+ (m o 2)52(n)+S 2(n)(10S1(n)? + (W
L;(?:Jr 11))) 1(n )+% + (=224 6(~1)")Sa(n) — ﬁ)
(% - g) 3(n) + (%9 —2(=1)")Sa(n) + (= 6 +5(=1)")S_4(n)
(- % N %)52’1(") + (204 2(=1)") S, —2(n) + (= 17+ 13(=1)") S3,1(n)
8(—1)"(2n + 1) + 4(9n + 1)

- it D) S_21(n) — (24 4+ 4(-1)")S—3,1(n) + (3 = 5(—1)")S2,1,1(n)

+ 325_271,1(’@) + <231(n)2 - ?)SlT(n) + 2(—1)"5_2(71))((2)



Symbolic summation machinery (recurrence finding and solving)

7 ) N (17n + 5)S1(n)? (35n2 —2n—5 13S2(n)  5(—1)"
2n2(n + 1)2 2 2n2
2n +1)

)S1(n)?

+( |
+(2+2( _2.1(n) +
. 2(3n — 5)
—2(=1)"S-2(n)* + S-s(n)( n(n+ 1)
(—1)"(5—3n) 5 8(=1)"(2n + 1)
+ (m - ﬁ)sz(n) + S_2(n)(1081(n)* + (W
A(3n — 1) 8(=1)"(3n + 1) . _ 16
n(n+1) )Sl(n)+w+(_22+6(_l) )Sg(n) n(n—i—l))
—1)"9n+5 29 19
+ (EREEEE B shm) + (55 = 20207 San) + (= 64 5(-1)")Sa(m)
4 (= 2O D) 2y )+ (204 20-1)") S0 a(r) + (~ 174 13(-1)") Sy4(n)
8(—1)"(2n + 1) +4(9n + 1)

- n(n+ 1) S_2,1(n) — (24 +4(=1)")S-3,1(n) + (3 = 5(=1)") S2,1,1(n)
432591 (n) + <§sl<n>2 Bl 2(—1>”s_z<n>)<(2)

n



Symbolic summation machinery (recurrence finding and solving)

Fy(n)|=
7 (17n +5)S1(n)?  ,35m% —2n—5  13S3(n)  5(—1)"
S’ + ( 2m2(n + 1)2 2 gnz )51’

)

— 2(-1)"S-2(0) + S-a(m) (e

G i

2n2(n 4 ‘ Z -

" 4(3n — 1)) o k
i _
e JC " L

-
+(= n(n i=1 2(n) + (— 17+ 13(=1)")S3,1(n)
_ 8(qn)"(2n + 1) +4(9n +1) S_51(n) — (244 4(=1)")S_3,1(n) + (3 = 5(=1)")S2,1,1(n)

n(n+1)
351(n)

B n(n + 1))
(=6+5(—=1)")S—4(n)

v 3 5 3
+328_21,1(n) + <2sl(n) N + 2(—1)ns_2(n))<(2)




tion machinery (recurrence finding

Sigma.m is based on difference ring/field theory
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Symbolic integration (DE solving)

Symbolic

Symbolic

integration

summation

recurrence
solving

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' alled holonomic if

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Symbolic integration (DE solving)

W8ymbolic

W8ymbolic

summation

integration
recurrence DE

solving solving

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' alled holonomic if

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Symbolic integration (DE solving)

Motivation: solving recurrences
and D-equations

[coming, e.g., from IBP methods]



Symbolic integration (DE solving)
Given invert. A($) c K(l‘))‘X)‘ and Rl (l'), e ,R)\(x) (in terms of special functions)
Determine I1(z), ..., Ix(x) (for given initial values) s.t.

f1($)




Symbolic integration (DE solving) 31

Given invert. A($) c K(x))\X)\ and Rl (l'), e ,R)\(x) (in terms of special functions)
Determine I1(z), ..., Ix(x) (for given initial values) s.t.

(I}(m)) (I}(x)) (Rl(l‘))
Dy | - = A(x) RECRN I IS
I(z) I(z) Ry(z)

uncoupling algorithms
(Ziircher,Abramov/Zima,Gauss,...)

A

1. I1(z) is a solution of

bo(x)fl(x) + bl(x)Dwfl(x) +---+ b)\(CC)D;\fl((E) = f(:c)



Symbolic integration (DE solving)

Given invert. A(IE) c K(x))\X)\ and Rl (IE), e ,R)\(x) (in terms of special functions)
Determine I1(z), ..., Ix(x) (for given initial values) s.t.

I (z) I(x) Ri(z)
Dy| ... |=4Ax) | ... |+

~ A ~

() i) \&@

uncoupling algorithms
(Ziircher,Abramov/Zima,Gauss,...)

A

1. I;(x) is a solution of
bo(x)fl(x) + bl(x)Dwfl(fE) +---+ b)\(CC)D;\fl((E) = f(:c)
2. Fori=2,...,r we get

Ii(x) = LinCom(I(z), ..., D)~ (x)) + LinCom(..., D' Ry(x), . ..)



Symbolic integration (DE solving) 32

Given invert. A(IE) c K(x))\X)\ and Rl (IL'), e ,R)\(x) (in terms of special functions)
Determine I1(z), ..., Ix(x) (for given initial values) s.t.

I (z) I(x) Ri(z)
Dy| ... |=4Ax) | ... |+

~ A ~

() i) \&@

uncoupling algorithms
(Ziircher,Abramov/Zima,Gauss,...)

A

1. I(x) is a solution of
b (E)fl((l?) + bl(x)Dwfl(fE) + -+ b)\(CC)D;\fl((E) = f(:c)

DE-solver



Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(x) f(x) + -+ + ba(z) D f () = 0;

together with initial values f(0),..., D 1 f(2)|,—0 € K




Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(2) f () + - -~ + ba(z) DA f () = 05
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.




Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(x) f(x) + -+ + ba(z) D f () = 0;
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

Hi_i(z) = /0 = /0 T drodm (harmonic polylogarithm)

E. Remiddi, E. and J.A.M. Vermaseren, Int. J. Mod. Phys. A15 (2000) [arXiv:hep-ph/9905237]



Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(x) f(x) + -+ + ba(z) D f () = 0;
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

Hy _o(z) = /0 py /0 5T 7 drodm (generalized polylogarithms)

S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083];
J. Ablinger, J. Blimlein and CS, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378].



Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(x) f(x) + -+ + ba(z) D f () = 0;
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

z 1 o]
_ drod cyclotomic polylogarithms
/0 1+7'1+7'12/0 1420 (cy polylog )

J. Ablinger, J. Blimlein and CS, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063].



Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(x) f(x) + -+ + ba(z) D f () = 0;
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

x 1 1 1
drodT radical integrals
/0 \/1—|-7'1/0 1+ 7 20 ( & )

J. Ablinger, J. Blimlein, C. G. Raab and CS, J. Math. Phys. 55 (2014) 112301 [arXiv:1407.1822].



Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(2) f () + - -~ + ba(z) DA f () =
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

Special cases of iterated integrals over hyperexponential functions:

T .
/ / VI=m2\/1 = 73 + nradrydr (generalized
0 1—7 +nm1

radical integrals)

J. Ablinger, J. Blimlein, A. De Freitas, A. Goedicke, CS, K. Schénwald. Nucl.Phys.B 932. 2018. [arXiv:1804.02226].
J. Ablinger, J. Bliimlein, A. De Freitas, A. Goedicke, M. Saragnese, CS, K. Schonwald. Nucl.Phys.B 955. 2020. [arXiv:2004.08916]



Symbolic integration (DE solving)
|. A differential equation solver (HarmonicSums.m)

GIVEN a linear differential equation bo(z),...,ba(z) € K[z]
bo(2) f () + - -~ + ba(z) DA f () =
together with initial values f(0),..., D! f(2)|,=0 € K

DECIDE constructively if f(x) can be expressed in terms of iterated
integrals defined over hyperexponential functions.

A more general example:

e 1+y+y2 + " 1
/ y+y? 1+T2dT2dT1




Symbolic integration (DE solving)

HarmonicSums can also deal with Liouvillian solutions (i.e., it contains
Kovacic's algorithm):

(11 +202) f'(z) + (1 4+ ) (35 + 134z) f " ()
+3(1+2)2(4+372) f O () + 1821 + )3 f W(z) =0

l

o1 L | Y14+ V1I+7
c1+c dr +c/ / 2 dr 5dT
{1 2/0 1+7 ! 3 0 1+7

1+7

N / /1{”/1— I+mn
C
4 0 ].+7'1

dngTl | C1,C2,C3,C4 € K}



DE solving <+ RE solving

Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(2) f(x) + -+ bx(x) D f(x) = 0 (DE)

Definition: sequence (F'(n)),>0 € K" is called holonomic if

there exist ag(z), ..., as(z) € K[z] (not all zero) with

ag(n)F(n)+---+as(n)F(n+46) =0 (RE)




DE solving <+ RE solving

Connection: DE «+—— REC
Let

be a (formal) power series. Then:

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(«) f(x) + -+ bx(x) D f(x) = 0 (DE)
there exist ag(z), ..., as(z) € K[z] (not all zero) with

ap(n)F(n) +---+as(n)F(n+0) =0 (RE)




DE solving <+ RE solving

Connection: DE «+—— REC
Let

be a (formal) power series. Then:

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(«) f(x) + -+ bx(x) D f(x) = 0 (DE)
ﬂalgorithmic
there exist ag(z), ..., as(z) € K[z] (not all zero) with

ap(n)F(n) +---+as(n)F(n+0) =0 (RE)




DE solving <+ RE solving 36

Given invert. A(IE) c K(x))\X)\ and Rl (IL'), e ,R)\(x) (in terms of special functions)
Determine I1(z), ..., Ix(x) (for given initial values) s.t.

I (z) I(x) Ri(z)
Dy| ... |=4Ax) | ... |+

~ A ~

() i) \&@

uncoupling algorithms
(Ziircher,Abramov/Zima,Gauss,...)

A

1. I(x) is a solution of
b (E)fl((l?) + bl(x)Dwfl(fE) + -+ b)\(CC)D;\fl((E) = f(:c)

DE-solver



DE solving <+ RE solving

Given invert. A(IE) c K(x))\X)\ and Rl (IL'), e ,R)\(x) (in terms of special functions)
Determine I1(z), ..., Ix(x) (for given initial values) s.t.

I (z) I(x) Ri(z)
Dy| ... |=4Ax) | ... |+

~ A ~

() i) \&@

uncoupling algorithms
(Ziircher,Abramov/Zima,Gauss,...)

DE-solver

36




DE solving <+ RE solving

Example 1: Find a power series solution

= Z F(n)x
n=0

for

— (2" — 642%) fW(z) — 2 (52% — 1442%) fO)(2)
— (2527 — 2089:) f"(x) — (152 — 8) f'(z) — f(z) =0



DE solving <+ RE solving

Example 1: Find a power series solution

= Z F(n)x
n=0

for

— (2" — 642%) fW(z) — 2 (52% — 1442%) fO)(2)
— (2527 — 2089:) f"(x) — (152 — 8) f'(z) — f(z) =0

l

8(n+1)2n+1*F(n+1)— (n+1)*F(n) =0



DE solving <+ RE solving

Example 1: Find a power series solution

= Z F(n)x"
n=0

for

— (2" — 642%) fW(z) — 2 (52% — 1442%) fO)(2)
— (2527 — 208m) f"(x) — (152 — 8) f'(z) — f(z) =0

8+ 1)2n+1)*F(n+1) — (n+1)*F(n) =0




DE solving <+ RE solving

Example 1: Find a power series solution

e n

T 1,1,1,1 =«

f(x):Zm:4F3[ 111 ;@]
=0

for

— (2" — 642%) fW(z) — 2 (52% — 1442%) fO ()
— (252° — 208m) f(x) — (152 — 8) f'(z) — f(z) =0

8(n+1)2n+13Fn+1)— (n+1)*F(n) =0




DE solving <+ RE solving

Example 1: Find a power series solution

> n
f((l?) — § x — |:1’ 1’ 1’ 1 . £:| for further transormations
2n) 3 Xiv:1706.012
o (n) see [arXiv:1706.01299]

for

— (2" — 642%) fW(z) — 2 (52% — 1442%) fO)(2)
— (252° — 208m) f"(x) — (152 — 8) f'(z) — f(z) =0

8+ 1)2n+1)*F(n+1) — (n+1)*F(n) =




DE solving <+ RE solving

Example 2: Find a power series solution

f(z) =) F(n)"
n=0

for
(2% — 322" + 2562*) £ (2) + (232° — 5282" + 25602%) f®)(z)
+ (712" — 25522% + 62722%) f V) (z) + 2 (2452° — 200227 + 1728z) ) ()
+2(2532% — 786z + 72) f”(2) + 4(35z — 12) f'(z) + 4f (z) =0



DE solving <+ RE solving

Example 2: Find a power series solution

fl@)=>_ F(n)a"
n=0
for

(2% — 322" + 2562*) £ (2) + (232° — 5282" + 25602%) f®)(z)
+ (712" — 25522% + 62722%) f V) (z) + 2 (2452° — 200227 + 1728z) ) ()
+2(2532% — 786z + 72) f”(2) + 4(35z — 12) f'(z) + 4f (z) =0

l

(n+2)(n+1)*F(n)—4(n+2)(2n+1)* (2n+3) F (n+1)+16(2n+1)*(2n+3)* F(n+2) = 0



DE solving <+ RE solving

Example 2: Find a power series solution

= Z F(n)x
n=0

for

(2° — 322" 4 2562*) £ () + (232° — 5282* + 25602°) ) ()
+ (712" — 25522% + 62722%) f V) (z) + 2 (2452° — 200227 + 1728z) ) ()
+2(2532% — 786z + 72) f”(2) + 4(35z — 12) f'(z) + 4f (z) =0

l

(n+2)(n+1)*F(n)—4(n+2)(2n+1)* (2n+3) F (n+1)+16(2n+1)*(2n+3)* F(n+2) = 0

lSigma.m

F(n) = ﬁ (Cl + Czsl(n)) ((1%)7)1(1()%)(1) . (cl + c251(n ))



DE solving <+ RE solving

Example 2: Find a power series solution

f($)201~3F2|:171’1-£:| +C2zm;pn

bl

for
(2° — 322" 4 2562*) ) () + (232° — 5282* + 25602°) ) ()

+ (712" — 255223 + 62722%) f V) (z) + 2 (2452° — 200227 + 1728z) ) ()
+2 (25322 — 786z + 72) f”(2) + 4(35z — 12) f'(z) + 4f (z) =0

l

(n+2)(n+1)*F(n)—4(n+2)(2n+1)* (2n+3) F (n+1)+16(2n+1)*(2n+3)* F(n+2) = 0



Guess and solve

W8ymbolic

W8ymbolic

summation

integration
recurrence DE
solving

solving
Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F'

integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Guess and solve

DE&RE
#8ymbolic guessing

W8ymbolic

summation

integration
recurrence DE
solving

solving
Definition: A a formal power series f(x) € K[[z]] is called holonomic if

there exist by(z), ...,bx(x) € K[z] (not all zero) with

bo(z)f(z) + - +bx(z)D f(z) =0 (DE)

Definition: sequence (F' w alled holonomic if
nman
integrals

there exist ag(z), . P(not all zero) with

ap(n)F(n) +---+as(n)F(n+0)=0 (RE)




Guess and solve

coupled systems

for f(z) = ZP(n)x”
n=0

SolveCoupledSystem.ml

large no. of moments,
say P(0),..., P(10000)



Guess and solve

coupled systems

for f(z) = ZP(n)xn
n=0

SolveCoupledSystem.ml

large no. of moments,
say P(0),..., P(10000)

/

numerics



Guess and solve

coupled systems

for f(z) = ZP(n)xn
n=0

SolveCoupledSystem. ml

large no. of moments,
say P(0),..., P(10000)

/ lguessing (ore_algebra in Sage)

numerics recurrence



Guess and solve

coupled systems

for f(z) = ZP(n)xn
n=0

SolveCoupledSystem. ml

large no. of moments,
say P(0),..., P(10000)

/ lguessing (ore_algebra in Sage)

numerics recurrence

asymptotics



Guess and solve

coupled systems

for f(z) = ZP(n)x”
n=0

SolveCoupledSystem.ml

large no. of moments,
say P(0),..., P(10000)

/ lguessing (ore_algebra in Sage)

numerics recurrence

asymptotics
E solving

indefinite nested sums
over hypergeo. products



Guess and solve

coupled systems

for f(x ZP

SolveCoupledSystem.ml
large no. of moments,

say P(0), ..., P(10000)

guessmg (ore_algebra in Sage)

numerlcs recurrence

asym ptotlcs
E solving

|ndef|n|te nested sums
over ,Fys (e.g., elliptic fus)
[iterative-noniterative sums]

indefinite nested sums
over hypergeo. products



Guess and solve

coupled systems

for f(z) = ZP(n)x”
n=0

SolveCoupledSystem. ml

large no. of moments,
say P(0),..., P(10000)
lguessing (ore_algebra in Sage)

recurrence

E solving

indefinite nested sums
over hypergeo. products



Guess and solve 41

Example (J. Bliimlein, P. Marquard, CS, K. Schénwald. Nucl. Phys. B 971, pp. 1-44. 2021)

Inf6]:= << Sigma.m
‘ Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

In[7]:= initial =<< iFilel6



Guess and solve 41

Example (J. Bliimlein, P. Marquard, CS, K. Schénwald. Nucl. Phys. B 971, pp. 1-44. 2021)

Inf6]:= << Sigma.m
Sigma - A summation package by Carsten Schneider (©) RISC-Linz ‘

In[7]:= initial =<< iFilel6

Out[7]= {37, 34577/1296, 7598833 /1651875, 13675395669 /230496000,
475840076183 /7501410000, 1432950323678333 /2196562876200,
21648380901382517 /328583783127600,
52869784323778576751,/802218994536960000,
49422862094045523994231 / 753773992230616156800,
33131879832907935920726113/509557943985299969760000,
5209274721836755168448777 /80949984111854180459136,
56143711997344769021041145213 /882589266383586456384353664,
453500433353845628194790025124807 / 7217228048879468556886950000000,
14061543374120479886110159898869387 /226643167590350326435656036000000,
715586522666491903324905785178619936571168370307700222807811495895030000000,
16286729046359273892841271257418854056836413 / 269396588055480390401343344736943104000000,
1428729642632302467951426905844691837805299,/ 23940759575034122827861315961573673600000,

498938690219595294505102809199154550783080767 /8468883667852979813171262304054002720000000,




uess and solve

Ing]:= rec =<< rFilel6

out8]= (n+ 1)*(n+ 2)%(2n + 3)(2n + 5)(2n + 7)(2n + 9)(2n + 11) (3092375453121132 + 38256884318208n°" +
2282100271087616n°° + 87428170197762048n2° + 2417273990256001024n® + 51388547929265405952n2" +
873862324676687036416n%° + 12209268055143308328960n2° + 142860861222820240162816n%% +
1419883954103469621510144n%° 4 12115561235109256405319680n2 -+ 89479384946084038000803840n>" +
575561340618928527623274496n2° + 3239547818363227419971647488n"° + 16009805333085271423330779136n"° +
69631814641718655426881659392n"7 -+ 266892117418348771052573667328n° +
901901113782416884441719270144n"> + 2685821385767154471801366647296n"* +
7038702625583766161604414471744n"% | 16195069575749412648646633248128n"2 +
32602540883321212533013752639288n" ! + 57154680141624618025310553466704n"° +
86710462147941775492301231896818n° + 112917328975807075881545543668548n° +
124873767581470867343743078943772n" + 115624836314544572769501784072647n° +
87938536330971046886456627610048n° + 53481897815980319933589323279298n" +
25000430622737750756669804052204n° + 8430930497463933665464836129856n° +

1825177817831282261293155379650n + 190428196025667395685609855000) (2n + 1)41 P[n]



uess and solve

—(m+2)%@n+3)°(2n + 7)(2n + 9)(2n + 11) (123695058124801138 + 1613151061671936n°" +
101748284195864576n°C + 4135139115563745280n°° + 121713599527855849472n>* +
2765050919624810430464n°° + 50453046277771391664128n°2 + 759760507477065230974976n°" -+
9628262076527899425374208n°" + 104191253579306374131613696n>° + 973595596739520084325171200n%° +
7924537790312611436520013824n°" -+ 56571687381518195331462463488n%° +
356133102136059681954436399104n%° + 1985507231916669869451824553984n% +
9836060321685410187563260035072n>° + 43406506634905372676489415905280n%% +
170945808151999530921656848106496n>" + 601507760131008511164113355409920n%° +
1892149418896523531194676203153920n"° + 5321173806292333448534132495165440n'° +
13370912745727662541153592039812160n'7 + 29987002021632029091547005084057760n " +
59921270263255984811455083696758912n'° + 106434458966741189159011567116493072n** +
167533688453539238956436945725341004n "% + 232781742346547554435645097479210510n'2 +
284125621128876904663642986868770746n ! + 302806836393712159148051277734975424n"% +
279679164311116651162116055961513301n° + 221781415386984655607595031093415136n° +
149214365004640710156345950062395186n" + 83882523964213110328265187672574356n° +
38609679702395410742361774562392789n° + 14149471988638475621561721269939086n" +
3963748138857399502678254252169734n° + 795659668131014454843348852372480n° +

101701393436276172443717692853400n -+ 6204709909986751913151675960000) P [n + 1]




d solve

+2(n+ 3)2 (2n+ 5)3 (2n+9)(2n+11) (247390116249601’140 + 3317836466356224)139 + 2155081702844661761138 + 90328840621879459841’137 +
274636134389959884800n36 +-6455501959255126179840n35 +-122094572934385260036096n34 +19093872257936631518986241:\33 +
251801082919692154343260161’132 +284171960705270647479074816n31 +27757944007202270348543262721’130 +
236776221639928538545662197761’129 +1776243127835837491579351203841’128 +11785156021156047579442018713601:127 +

4

69470919653134193237813583544321126 + 365150231003083148187021292584961125 + 171621148571344894953594594017280:\2 +

7228377930139763175562581025075201’123 + 2732534027077907914497042720534528]’122 + 9281 7064847 120:121 +

283378192155577089482543853361172481120 +777861257492746321505364645831307521119 + 1918771614556727809735022445376322561118 +
4249532217021406630899379219651356481’117 + 8438182764099755848247209316495552641’116 +
14993599366749567119353110629954223441115 + 23780070255709776626619387728432202401114 +
33556717714345358521473255025719537701’113 + 41963757628671845634074328916555854841’112 +

46276757795637523660678615962327810961111 + 44731759605119560005264994308519936031110 +

37616963650258379095815167813072495851’19 + 27265534734672543739936859516991454921’18 +

168338321230 valvuu12773485n7 + 871926653651504419744271839781064837116 +
3713074375980035700585387961229941471’15 + 1264279727428863896022858554829660721’14 + 330487623301456239690587044486973131:13 +

62179247468577410774191601 00404560]’12 + 748298077423337427195946099994100n + 4318108954803424607769861 1794000) P [ n + 2 ]



uess and solve

—2(n+ 4)2 (2n+5)(2n+ 7)3 (2n+11) (247390116249601140 + 33227842686812161’139 + 216160919414112256]’138 + 90745281552842752001137 +
276348048819456311296n36 +-6506479077331107315712n35 +-123266585640616142569472n34 +1931040885785102661976064:\33 +
255105033832814454620815361’132 +2884181241754282793914859521131 +28224427990336030810193264641’130 +
241207172333207123518213324801’129 +—181295944719289040999116701696n28 +—1205246297785423925076555694080D27 +

71190495575601144361362134138881126 + 37 1 18977587 n25 + 1766161724670489822342704288808961:\24 +

7455392188750207376217283642060801’123 + 28249096331565781326522597337128961’122 + 96181019582680712446806775890355201:121 +
294418605284464235176132633607429121120 +810335633063638735058775634164773121119 +2004547691036410401428381337023383041118 +
445286624972461749049425309485328992]’117 + 8870284474187906610188474072515731521’116 +
15815381014998696942248957017848753041115 + 25175502443927245099687911665853626721114 +
35665930265204651555046958778972826301’113 + 4479066125207404898722179511912639638]’112 +

49620069908743518007917696502434648721111 + 48199926439142659906478878966644852091110 +

407489! 6694182240941 0: 1r|9 + 29704772293987466891866225347846135541’18 +

1845274131994015990683957902602775337117 + 962091291302144537393228847830431614116 +
4125951078148365632087577570327401461’15 + 1415407239402325637677796470137854851’14 + 37292931812630561528276365992452010113 +

70748657772254167254528728953971001’12 + 858794112392644074221312049837000n + 49997386738260112603615104780000) P [n + 3]



uess and solve 46

+(m+5)°(2n +5)(2n + 7)(2n + 9)* (123695058124801138 + 1546355730284544n°" + 93441851805138944n°° +
3636063211393908736n°° + 102413434086873890816n°* + 2225107112182077718528n°° +
38808234188348931964928n°% + 558299807912629375074304n" " + 6755648626273815474733056n°0 -+
69769132238801205785001984n%° + 621900006220029229458259968n>° -+ 4826558182244413850688946176n%" +
32840774268722977511855761168n°° + 196981883700048989849717882880n°° +
1046061529031136798450810839040n%* + 4934888224954929426023144030208n> +
20735286278224836075286873214976n%2 + 77745549200390911029444008457216n% +
260448286122609254214904458392064n2° + 780087654447729149285799146869248n'° +
2089276462852113795051294249728512n'° + 5001455921015163002705347586646080n" " +
10691068512696184477385875851523744n'® + 20374769440121072185247660725156544n"° +
34542976501702600883669655947085712n'% + 51947527795197316142253213880200764n "% +
69039779136078090572935768218052854n" % + 80712286124402599779679594199103258n ' +
82519759833385882007812859351392458n % + 73248127158607338722648198918322201n° +
55935262205790259307904762197107653n° + 36322355479155199114489624391144238n" +
19756597118002557191991191826327042n° + 8822212911433711339358062994077203n° +
3145697282374650512689680780380605n" + 859907105684964990690798899478888n° -+
168963309995629650025632011492580n> + 21205680751316222168938757272000n +

1274120732351744651 125603886400) P [n + 4]



uess and solve

—(n+5)%(+6)*(2n + 5)(2n + 7)(2n + 9)° (2n + 11)* (309237645312n32 + 28361279668224n°" +
1249518729297920n°0 + 35220794552352768n%° + 713726163159089152n%° + 11076866026783113216n% +
136959486138712588288n°° + 1385658801437173350400n%° + 11691772666924577918976n°* +
83438339505976242995200n%° + 508989054278115477684224n%2 4 2675508113418826174332928n%" +
12193213796145039633072128n%° + 48399020537651722726242304n"° + 167881257973769248139515904n"° +
510012482113388176546187776n" ' + 1358662126092561923541267968n"® + 3174925021159974655053814528n"° +
6504205668151125355938798848n % + 11663792381020901870167176128n"° +
18263581057905911985340656960n"2 4 24881010123632244515458585528n"" +
29346856353503020415409305704n"0 + 29775859546803351930591002266n° -+ 25770328899499991754425455738n° +
18817114309842270306167785140n" + 11424980760825630752861027739n° - 5656051956667821083952617134n° +
2221448212382554437709999491n® | 664859653803075491350122060n° + 142190920852333874895041748n° +

19313175036907229252501700n + 1248723341516324359641600) P [n +5] —_—=



Guess and solve

In[9]:= recSol = SolveRecurrence[rec, P[n]]



Guess and solve

In[9]:= recSol = SolveRecurrence[rec, P[n]]

(34 2n)(3 + 4n)

outdl= {0, (oo 32w
(o, @+ (~ 8o 2n?)
T (it 2np 3¢ L
B+m)) - 2B+ '
{o_(3+2n)(—5+8n2) -1 e _1+2Z}

2(1 4 1n)2(1 + 2n)2 (1 4+n)(1 4+ 2n) + (1 +n)(1 4 2n)
(3+2n)(— 513 — 2184n — 24160 + 768n%)  14(3+2n)>1_, &

{o, 21+ 0)°(1 £ 20)° (1+n)(1+2n) +(-
2(3+2n)(3 +44n + 480%)  48(3+2n) X1, —i
(1 +n)2(1 + 2n)? (1+n)(1+2n )Z +
12(3420)(30_, 1)*  56(3+20) 3 oy
(1 +1)(1 + 2n) (1 +n)(1+2n) B
4(3 +2n) (3 + 44n + 480%) 37, 71+21 48(3 +2n) (223, ﬁ)z}

(1 4+n)2(1 + 2n)? (1 4+n)(1+2n)



Guess and solve

1

{0, ————————— (72519 + 572343n + 1814716n> + 2918100n° + 2442240n" + 912896n° + 24576n° —
16(1 + n)%(1 + 2n)*
sors’) + 16(3+2m) 35, % t (- (34 2n)(29 + 307n 4 32202)  44(3 + 2n) Th_, —7iry ) 1 n
3(1 +1)(1 + 2n) 4(1 +1)2(1 + 2n)2 (1 4n)(t + 2n) P
((3 + 20) (91 4 2500 + o74n® + 1784n° 4 1024n%)  22(3 +20) X1, 4 + 24(3 +20) 2, (—141-21)2
4(1 +n)3(1 + 2n)® (1 +)(1 + 20) (1 +n)(1 + 2n)
4(3 +2n)( — 13 — 4n + 160?) 32_, ﬁ 16(3 4+ 2n) ( >0, _1+21 Z +(
(1 +mn)2(1 4+ 2n)2 (1+n)(1+2n
(3+2n)(19 + 920 + 80n%)  40(3 +2n) 31, _1+21 Y Z 20(3 + 2n)( Zl 1)°
(1 +1n)2(1 4 2n)2 (1 +n)(1+ 2n) =i 3(1+n)(1+2n)

64(3 + 2n) S0, m 3(3 + 2n) (63 + 209n + 150n?) 3°2_, m .

3(1 +n)(1 + 2n) (1 4+ n)2(1 + 2n)2
((3+2n)(347+1795n+4302n2 + 4856n° + 204en?) BB+ 2m) TR, o 1+21)2 o 1
2(1 +0)3(1 + 2n)3 (1 +1n)(1 + 2n) ; 1421
4(3 + 20) (19 + 920 + 80n%) (G, —5;)° N 32(3 + 2n) ( Tioy —f)°
(1 +1n)2(1 + 2n)2 3(1 +n)(1 + 2n)
i1)2
8(3 4 20) 0, (ZJ—=‘J)— 163 +2m) i, % Z Z
(1 +n)(1 + 2n) (1 +n)(1 + 2n) n \i=3 7 = -1 +2]
i1 i1 64(3 + 2
32(3 + 20) 0, —(EJ:”’)?FI — . et D)Z —1+2i N
(1 +n)(1+2n) (1+n)(1+2n)
i 1 )2 i1 )2
32(3 + 2n) SB_, M 64(3 4 2n) 30, (Ej_jlléiﬁ )

(1 +1)(1 + 2n) At+o(it2m) }, {1,0}}



Guess and solve 50

In[10]:= sol = FindLinearCombination[recSol, {0, initial}, n, 7, MinInitialValue — 1]



uess and solve 50

In[10]:= sol = FindLinearCombination[recSol, {0, initial}, n, 7, MinInitialValue — 1]

1
1 32(3 + 2n) 2'?:1 =
Out[l0]= —— (111 4+ 1920n + 11765n° + 325450° 1 46476n® + 35376n° + 13440n® 4 1968n") 4 — = 8%
3(1 + m*( + 2n)4 9(1 + n)(1 + 2n)
(3 4 20)( — 3 + 101n + 1260%) $7_; 7 (34 2m)(115 + 9210 + 196702 + 1524n° + 340n%) 57, L
3(1 +n)2(1 + 2n)2 3(1 +n)3(1 + 2n)3
4@ +2m)(xP, H)sp, 1 3+ 2n)(23 + 139n + 130n2) (X2, )2 403 + 2n)(x2, 1)3
is139)Xi1 ) B+ w23+ + i3], 3+ 2m) (X 4 §
3(1 +n)(1 + 2n) 31+ m2(t + 2n)? 9(1 + m)(1 + 2nm)
1283 +2n) X8, —L - 4(3 + 20)(77 + 261n + 19002 —Ll - 163+ 2 —1
(3 +2n) 27 4 YT (3 + 2n)(77 + 261n + 190n%) ¥F_; (7“21)2 . 3 +2n)(X) 1)21 1 T1212 .
9(1 + m)(1 + 2nm) 3(1 + m)2(1 + 2n)2 (1 +10)(1 + 2m)

2(3 + 20)(13 — 1530 — 30302 + 120° + 1720%) T}, ﬁ 88(3 + 2n)( 23, ?15) P ﬁ
+

3(1 +m3(1 + 2n)3 301+ n)(l + 2m)
4@ +2m)(— 41 — 53+ 20%) (53, Lysp ﬁ 803 + 20) (5} 125
+

Sy oim .
3(1 +m)2(1 + 2n)2 3(1 + n)(1 + 2n)

1 1
32(3 + 2n)( X} _4 W} Tii =i 4G+ 2m)(23 + 1390 + 13002) (S0, ﬁ)"’
(1 +m)(1 + 2m) 3(1 +m)2(1 + 2n)2
2 (g2, 1)?
3203 + 2n)( X} 4 l)(z1 1 T+2l) 643 + 20)( X} _4 7“21) _ 16E+2) P 34*11; B
3(1 +n)(1 + 2n) 9(1 + n)(1 + 2n) 3(1 + n)(1 + 2n)
L (52 (531 95 =i
32(3 + 20) o 7“21 64(3 + 20) 0, 4J—+L
- +
31+ n)(1 + 20) 3(1 + n)(1 + 2n)
n (X} )2 i
=13 =1 —142j (23 1 )2
128(3 + 2n 731+n 1+2n =1 = j
( >i§1 —— ( )( ) 643 4+ 2n) S - 12 N
. 3(1 4+ n)(1 + 2n)
(=5 =152
1=
1283 + 20) TP 4, — I — L2 —14;1'2

3(1 +n)(1 + 2n)



Guess and solve

In[11]:= << HarmonicSums.m

‘ HarmonicSums by Jakob Ablinger (©) RISC-Linz ‘

In[12]:= sol = TransformToSSums[sol];
In[13:= sol = ReduceToBasis[MultipleSumLimit[sol,
n, 2]//ToStandardForm, n]//CollectProdSum;



Guess and solve

In[11]:= << HarmonicSums.m

\ HarmonicSums by Jakob Ablinger © RISC-Linz ‘

In[12]:= sol = TransformToSSums[sol];

In[13]:= sol = ReduceToBasis[MultipleSumLimit[sol,
n, 2]/ /ToStandardForm, n]//CollectProdSum;

Out[13]= ml(lJr—2rl)4_ (111 + 1920n + 11765n? + 32545n° + 46476n* + 35376n° + 13440n° +
1968n") + 64(3 4+ 2n)?S[1,n]  64(3 + 2n)(2 + 3n)S[t,n]? (-
3(1 +n)(1 + 2n)? 3(1 +n)(1 + 2n)?
2(3 + 2n) (147 + 985n + 1871n? + 1268n° + 212n?) ~ 224(3 + 2n)S|[2, 2x)
3(1 +n)3(1 + 2n)3 3(1 +n)(1 + 2n)
128(3 + 2n)S[—2, 2n] 5[, 20] 4(3 + 2n) (23 + 123n + 114n?)S[1, 2n]?
3(1 +n)(1 + 2n) ’ 3(1 +1n)2(1 + 2n)2

64(3 + 2n)S[1,2n]®  64(3 4 2n)S[2,n]  4(3 + 2n)(53 + 229n + 190n?)S[2, 2n]

3(1 +n)(1 + 2n) 3(1 +n)(1 + 2n) B 3(1 +n)?(1 4 2n)?
64(3 + 2n)S([3, 2n] +(- 64(3+2n)>  128(3 + 2n)(2 + 3n)S[t, 2n] )S[—1, 2] -
3(1 +n)(1 + 2n) 3(1 +n)(1 + 2n)2 3(1 +n)(1 + 2n)2 ’
64(3 + 2n)(2 + 3n)S[—1, 2n? B 32(3 4 2n) (1 + 8n + 8n?)S[—2, 2n] N

3(1 4 n)(1 + 2n)? 3(1 4 n)?(1 + 2n)?

64(3 + 2n)S[—3,2n]  128(3 + 2n)S[—2, 1, 2n]

31+n)(1+2n)  3(1+n)(1+2n)




Guess and solve

In[11]:= << HarmonicSums.m

\ HarmonicSums by Jakob Ablinger © RISC-Linz

In[12:= sol = TransformToSSums(sol];

In[13]:= sol = ReduceToBasis[MultipleSumLimit[sol,

n, 2]/ /ToStandardForm, n]//CollectProdSum;
In[14:= SExpansion[sol, n, 2]

3n2 n
320 88 64LG[n]2 430 = 160(> 14
In2((——-—|LG _—— - =
" ((3n2 n) [n] + n 3n? + 3n n +
160LG[n] 40 84 160 44 ) 430 14 64LG[n]?
= 2% =226 S22 ) LG+ 2B
2 ( 3n + n2 n ) + (Sn2 n ) )" + 3n? n [n] + 3n +
64In2% 145 N 32¢s 41
3n 2n2 n

outel 22 (64LG[n] , 160 44) N
n

n



Guess and solve

In[11]:= << HarmonicSums.m

\ HarmonicSums by Jakob Ablinger © RISC-Linz ‘

In[12]:= sol = TransformToSSums[sol];
In[13]:= sol = ReduceToBasis[MultipleSumLimit[sol,

n, 2]/ /ToStandardForm, n]//CollectProdSum;
In[14:= SExpansion[sol, n, 2]

64LG 160 44
Out[14]= In22 ( (] , 160 —) +
3n2? n
320 88 64LG[n]2 430 = 160(> 14
n2( (22 - =2 LGn) + —2L =2 _ =
" ((31’12 n ) [n] + n 3n? 3n n +
160LG[n] 40 84 160 44 ) 430 14 64LG[n]?
= 2% =226 S22 ) LG+ 2B
¢ ( 3n n2 n ) + (.’?:n2 n ) )" + 3n? n [n] + 3n +
64In23 145  32(3 N 41
3n 2n? n n

Special function algorithms

» HarmonicSums package
Ablinger, Bliimlein, CS, J. Math. Phys. 54, 2013, arXiv:1302.0378 [math-ph]
Ablinger, Bliimlein, CS, J. Math. Phys. 52, 2011, arXiv:1302.0378 [math-ph]
Ablinger, Bliimlein, CS, ACAT 2013, arXiv:1310.5645 [math-ph]
Ablinger, Bliimlein, Raab, CS, J. Math. Phys. 55, 2014. arXiv:1407.1822 [hep-th]

RICA package

Bliimlein, Fadeev, CS. ACM Communications in Computer Algebra 57(2), pp. 31-34. 2023.



Guess and solve

coupled systems

for f(x ZP

SolveCoupledSystem.ml
large no. of moments,

say P(0), ..., P(10000)

guessmg (ore_algebra in Sage)

numerlcs recurrence

asym ptotlcs
E solving

|ndef|n|te nested sums
over ,Fys (e.g., elliptic fus)
[iterative-noniterative sums]

indefinite nested sums
over hypergeo. products



Guess and solve

coupled systems

for f(z) = ZP(n)x”
n=0

SolveCoupledSystem.ml

large no. of moments,
say P(0),..., P(10000)
lguessing (ore_algebra in Sage)

numerics recurrence DE
asymptotics analytic continuation
E solving

indefinite nested sums
over ,Fys (e.g., elliptic fus)
[iterative-noniterative sums]

indefinite nested sums
over hypergeo. products



Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Evaluate beyond 0

convergency r—=1
radius

[ J=)

S full—a)
n=0

given f, € Q
by a guessed rec
of order 55

J. Bliimlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.
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radius

6 00 00
> log(@) Y gjna” >l =)
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of order 55
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Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Matching evaluations at a common point =
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radius
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Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Matching evaluations at a common point =

r = 0.078 convergency r=1
radius

z < 0.078 1

0

6 00 00
> log(@) Y gjna” > fal—a)r
Jj=0 n=0

n=—2
. | given f, € Q
find g;n € R by a guessed rec
of order 55
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Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Matching evaluations at a common point =

" — 0.078 convergency r=1
radius
0 x < 0.078 1
6 o 500000
> log(a) D gjna” 2 full—a)"
=0 ne——2 n=0
. | given f, € Q
find g;n» € R by a guessed rec
of order 55
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Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Matching evaluations at a common point =

" — 0.078 convergency r=1
radius
0 x < 0.078 1
6 10000 500000
Zlog(:c)] Z gj,nxn Z fa(l—2)"
=0 o n=0
. | given f, € Q
find g;n» € R by a guessed rec
of order 55
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Analytic continuation using DEs

The easy (quarkonic) case of our Form Factor project
Matching evaluations at a common point =

" — 0.078 convergency r=1
radius
0 x < 0.078 N
6 10000 DE (ord 500000

loe(z)/ o order 48, fo(1l = 2)"

. | given f, € Q
find g;n» € R by a guessed rec

of order 55

J. Blimlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.



Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Matching evaluations at a common point =

r = 0.078 convergency r=1
radius
0 z = 0.005 1
6 10000 DE (order 48 500000

logazj gina" order 48, fu(l —z)"

jz:% @ n; 7 deg 2800) go e

find g;, € R given f, € Q
" Jjn by a guessed rec

of order 55

1400 digits precision

J. Bliimlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.



Analytic continuation using DEs
The easy (quarkonic) case of our Form Factor project

Matching evaluations at a common point =

r = 0.078 convergency r=1
radius
0 z = 0.005 1
6 10000 DE (order 48 500000

logazj gina" order 48, fu(l —z)"

j; @ n; 7 deg 2800) go e

find g;, € R given f, € Q
" Jjn by a guessed rec

of order 55

1400 digits precision

PSLQ

9jn € Q(m,C3,..)

J. Blimlein, A. De Freitas, P. Marquard, n. Rana, C. Schneider. Analytic results on the massive three-loop form factors:

quarkonic contributions. Physical Review D 108(094003), pp. 1-73. 2023.



Analytic continuation using DEs

World record recurrence:

ap(n)F(n)+ai(n)F(n+ 1)+ -+ +|ag(n) |[F(n+90) =0



Analytic continuation using DEs

World record recurrence:

ag(n)F(n) +a1(n)F(n+1)+ -+ +|ag(n) |F(n+90) =0

ago(n) =+A1n+A2n2 oo+ Azgg n30%0 ¢ Zn)]



Analytic continuation using DEs 54

World record recurrence: ~650K A4-pages

ag(n)F(n) +a1(n)F(n+1)+ -+ +|ag(n) |F(n+90) =0

:+A17’L+A2n2+"'+A39007’L3900EZ[H]

1 764382204

.....

197760246917216

191 0427

6 7617680295041

1423121

0997368471 0345

536170311

000000000

0000000000000000 000000

(8084"decimal digits)




Conclusion

Conclusion

1. Various computer algebra tools have been developed at RISC:

» multi-summation and integration packages

> up-to-date solvers for linear recurrences and DEs
(within Sigma.m and HarmonicSums.m)

> a prototype method to solve partial linear DE/RE equations in QCD
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Conclusion

Conclusion

1. Various computer algebra tools have been developed at RISC:

» multi-summation and integration packages

> up-to-date solvers for linear recurrences and DEs
(within Sigma.m and HarmonicSums.m)

> a prototype method to solve partial linear DE/RE equations in QCD
2. Interplay: DE solver «— RE solver
3. Guess & solve strategies open up new applications in QCD
4. Analytic continution methods applied to “world record” REs/DEs

5. Results are contained in about 100 articles produced jointly within the
RISC-DESY cooperation



