Noncommutative generalized Catalan numbers and their generating functions

M. Aigner (1999) introduced generalized Catalan numbers:

$$
A=\left(\begin{array}{cccccc}
s_{0} & 1 & 0 & 0 & 0 & \ldots \\
1 & s_{1} & 1 & 0 & 0 & \ldots \\
0 & 1 & s_{2} & 1 & 0 & \ldots \\
& & \ldots & \ldots & &
\end{array}\right)
$$

$C_{n}(A):=\left(A^{n}\right)_{00}, n \geq 0$.
When $s_{0}=1, s_{i}=2$ for $i \geq 1$ we get Catalan numbers

When $s_{i}=1$ for $i \geq 0$ we get Motzkin numbers
When $s_{i}=0$ for $i \geq 0$ we get $\binom{2 n}{n}, n \geq 0$

Aigner also showed that

$$
\left|\begin{array}{cccc}
C_{0}(A) & C_{1}(A) & \ldots & C_{n}(A) \\
C_{1}(A) & C_{2}(A) & \ldots & C_{n+1}(A) \\
\ldots & & & \ldots \\
C_{n}(A) & C_{n+1}(A) & \ldots & C_{2 n}(A)
\end{array}\right|=1
$$

and computed determinants for Hankel matrices started with $C_{1}(A)$.

Generalizations:

1) Different types of matrices
2) Matrices over noncommutative rings

Example 1:

$$
A=\left(\begin{array}{ccccccccc}
1 & 1 & 1 & \ldots & 1 & 0 & 0 & 0 & \ldots \\
1 & 1 & 1 & \ldots & 1 & 1 & 0 & 0 & \ldots \\
1 & 1 & 1 & \ldots & 1 & 1 & 1 & 0 & \ldots \\
& & \ldots & \ldots & & & & &
\end{array}\right)
$$

(k ones in the upper row, $k \geq 2$)
In this case

$$
C_{n}(A)=\frac{1}{k n+1}\binom{k n+1}{n}
$$

- k th Fuss-Catalan numbers

Example 2:

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
\ldots & & & & & \ldots \\
0 & \ldots & 0 & \ldots & 1 & \ldots \\
1 & \ldots & 0 & \ldots & \ldots & \ldots \\
0 & 1 & 0 & \ldots & \ldots & \ldots \\
& \ldots & & & \ldots & \ldots
\end{array}\right)
$$

(k zeros before 1 in the left column, $k \geq 2$)

In this case $C_{k m}(A)$'s are k th Fuss-Catalan numbers and $C_{n}(A)=0$ if $n \neq k m$

Our general approach is based on finding equations for generating functions

$$
\phi(t)=\sum_{n \geq 0} C_{n}(A) t^{n}
$$

where $C_{n}(A)=\left(A^{n}\right)_{00}$ using technique of quasideterminants

Let A be a square matrix over an associative ring. Notations: $A^{i j}$ is the submatrix of A with i th row and j th column removed; r_{i} be the i th row without $a_{i j}$ and c_{j} be the j th column without $a_{i j}$.
Then

$$
|A|_{i j}=a_{i j}-r_{i}\left(A^{i j}\right)^{-1} c_{j}
$$

Examples for $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$
$|A|_{11}=a_{11}-a_{12} a_{22}^{-1} a_{21}, \quad|A|_{12}=a_{12}-a_{11} a_{21}^{-1} a_{22}$,
$|A|_{21}=a_{21}-a_{22} a_{12}^{-1} a_{11}, \quad|A|_{22}=a_{22}-a_{21} a_{11}^{-1} a_{12}$
If $A^{-1}=\left(b_{i j}\right)$ then $b_{p q}=|A|_{q p}^{-1}$.

In the commutative case

$$
|A|_{i j}=(-1)^{i+j} \frac{\operatorname{det} A}{\operatorname{det} A^{i j}}
$$

It is also convenient to box the entries $a_{i j}$ for $|A|_{i j}$, i.e.

$$
\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|_{22}
$$

Definition. Let $A=\left(a_{i j}\right), i, j \geq 0$ over a ring. We call $C_{n}(A):=\left(A^{n}\right)_{00}$ the nth Catalan number defined by matrix A.

First applications of quasideterminants

Let

$$
A=\left(\begin{array}{cccccc}
a_{00} & a_{01} & 0 & 0 & 0 & \ldots \\
a_{10} & a_{11} & a_{12} & 0 & 0 & \ldots \\
0 & a_{21} & a_{22} & a_{21} & 0 & \ldots \\
& & \ldots & \ldots &
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \left|\begin{array}{cccc}
C_{0}(A) & C_{1}(A) & \ldots & C_{n}(A) \\
C_{1}(A) & C_{2}(A) & \ldots & C_{n+1}(A) \\
\ldots & & & \ldots \\
C_{n}(A) & C_{n+1}(A) & \ldots & C_{2 n}(A)
\end{array}\right|= \\
& =a_{01} a_{12} \ldots a_{n-1, n} \cdot a_{n, n-1} \ldots a_{21} a_{10}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{cccc}
C_{1}(A) & C_{1}(A) & \ldots & C_{n+1}(A) \\
C_{2}(A) & C_{3}(A) & \ldots & C_{n+2}(A) \\
\ldots & & & \ldots \\
C_{n+1}(A) & C_{n+2}(A) & \ldots & C_{2 n+1}(A)
\end{array}\right|= \\
& =a_{01} a_{12} \ldots a_{n-1, n} \cdot|A|_{n n} \cdot a_{n, n-1} \ldots a_{21} a_{10}
\end{aligned}
$$

Second application of quasideterminants

Let $A=\left(a_{i j}\right), i, j \geq 0$. Set $A(k)=\left(a_{i j}\right), i, j \geq k$.
Set $b_{k}=|A(k)|_{k k}^{-1}$.
Recall that A is a lower Hessenberg matrix if $a_{i j}=0$ for $j-i>1$

Theorem. Let A be a lower Hessenberg matrix such that all $|A(k)|_{k k}$ and $a_{k, k+1}$ are invertible. Then

$$
1=\sum_{k \geq 0}(-1)^{k} b_{0} \cdot a_{01} \cdot b_{1} \cdot a_{12} \cdots a_{k-1, k} \cdot b_{k} \cdot a_{k 0}
$$

Let $P=\left(p_{i j}\right), i, j \geq 0$ be a Hessenberg matrix. Define generating functions for generalized Catalan numbers defined by $P(k), k \geq 0$ by

$$
\phi_{k}(t)=\sum_{n \geq 0}\left(P(k)^{n}\right)_{k k} t^{n}
$$

In particular, $\phi_{0}(t)$ is the generating function for Catalan numbers defined by matrix P.

Corollary

$\phi_{0}(t)=1+\sum_{k \geq 0} t^{k+1} \phi_{0}(t) \cdot p_{01} \cdot \phi_{1}(t) \cdot p_{12} \cdots p_{k-1, k} \cdot \phi_{k}(t) \cdot p_{k 0}$

Various Special Cases:

Assume that P is a uni-Hessenberg matrix and there exists a homomorphism θ such that $\theta\left(p_{i j}\right)=p_{i+1, j+1}$ for all i, j. Set $\phi(t)=\phi_{0}(t)$. Then

$$
\phi(t)=1+\sum_{k \geq 0} t^{k+1} \phi(t) \cdot \theta(\phi(t)) \cdots \theta^{k}(\phi(t)) \cdot p_{k 0}
$$

For Hessenberg matrix P with constant diagonals we get

$$
\left.\phi(t)=1+\sum_{k \geq 0} t^{k+1} \phi(t) \cdot p_{01} \cdot \phi(t) \cdot p_{01} \cdot \phi(t) \cdot p_{01} \ldots \phi(t)\right) \cdot p_{k 0}
$$

So, to solve the above equation we construct semiinfinite Hessenberg matrix P with constant diagonals and set

$$
\phi(t)=\sum_{n \geq 0}\left(P^{n}\right)_{00} t^{n}
$$

If, additionally, P is a three-diagonal matrix then

$$
\phi(t)=1+t \phi(t) p_{00}+t^{2} \phi(t) p_{01} \phi(t) p_{10}
$$

If $p_{01}=p_{00}=p_{10}=1$ the last equation is the well-known characteristic equation for the generating function for Motzkin numbers.

Let P be a two-diagonal uni-Hessenberg matrix with $p_{k-1,0}=z_{1}$

$$
P=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & \ldots \\
& & \ldots & & \\
z_{1} & 0 & 0 & \ldots & \\
0 & z_{2} & 0 & 0 & \ldots \\
& & \ldots & &
\end{array}\right)
$$

Let $\theta\left(z_{i}\right)=z_{i+1}$ then

$$
\phi(t)=1+\phi(t) \theta(\phi(t)) \ldots \theta^{k}(\phi(t)) z_{1} t^{k}
$$

One can see that $\phi(t)=\sum_{n \geq 0} C_{n}^{(k)} t^{n k}$. Set $u=t^{k}$ and $\Phi(u)=\sum C_{n}^{(k)} u^{n}$, then

$$
\Phi(u)=1+u \Phi(u) \theta(\Phi(u)) \ldots \theta^{k}(\Phi(u)) z_{1}
$$

Specialization $z_{i} \mapsto 1, i \geq 0$ leads to the classical equation for generating functions for k-Fuss-Catalan numbers, i.e. the specialization of $C_{n}^{(k)}$ is the nth k-Fuss-Catalan number

Another model for Fuss-Catalan numbers

Let $x_{i}, i \geq 0$ be free variables. We define homomorphism θ on Laurent polynomials in x_{i} 's by setting $\theta\left(x_{i}\right)=x_{i+1}$.

Let

$$
P=\left(\begin{array}{ccccc}
x_{1} x_{0}^{-1} & 1 & 0 & 0 & \ldots \\
x_{2} x_{0}^{-1} & x_{2} x_{1}^{-1} & 1 & 0 & \ldots \\
x_{3} x_{0}^{-1} & x_{3} x_{1}^{-1} & x_{3} x_{2}^{-1} & 1 & \ldots \\
& & \ldots & \ldots &
\end{array}\right)
$$

Consider matrix

$$
E=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
& & \ldots & \cdots & &
\end{array}\right)
$$

We call $C_{n}\left(E^{s} P\right) x_{0}, s \geq 0$ the $(s+2)$-th noncommutative Fuss-Catalan number $\mathcal{F} \mathcal{C}_{n}(s+2)$.
Note that $\mathcal{C}_{n}=\mathcal{F} \mathcal{C}_{n}(2)$ are noncommutative Catalan numbers introduced by A.B. and V.R. earlier.

Proposition. Set $\phi:=\sum_{n \geq 0} C_{n}\left(E^{s} P\right) t^{n}$. Let $y_{m}=x_{m} x_{m-1}^{-1}, m \geq 1$. Then

$$
\phi=1+t\left(\theta^{s+1} \phi\right) \cdot y_{s+1} \cdot\left(\theta^{s} \phi\right) \cdot y_{s} \cdots(\theta \phi) \cdot y_{1} \cdot \phi
$$

Combinatorial interpretation of noncommutative Fuss-Catalan numbers

Fuss-Catalan number $\frac{1}{k n+1}\binom{k n+1}{n}$ is the number of paths π on $\mathbf{Z} \times \mathbf{Z}$ from $(0,0)$ to $(n,(k-1) n)$ consisting of moves \rightarrow and \uparrow below $y=(k-1) x$ (Dyck or Catalan paths)

To each corner $p=\left(p_{1}, p_{2}\right)$ of such path π set $c(p)=\left((k-1) p_{1}-p_{2}\right), c(p) \geq 0$.
We call p a southeast corner of π if π goes right and up and a northwest corner otherwise.

To each path π we assign an element M_{π} by

$$
M_{\pi}=\prod x_{c(p)}^{w(p)}
$$

the product is over all corners $p \in P$ in the natural order and $w(p)=1$ for southwest corners and $w(p)=-1$ for northwest corners.

Theorem. $\mathcal{F C}_{k}=\sum M_{\pi}$
over all Dyck paths π from $(0,0)$ to $(n,(k-1) n)$.
For $k=2$ it describes noncommutative Catalan numbers introduced by A.B. and V.R.

Hankel matrices

$$
\left|\begin{array}{cccc}
\mathcal{C}_{i} & \mathcal{C}_{i+1} & \ldots & \mathcal{C}_{i+n} \\
\mathcal{C}_{i+1} & \mathcal{C}_{i+2} & \ldots & \mathcal{C}_{i+n+1} \\
\ldots & & & \ldots \\
\mathcal{C}_{i+n} & \mathcal{C}_{i+1+1} & \ldots & \mathcal{C}_{i+2 n}
\end{array}\right|=x_{i+2 n}, \quad i=0,1
$$

Narayana numbers

Denote by $\mathcal{P}_{n}(k)$ the set of Dyck paths from $(0,0)$ to (n, n) with k evenly indexed horizontal moves. It is known that Narayana number $N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1}$ is equal to $\left|\mathcal{P}_{n}(k)\right|$

Denote by $\mathcal{N}(n, k)$ the sum of monomials corresponding to paths from $\mathcal{P}_{n}(k)$ and call it the Noncommutative Narayana (n, k)-number.

$$
P^{\prime}=\left(\begin{array}{ccccc}
x_{1} x_{0}^{-1} & 1 & 0 & 0 & \cdots \\
x_{2} x_{0}^{-1} t & x_{2} x_{1}^{-1} t & t & 0 & \ddots \\
x_{3} x_{0}^{-1} & x_{3} x_{1}^{-1} t & x_{3} x_{2}^{-1} & 1 & \ddots \\
x_{4} x_{0}^{-1} t & x_{4} x_{1}^{-1} t & x_{4} x_{2}^{-1} t & x_{4} x_{3}^{-1} t & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Then $C_{n}\left(P^{\prime}\right) x_{0}=\sum_{k=1}^{n} \mathcal{N}(n, k) t^{k}$.

Orthogonal polynomials

Let C_{0}, C_{1}, \ldots elements of a ring R with an antiinvolution $a \mapsto \bar{a}$ and $\bar{C}_{i}=C_{i}$ for $i \geq 0$. Define orthogonal polynomials $P_{n}(t) \in R[t]$ as

$$
P_{n}(t)=\left|\begin{array}{ccccc}
C_{0} & C_{1} & \ldots & C_{n-1} & 1 \\
C_{1} & C_{2} & \ldots & C_{n} & t \\
& & \ldots & & \\
C_{n} & C_{n+1} & \ldots & C_{2 n-1} & t^{n}
\end{array}\right| .
$$

In this definition elements C_{i} play a role of abstract (noncommutative) moments. Polynomials $P_{n}(t)$ are orthogonal w. r. t. $\left\langle a t^{i}, b t^{j}\right\rangle=a C_{i+j} \bar{b}$.

For noncommutative Catalan numbers \mathcal{C}_{i} 's

$$
P_{n+1}(t)=\left(t-x_{2 n+1} x_{2 n}^{-1}-x_{2 n} x_{2 n-1}^{-1}\right) P_{n}(t)-x_{2 n} x_{2 n-2}^{-1} P_{n-1}(t) .
$$

One can compute $P_{n}(t)$ as

$$
P_{n}(t)=\sum_{k=0}^{n}(-1)^{n-k} B(n+k, n-k) t^{k}
$$

where $B(n+k, n-k)$ are noncommutative binomial coefficients introduced by A.B. and V.R.

