
Noncommutative generalized Cata-
lan numbers and their generating
functions

M. Aigner (1999) introduced generalized Catalan
numbers:

A =


s0 1 0 0 0 . . .
1 s1 1 0 0 . . .
0 1 s2 1 0 . . .

. . . . . .


Cn(A) := (An)00, n ≥ 0.

When s0 = 1, si = 2 for i ≥ 1 we get Catalan
numbers

When si = 1 for i ≥ 0 we get Motzkin numbers

When si = 0 for i ≥ 0 we get
(
2n
n

)
, n ≥ 0

Aigner also showed that∣∣∣∣∣∣∣∣
C0(A) C1(A) . . . Cn(A)
C1(A) C2(A) . . . Cn+1(A)
. . . . . .
Cn(A) Cn+1(A) . . . C2n(A)

∣∣∣∣∣∣∣∣ = 1

and computed determinants for Hankel matrices started
with C1(A).



Generalizations:

1) Different types of matrices

2) Matrices over noncommutative rings

Example 1:

A =


1 1 1 . . . 1 0 0 0 . . .
1 1 1 . . . 1 1 0 0 . . .
1 1 1 . . . 1 1 1 0 . . .

. . . . . .


(k ones in the upper row, k ≥ 2)

In this case

Cn(A) =
1

kn + 1

(
kn + 1

n

)
- kth Fuss-Catalan numbers

Example 2:

A =



0 1 0 0 0 . . .
0 0 1 0 0 . . .
. . . . . .
0 . . . 0 . . . 1 . . .
1 . . . 0 . . . . . . . . .
0 1 0 . . . . . . . . .

. . . . . . . . .


(k zeros before 1 in the left column, k ≥ 2)



In this case Ckm(A)’s are kth Fuss-Catalan num-
bers and Cn(A) = 0 if n 6= km

Our general approach is based on
finding equations for generating func-
tions

φ(t) =
∑
n≥0

Cn(A)tn

where Cn(A) = (An)00 using technique
of quasideterminants

Let A be a square matrix over an associative ring.

Notations: Aij is the submatrix of A with ith row
and jth column removed; ri be the ith row without
aij and cj be the jth column without aij.

Then

|A|ij = aij − ri(Aij)−1cj

Examples for A =

(
a11 a12
a21 a22

)
|A|11 = a11 − a12a−122 a21, |A|12 = a12 − a11a−121 a22,

|A|21 = a21 − a22a−112 a11, |A|22 = a22 − a21a−111 a12

If A−1 = (bij) then bpq = |A|−1qp .



In the commutative case

|A|ij = (−1)i+j
detA

detAij

It is also convenient to box the entries aij for |A|ij,
i.e. ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
22

Definition. Let A = (aij), i, j ≥ 0 over a ring.
We call Cn(A) := (An)00 the nth Catalan number
defined by matrix A.

First applications of quasideterminants

Let

A =


a00 a01 0 0 0 . . .
a10 a11 a12 0 0 . . .
0 a21 a22 a21 0 . . .

. . . . . .


Then ∣∣∣∣∣∣∣∣

C0(A) C1(A) . . . Cn(A)
C1(A) C2(A) . . . Cn+1(A)
. . . . . .

Cn(A) Cn+1(A) . . . C2n(A)

∣∣∣∣∣∣∣∣ =

= a01a12 . . . an−1,n · an,n−1 . . . a21a10



∣∣∣∣∣∣∣∣
C1(A) C1(A) . . . Cn+1(A)
C2(A) C3(A) . . . Cn+2(A)
. . . . . .

Cn+1(A) Cn+2(A) . . . C2n+1(A)

∣∣∣∣∣∣∣∣ =

= a01a12 . . . an−1,n · |A|nn · an,n−1 . . . a21a10

Second application of quasideterminants

Let A = (aij), i, j ≥ 0. Set A(k) = (aij), i, j ≥ k.

Set bk = |A(k)|−1kk .

Recall that A is a lower Hessenberg matrix if
aij = 0 for j − i > 1

Theorem. Let A be a lower Hessenberg matrix
such that all |A(k)|kk and ak,k+1 are invertible. Then

1 =
∑
k≥0

(−1)kb0 · a01 · b1 · a12 · · · ak−1,k · bk · ak0

Let P = (pij), i, j ≥ 0 be a Hessenberg matrix.
Define generating functions for generalized Catalan
numbers defined by P (k), k ≥ 0 by

φk(t) =
∑
n≥0

(P (k)n)kkt
n



In particular, φ0(t) is the generating function for
Catalan numbers defined by matrix P .

Corollary.

φ0(t) = 1+
∑
k≥0

tk+1φ0(t)·p01·φ1(t)·p12 · · · pk−1,k·φk(t)·pk0

Various Special Cases:

Assume that P is a uni-Hessenberg matrix and there
exists a homomorphism θ such that θ(pij) = pi+1,j+1

for all i, j. Set φ(t) = φ0(t). Then

φ(t) = 1 +
∑
k≥0

tk+1φ(t) · θ(φ(t)) · · · θk(φ(t)) · pk0

For Hessenberg matrix P with constant diagonals we
get

φ(t) = 1+
∑
k≥0

tk+1φ(t)·p01·φ(t)·p01·φ(t)·p01 . . . φ(t))·pk0

So, to solve the above equation we construct semi-
infinite Hessenberg matrix P with constant diagonals
and set

φ(t) =
∑
n≥0

(P n)00t
n



If, additionally, P is a three-diagonal matrix then

φ(t) = 1 + tφ(t)p00 + t2φ(t)p01φ(t)p10

If p01 = p00 = p10 = 1 the last equation is the
well-known characteristic equation for the generating
function for Motzkin numbers.

Let P be a two-diagonal uni-Hessenberg matrix with
pk−1,0 = z1

P =


0 1 0 0 . . .
0 0 1 0 . . .

. . .
z1 0 0 . . .
0 z2 0 0 . . .

. . .


Let θ(zi) = zi+1 then

φ(t) = 1 + φ(t)θ(φ(t)) . . . θk(φ(t))z1t
k

One can see that φ(t) =
∑

n≥0C
(k)
n tnk. Set u = tk

and Φ(u) =
∑
C

(k)
n un, then

Φ(u) = 1 + uΦ(u)θ(Φ(u)) . . . θk(Φ(u))z1 .

Specialization zi 7→ 1, i ≥ 0 leads to the classical
equation for generating functions for k-Fuss-Catalan

numbers, i.e. the specialization of C
(k)
n is the nth

k-Fuss-Catalan number



Another model for Fuss-Catalan numbers

Let xi, i ≥ 0 be free variables. We define homomor-
phism θ on Laurent polynomials in xi’s by setting
θ(xi) = xi+1.

Let

P =


x1x

−1
0 1 0 0 . . .

x2x
−1
0 x2x

−1
1 1 0 . . .

x3x
−1
0 x3x

−1
1 x3x

−1
2 1 . . .

. . . . . .


Consider matrix

E =


0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .

. . . . . .


We call Cn(EsP )x0, s ≥ 0 the (s+ 2)-th noncom-
mutative Fuss-Catalan number FCn(s + 2).

Note that Cn = FCn(2) are noncommutative Cata-
lan numbers introduced by A.B. and V.R. earlier.

Proposition. Set φ :=
∑

n≥0Cn(EsP )tn. Let

ym = xmx
−1
m−1, m ≥ 1. Then

φ = 1 + t(θs+1φ) · ys+1 · (θsφ) · ys · · · (θφ) · y1 · φ



Combinatorial interpretation of noncommu-
tative Fuss-Catalan numbers

Fuss-Catalan number 1
kn+1

(
kn+1
n

)
is the number of

paths π on Z × Z from (0, 0) to (n, (k − 1)n) con-
sisting of moves → and ↑ below y = (k − 1)x

(Dyck or Catalan paths)

To each corner p = (p1, p2) of such path π set
c(p) = ((k − 1)p1 − p2), c(p) ≥ 0.

We call p a southeast corner of π if π goes right and
up and a northwest corner otherwise.

To each path π we assign an element Mπ by

Mπ =
∏

x
w(p)
c(p) ,

the product is over all corners p ∈ P in the natu-
ral order and w(p) = 1 for southwest corners and
w(p) = −1 for northwest corners.

Theorem. FCk =
∑
Mπ

over all Dyck paths π from (0, 0) to (n, (k − 1)n).

For k = 2 it describes noncommutative Catalan
numbers introduced by A.B. and V.R.



Hankel matrices∣∣∣∣∣∣∣∣
Ci Ci+1 . . . Ci+n
Ci+1 Ci+2 . . . Ci+n+1

. . . . . .
Ci+n Ci+1+1 . . . Ci+2n

∣∣∣∣∣∣∣∣ = xi+2n, i = 0, 1

Narayana numbers

Denote by Pn(k) the set of Dyck paths from (0, 0) to
(n, n) with k evenly indexed horizontal moves. It is
known that Narayana number N(n, k) = 1

n

(
n
k

)(
n
k−1
)

is equal to |Pn(k)|

Denote byN (n, k) the sum of monomials correspond-
ing to paths from Pn(k) and call it the Noncommu-
tative Narayana (n, k)-number.

P ′ =


x1x

−1
0 1 0 0 . . .

x2x
−1
0 t x2x

−1
1 t t 0 . . .

x3x
−1
0 x3x

−1
1 t x3x

−1
2 1 . . .

x4x
−1
0 t x4x

−1
1 t x4x

−1
2 t x4x

−1
3 t . . .

... . . . . . . . . . . . .


Then Cn(P ′)x0 =

∑n
k=1N (n, k)tk.



Orthogonal polynomials

Let C0, C1, . . . elements of a ring R with an anti-
involution a 7→ a and C i = Ci for i ≥ 0. Define
orthogonal polynomials Pn(t) ∈ R[t] as

Pn(t) =

∣∣∣∣∣∣∣∣
C0 C1 . . . Cn−1 1
C1 C2 . . . Cn t

. . .

Cn Cn+1 . . . C2n−1 tn

∣∣∣∣∣∣∣∣ .
In this definition elements Ci play a role of abstract
(noncommutative) moments. Polynomials Pn(t) are
orthogonal w. r. t. 〈ati, btj〉 = aCi+jb.

For noncommutative Catalan numbers Ci’s

Pn+1(t) = (t−x2n+1x
−1
2n−x2nx−12n−1)Pn(t)−x2nx−12n−2Pn−1(t) .

One can compute Pn(t) as

Pn(t) =

n∑
k=0

(−1)n−kB(n + k, n− k)tk

where B(n+k, n−k) are noncommutative binomial
coefficients introduced by A.B. and V.R.


