Title: Sharing Pizza in \(n \) Dimensions

Speaker: Richard Ehrenborg, University of Kentucky

Date: Thursday, March 31st, 2022

Time: 5:00pm–5:48pm

Place: zoom

Short abstract: We introduce and prove the \(n \)-dimensional Pizza Theorem. This is joint work with Sophie Morel and Margaret Readdy.

Long abstract: We introduce and prove the \(n \)-dimensional Pizza Theorem. Let \(\mathcal{H} \) be a real \(n \)-dimensional hyperplane arrangement. If \(K \) is a convex set of finite volume, the pizza quantity of \(K \) is the alternating sum of the volumes of the regions obtained by intersecting \(K \) with the arrangement \(\mathcal{H} \). We prove that if \(\mathcal{H} \) is a Coxeter arrangement different from \(A_n \) such that the group of isometries \(W \) generated by the reflections in the hyperplanes of \(\mathcal{H} \) contains the negative of the identity map, and if \(K \) is a translate of a convex set that is stable under \(W \) and contains the origin, then the pizza quantity of \(K \) is equal to zero. Our main tool is an induction formula for the pizza quantity involving a subarrangement of the restricted arrangement on hyperplanes of \(\mathcal{H} \) that we call the even restricted arrangement. We get stronger results in the case of balls. We prove that the pizza quantity of a ball containing the origin vanishes for a Coxeter arrangement \(\mathcal{H} \) with \(|\mathcal{H}| - n \) an even positive integer. This is joint work with Sophie Morel and Margaret Readdy.

https://sites.math.rutgers.edu/~zeilberg/expmath/