
(Non)commutative integrable systems
and Catalan numbers

Solutions of Volterra chain:

u′n = un(un+1 − un−1), n ≥ 1, u0 = 0

V. Adler and A. Shabat in 2018 suggested
the following approach:

Let f be a function. For k ≥ 0 set

w2k =

∣∣∣∣∣∣∣∣
f f ′ . . . f (k)

f ′ f ′′ . . . f (k+1)

... ... ...
f (k) f (k+1) . . . f (2k)

∣∣∣∣∣∣∣∣ ,

w2k+1 =

∣∣∣∣∣∣∣∣
f ′ f ′′ . . . f (k+1)

f ′′ f ′′i . . . f (k+2)

... ... ...
f (k+1) f (k+2) . . . f (2k+1)

∣∣∣∣∣∣∣∣
Then u1 = w1

w0
, u2 = w2

w1
, un = wn−3·wn

wn−2·wn−1
,

n ≥ 3
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If
f =

∑
k≥0

ck
k!
tk

is exponential generating function for Cata-
lan numbers cn = 1

n+1

(
2n
n

)
then

f (n)(0) = cn and w2k(0) = w2k+1(0) = 1.
It implies that initial conditions for func-
tions un are given by un(0) = 1, n ≥ 1.
Conversely, under these initial conditions f
is the exponential generating function for
Catalan numbers.

Noncommutative Volterra Chain

Let A be a differential algebra with deriva-
tion D : A → A satisfying Leibniz rule
(uv)′ = u′v + uv′, u′ = Du.

Noncommutative Volterra chain is given by

u′n = un+1un − unun+1

To describe its solutions we need a theory
of quasideterminants.
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Let A be a square matrix over an associative
ring.

Let Aij be the submatrix of A with ith row
and jth column removed; ri be the ith row
without aij and cj be the jth column with-
out aij.

Then

|A|ij = aij − ri(Aij)−1cj

Examples for A =

(
a11 a12
a21 a22

)
|A|11 = a11−a12a−122 a21, |A|12 = a12−a11a−121 a22,

|A|21 = a21−a22a−112 a11, |A|22 = a22−a21a−111 a12

If A−1 = (bij) then bpq = |A|−1qp .
In the commutative case

|A|ij = (−1)i+j
detA

detAij

It is also convenient to box the entries aij
for |A|ij, i.e.



4 ∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =

∣∣∣∣a11 a12a21 a22

∣∣∣∣
22

Let f be an element of a differential algebra.
For any k ≥ 0 set

z2k =

∣∣∣∣∣∣∣∣∣
f f ′ . . . f (k)

f ′ f ′′ . . . f (k+1)

. . . . . .

f (k) f (k+1) . . . f (2k)

∣∣∣∣∣∣∣∣∣

z2k+1 =

∣∣∣∣∣∣∣∣∣
f ′ f ′′ . . . f (k+1)

f ′′ f ′′′ . . . f (k+2)

. . . . . .

f (k+1) f (k+2) . . . f (2k+1)

∣∣∣∣∣∣∣∣∣
In the commutative case zn = wn

wn−2
.

Theorem. Set un = znz
−1
n−1, n ≥ 1,

u0 = 0. Then

u′n = un+1un − unun−1
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In the commutative case our un’s are equal
to:

un =
wn
wn−2

·
(
wn−1
wn−3

)−1
=

wn−3wn
wn−2wn−1

, n ≥ 3

Consider now differential algebra of series∑
ant

n over a noncommutative ring, deriva-
tion D is defined by d/dt.

Let

f =
∑ Ck

k!
tk

be exponential generating function for non-
commutative Catalan numbers (A. Beren-
stein, V. R.).

Noncommutative Catalan numbers:

Let x0, x1, x2, . . . be free noncommuting variables.
Then the solutions of equations∣∣∣∣∣∣∣∣

C0 C1 . . . Ck
C1 C2 . . . Ck+1

. . . . . .
Ck Ck+1 . . . C2k

∣∣∣∣∣∣∣∣ = x2k,



6 ∣∣∣∣∣∣∣∣
C1 C2 . . . Ck+1

C2 C3 . . . C2k+2

. . . . . .
Ck+1 Ck+2 . . . C2k+1

∣∣∣∣∣∣∣∣ = x2k+1

are Laurent polynomials:

C0 = x0 , C1 = x1 , C2 = x2 + x1x
−1
0 x1,

C3 = x3+x2x
−1
1 x2+x2x

−1
0 x1+x1x

−1
0 x2+x1x

−1
0 x1x

−1
0 x1,

...

A description of Cn’s: consider paths from (0, 0)
to (n, n) which lie below the diagonal (Catalan paths).
To each point p = (p1, p2) on a plane we associate
its content c(p) := p1 − p2. If P is a Catalan path
and p ∈ P then c(p) ≥ 0.

To each Catalan path P from (0, 0) to (n, n) we as-
sign an element MP by

MP =
∏

x
σ(p)
c(p) ,

where the product is over all corners p ∈ P (taken
in the natural order) and

σ(p) =

{
1 if p is southeast

−1 if p is northwest
.
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Let Pn be the set of all Catalan paths from (0, 0) to
(n, n). Then the noncommutative Catalan number
Cn is given by

Cn =
∑
P∈Pn

MP .

Theorem. A series f defines solutions for
Volterra chain u′n = un=1un−unun−1 if and
only if un(0) = xnx

−1
n−1.

Under specialization xk 7→ qk(k−1)/2 non-
commutative Catalan numbers are equal to
q-Catalan numbers cq,1 and un(0) = qn−1.



8

Toda-Sylvester chain

Commutative case:

τ ′′n = (τ ′n)2 + τn+1τn−1, n ≥ 1, τ0 = 1

Solutions:

τk = wk−1 =

∣∣∣∣∣∣∣∣
f f ′ . . . f (k−1)

f ′ f ′′ . . . f (k)
... ... ...

f (k−1) f (k+1) . . . f (2k−2)

∣∣∣∣∣∣∣∣
Noncommutative case

Set θn = τnτ
−1
n−1. Then(

θ′nθ
−1
n

)′
= θn+1θ

−1
n −θnθ−1n−1, n ≥ 1, θ0 = 0

Noncomm. solution (I. Gelfand, V. R., 1992):

θk =

∣∣∣∣∣∣∣∣∣
f f ′ . . . f (k−1)

f ′ f ′′ . . . f (k)
... ... ...

f (k−1) f (k+1) . . . f (2k−2)

∣∣∣∣∣∣∣∣∣
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If f is exponential generating function for
noncommutative Cn then θn(0) = x2n−2.

Generalized Catalan numbers

Definition. Let A = (aij), i, j ≥ 0 over
a ring. We call Cn(A) := (An)00 the nth
Catalan number defined by matrix A.

The idea belongs to Aigner(1999), he con-
sidered 3-diagonal matrices with ai,i±1 = 1.

Let

A =


a00 a01 0 0 0 . . .
a10 a11 a12 0 0 . . .
0 a21 a22 a21 0 . . .

. . . . . .


with (non)commuting entries. Then∣∣∣∣∣∣∣∣

C0(A) C1(A) . . . Cn(A)
C1(A) C2(A) . . . Cn+1(A)
. . . . . .

Cn(A) Cn+1(A) . . . C2n(A)

∣∣∣∣∣∣∣∣ =

= a01a12 . . . an−1,n · an,n−1 . . . a21a10
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It shows that when f is an exponentional
generating function for “numbers” Ck(A)
initial condictions θn(0) are nice monomials
in ai,i±1’s.

For shifted Hankel matrices the situation is
more complicated:∣∣∣∣∣∣∣∣

C1(A) C1(A) . . . Cn+1(A)
C2(A) C3(A) . . . Cn+2(A)
. . . . . .

Cn+1(A) Cn+2(A) . . . C2n+1(A)

∣∣∣∣∣∣∣∣ =

= a01a12 . . . an−1,n·|A(n)|nn·an,n−1 . . . a21a10
where A(n) = (aij), i, j ≤ n.

In this case initial conditions for solutions
of Volterra equations are expressed through
quasideterminants |A(n)|nn.


