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1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 4, 5, 6, 8, 9, 11, 21, 32, 33, 43, 44, 74

A326344:
Begin with 1. Thereafter, if n is prime, a(n) is the next prime after
a(n-1), but written backwards. If n is not prime, a(n) is the next
composite after a(n-1), written backwards.

By accident, a(9) = 9, so

a(10) = backwards(nextcomposite(9)) = 1.
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A proof came within 24 hours.

Conjectures in the OEIS get in front of a lot of people!
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K&K

Kauers and Koutschan recently had a great sequence of thoughts.

• There are lots of interesting conjectures in the OEIS.

• There is more OEIS data than anyone can process alone.

• A program could search for promising conjectures.
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Guessing recurrences

Are there recurrences that no one has noticed yet?

Specifically, recurrences of the form

pd (n)a(n + d) + pd−1(n)a(n + d − 1) + · · ·+ p0(n)a(n) = 0

for some polynomials pi(n).

D-finite
In this case, a(n) is called D-finite.
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How guessing works

The normal way to guess a recurrence of the form

(c11n + c10)a(n + 1) + (c01n + c00)a(n) = 0

is to plug in n = 0,1,2,3 and set up a system of equations:


0 1 0 1
1 1 2 2
2 4 5 10
5 15 14 42




c11

c10

c01

c00

 =


0
0
0
0


Then you hope that you have a solution.

(I made these numbers up.)
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K&K have a neat way to guess that uses lattice reduction techniques.

They tried their guessing procedure on the entire OEIS.

This produced:

• A lot of junk.

• Some known or easy recurrences.

• About 20 interesting recurrences that no one knew.
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Highlight

Let a(n) be the number of permutations of n copies of {1,2,3,4,5}
such that two neighboring entries differ by at most 1.

For n = 2, we have examples like

(2,1,1,2,3,3,4,5,4,5)

Theorem (Kauers and Koutschan)
a(n) satisfies the recurrence given on the following slide.
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Theorem (Kauers and Koutschan)

3n3(1 + n)(1 + 3n)(2 + 3n)(3281160 + 13324928n + · · · + 13113n8)a(n)

− (1 + n)2(14722560 + 163505952n + · · · + 878571n12)a(n + 1)

+ 2(2 + n)2(20370096 + 207973548n + · · · + 668763n12)a(n + 2)

− (2 + n)2(3 + n)4(10512 + 90060n + · · · + 13113n8)a(n + 3) = 0.

Obviously the proof is not “by hand.”
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Leftovers

K&K left some open conjectures.

• Restricted permutations

• Graph enumeration

• Permanents

• Weird matrix things
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Leftovers

K&K left some open conjectures.

• Restricted permutations

• Graph enumeration

• Permanents

• Weird matrix things (We are here!)
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Hardinian arrays

Definition (R.H. Hardin)
Let H1(n, k) be the number of n × k matrices which obey the
following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values
by 0 or 1.

• Every value must be within 1 of its king-distance from the top-left
corner.

• The bottom-right entry equals its king-distance minus 1.
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Example for H1(6,5)



0 1 2 2 3
1 1 2 2 3
2 2 2 3 3
3 3 3 3 4
4 4 4 4 4
4 4 4 4 4
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Results

Hardin conjectured

H1(n,n) =
1
3
(4n−1 − 1),

and also that H1(n, k) is a linear polynomial in n for n ≥ k .

Theorem (RDB, Kauers)
For n ≥ k ≥ 1,

H1(n, k) = 4k−1(n − k) +
1
3
(4k−1 − 1).
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The diagonal case



0 1 1 2 3 4 5
1 1 2 2 3 4 5
2 2 2 2 3 4 5
2 2 3 3 3 4 5
3 3 3 3 3 4 5
4 4 4 4 4 4 5
5 5 5 5 5 5 5



Every valid array can be partitioned into “regions” for each value.

H1(n,n) is the number of tuples of nonintersecting paths from the first
column to the first row.
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Path counting

There is a well-known theorem to turn problems about
nonintersecting paths into problems about determinants.

Theorem (Gessel–Viennot)
Fix n distinct start points xk and n distinct end points yk .

Let A be the n × n matrix where Aij is the number of lattice paths
from xi to yj .

The determinant of A gives the number of tuples of n
non-intersecting paths which take xi to yi .

Plan of attack: Find A and compute its determinant.
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The matrices



0 1 1 2 3 4 5
1 1 2 2 3 4 5
2 2 2 2 3 4 5
2 2 3 3 3 4 5
3 3 3 3 3 4 5
4 4 4 4 4 4 5
5 5 5 5 5 5 5



There are actually several matrices, because start and stop points
are not fixed.

The first row and column each have exactly one “unused” position, so
there is a matrix for each pair of position choices.
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H1(n,n) =
∑
i,j

det Aj
i

It turns out that our matrices are all related to

A =

((
i + j

i

))
0≤i,j<n

Specifically, Aj
i is A with the i-th row and j-th column deleted.

17



H1(n,n) =
∑
i,j

det Aj
i

It turns out that our matrices are all related to

A =

((
i + j

i

))
0≤i,j<n

Specifically, Aj
i is A with the i-th row and j-th column deleted.

17



H1(n,n) =
∑
i,j

det Aj
i

It turns out that our matrices are all related to

A =

((
i + j

i

))
0≤i,j<n

Specifically, Aj
i is A with the i-th row and j-th column deleted.

17



We have many different ways to evaluate∑
i,j

det Aj
i

• Elementary row operations with Laplace expansion

• Dodgson’s condensation identity

• Computer algebra
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Infinite families

Hardin submitted a family of sequences Hr (n, k).

Definition (R.H. Hardin)
Let Hr (n, k) be the number of n × k matrices which obey the
following rules:

• The top-left entry entry is 0.

• Every king-step right, down, or south-east must increase values
by 0 or 1.

• Every value must be within r of its king-distance from the top-left
corner.

• The bottom-right entry equals its king-distance minus r .

Theorem (RDB, Kauers)
Hr (n,n) is D-finite for all r ≥ 1.
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Conjectures

For sufficiently large n:

H2(n,1) =
1
2

n2 −
3
2

n + 1

H2(n,2) = 4n2 − 20n + 25

H2(n,3) = 40n2 − 279n + 497

H2(n,3) = 480n2 − 4354n + 10098

H2(n,4) = 6400n2 − 71990n + 206573

H2(n,5) = 90112n2 − 1212288n + 4150790

H2(n,6) = 1306624n2 − 20460244n + 81385043

Similar conjectures for all Hr (n, k).
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Conclusion

• There are lots of conjectures waiting to be discovered in the
OEIS.

• Computer algebra can help discover and prove them.

• Linz has really great public transit.
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