Hardinian arrays

Robert Dougherty-Bliss (with Manuel Kauers)
October 26, 2023
$1,2,3,4,5,6,7,8,9,1,2,4,5,6,8,9,11,21,32,33,43,44,74$
$1,2,3,4,5,6,7,8,9,1,2,4,5,6,8,9,11,21,32,33,43,44,74$
A326344:
Begin with 1. Thereafter, if n is prime, $a(n)$ is the next prime after $a(n-1)$, but written backwards. If n is not prime, $a(n)$ is the next composite after a(n-1), written backwards.
$1,2,3,4,5,6,7,8,9,1,2,4,5,6,8,9,11,21,32,33,43,44,74$
A326344:
Begin with 1. Thereafter, if n is prime, $a(n)$ is the next prime after $a(n-1)$, but written backwards. If n is not prime, $a(n)$ is the next composite after a(n-1), written backwards.

By accident, $a(9)=9$, so

$$
a(10)=\text { backwards(nextcomposite }(9))=1 .
$$

Wed Sep $11 \quad$ 12:11 Michel Marcus: apparently $10^{\wedge} 8$ terms without getting 4-digits : but let's wait for some confirmation and longer runs
13:34 Michel Marcus: apparently a(n) does not go beyond 909
17:11 Max Tohline: Yeah, 909's definitely the limit in my dataset (first hits at $\mathrm{n}=21752$, then 8 more times in the next 100000 terms). But if there were the exact-right series of prime gaps, could it exceed that? I don't know how to prove it can't get higher than 909.

Discussion

Wed Sep 11
12:11 Michel Marcus: apparently $10^{\wedge} 8$ terms without getting 4-digits : but let's wait for some confirmation and longer runs
13:34 Michel Marcus: apparently a(n) does not go beyond 909
17:11 Max Tohline: Yeah, 909's definitely the limit in my dataset (first hits at $\mathrm{n}=21752$, then 8 more times in the next 100000 terms). But if there were the exact-right series of prime gaps, could it exceed that? I don't know how to prove it can't get higher than 909 .

A proof came within 24 hours.

Conjectures in the OEIS get in front of a lot of people!

K\&K

Kauers and Koutschan recently had a great sequence of thoughts.

- There are lots of interesting conjectures in the OEIS.
- There is more OEIS data than anyone can process alone.
- A program could search for promising conjectures.

Guessing recurrences

Are there recurrences that no one has noticed yet?

Guessing recurrences

Are there recurrences that no one has noticed yet?
Specifically, recurrences of the form

$$
p_{d}(n) a(n+d)+p_{d-1}(n) a(n+d-1)+\cdots+p_{0}(n) a(n)=0
$$

for some polynomials $p_{i}(n)$.

D-finite

In this case, $a(n)$ is called D-finite.

How guessing works

The normal way to guess a recurrence of the form

$$
\left(c_{11} n+c_{10}\right) a(n+1)+\left(c_{01} n+c_{00}\right) a(n)=0
$$

is to plug in $n=0,1,2,3$ and set up a system of equations:

How guessing works

The normal way to guess a recurrence of the form

$$
\left(c_{11} n+c_{10}\right) a(n+1)+\left(c_{01} n+c_{00}\right) a(n)=0
$$

is to plug in $n=0,1,2,3$ and set up a system of equations:

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 1 & 2 & 2 \\
2 & 4 & 5 & 10 \\
5 & 15 & 14 & 42
\end{array}\right]\left[\begin{array}{l}
c_{11} \\
c_{10} \\
c_{01} \\
c_{00}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Then you hope that you have a solution.
(I made these numbers up.)

K\&K have a neat way to guess that uses lattice reduction techniques. They tried their guessing procedure on the entire OEIS.

This produced:

K\&K have a neat way to guess that uses lattice reduction techniques.
They tried their guessing procedure on the entire OEIS.
This produced:

- A lot of junk.

K\&K have a neat way to guess that uses lattice reduction techniques.
They tried their guessing procedure on the entire OEIS.
This produced:

- A lot of junk.
- Some known or easy recurrences.

K\&K have a neat way to guess that uses lattice reduction techniques.
They tried their guessing procedure on the entire OEIS.
This produced:

- A lot of junk.
- Some known or easy recurrences.
- About 20 interesting recurrences that no one knew.

Highlight

Let $a(n)$ be the number of permutations of n copies of $\{1,2,3,4,5\}$ such that two neighboring entries differ by at most 1 .

Highlight

Let $a(n)$ be the number of permutations of n copies of $\{1,2,3,4,5\}$ such that two neighboring entries differ by at most 1 .

For $n=2$, we have examples like

$$
(2,1,1,2,3,3,4,5,4,5)
$$

Highlight

Let $a(n)$ be the number of permutations of n copies of $\{1,2,3,4,5\}$ such that two neighboring entries differ by at most 1 .

For $n=2$, we have examples like

$$
(2,1,1,2,3,3,4,5,4,5)
$$

Theorem (Kauers and Koutschan)

$a(n)$ satisfies the recurrence given on the following slide.

Theorem (Kauers and Koutschan)

$$
\begin{aligned}
& 3 n^{3}(1+n)(1+3 n)(2+3 n)\left(3281160+13324928 n+\cdots+13113 n^{8}\right) a(n) \\
& -(1+n)^{2}\left(14722560+163505952 n+\cdots+878571 n^{12}\right) a(n+1) \\
& +2(2+n)^{2}\left(20370096+207973548 n+\cdots+668763 n^{12}\right) a(n+2) \\
& -(2+n)^{2}(3+n)^{4}\left(10512+90060 n+\cdots+13113 n^{8}\right) a(n+3)=0 .
\end{aligned}
$$

Theorem (Kauers and Koutschan)

$$
\begin{aligned}
& 3 n^{3}(1+n)(1+3 n)(2+3 n)\left(3281160+13324928 n+\cdots+13113 n^{8}\right) a(n) \\
& -(1+n)^{2}\left(14722560+163505952 n+\cdots+878571 n^{12}\right) a(n+1) \\
& +2(2+n)^{2}\left(20370096+207973548 n+\cdots+668763 n^{12}\right) a(n+2) \\
& -(2+n)^{2}(3+n)^{4}\left(10512+90060 n+\cdots+13113 n^{8}\right) a(n+3)=0 .
\end{aligned}
$$

Obviously the proof is not "by hand."

Leftovers

K\&K left some open conjectures.

- Restricted permutations
- Graph enumeration
- Permanents
- Weird matrix things

Leftovers

K\&K left some open conjectures.

- Restricted permutations
- Graph enumeration
- Permanents
- Weird matrix things (We are here!)

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .
- Every value must be within 1 of its king-distance from the top-left corner.

Hardinian arrays

Definition (R.H. Hardin)

Let $H_{1}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .
- Every value must be within 1 of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus 1.

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Example for $H_{1}(6,5)$

$$
\left[\begin{array}{lllll}
0 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 \\
2 & 2 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 & 4 \\
4 & 4 & 4 & 4 & 4 \\
4 & 4 & 4 & 4 & 4
\end{array}\right]
$$

Results

Hardin conjectured

$$
H_{1}(n, n)=\frac{1}{3}\left(4^{n-1}-1\right),
$$

and also that $H_{1}(n, k)$ is a linear polynomial in n for $n \geq k$.

Results

Hardin conjectured

$$
H_{1}(n, n)=\frac{1}{3}\left(4^{n-1}-1\right),
$$

and also that $H_{1}(n, k)$ is a linear polynomial in n for $n \geq k$.

Theorem (RDB, Kauers)

For $n \geq k \geq 1$,

$$
H_{1}(n, k)=4^{k-1}(n-k)+\frac{1}{3}\left(4^{k-1}-1\right)
$$

$$
\left[\begin{array}{lllllll}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
3 & 3 & 3 & 3 & 3 & 4 & 5 \\
4 & 4 & 4 & 4 & 4 & 4 & 5 \\
5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

The diagonal case

$$
\left[\begin{array}{ccccc|c|c|c}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 2 & 3 & 4 & 5 \\
\hline 2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
\hline 3 & 3 & 3 & 3 & 3 & 4 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

Every valid array can be partitioned into "regions" for each value.

The diagonal case

$$
\left[\begin{array}{ccccc|c|c|c}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 2 & 3 & 4 & 5 \\
\hline 2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
\hline 3 & 3 & 3 & 3 & 3 & 4 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

Every valid array can be partitioned into "regions" for each value. $H_{1}(n, n)$ is the number of tuples of nonintersecting paths from the first column to the first row.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Theorem (Gessel-Viennot)

Fix n distinct start points x_{k} and n distinct end points y_{k}.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Theorem (Gessel-Viennot)

Fix n distinct start points x_{k} and n distinct end points y_{k}.
Let A be the $n \times n$ matrix where $A_{i j}$ is the number of lattice paths from x_{i} to y_{j}.

Path counting

There is a well-known theorem to turn problems about nonintersecting paths into problems about determinants.

Theorem (Gessel-Viennot)

Fix n distinct start points x_{k} and n distinct end points y_{k}.
Let A be the $n \times n$ matrix where $A_{i j}$ is the number of lattice paths from x_{i} to y_{j}.
The determinant of A gives the number of tuples of n non-intersecting paths which take x_{i} to y_{i}.

Plan of attack: Find A and compute its determinant.

The matrices

$$
\left[\begin{array}{cccc|c|c|c}
0 & 1 & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 2 & 2 & 3 & 4 & 5 \\
\hline 2 & 2 & 2 & 2 & 3 & 4 & 5 \\
2 & 2 & 3 & 3 & 3 & 4 & 5 \\
\hline 3 & 3 & 3 & 3 & 3 & 4 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 & 4 & 5 \\
\hline 5 & 5 & 5 & 5 & 5 & 5 & 5
\end{array}\right]
$$

There are actually several matrices, because start and stop points are not fixed.

The first row and column each have exactly one "unused" position, so there is a matrix for each pair of position choices.

$$
H_{1}(n, n)=\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

$$
H_{1}(n, n)=\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

It turns out that our matrices are all related to

$$
A=\left(\binom{i+j}{i}\right)_{0 \leq i, j<n}
$$

$$
H_{1}(n, n)=\sum_{i, j} \operatorname{det} A_{i}^{\prime}
$$

It turns out that our matrices are all related to

$$
A=\left(\binom{i+j}{i}\right)_{0 \leq i, j<n}
$$

Specifically, A_{i}^{j} is A with the i-th row and j-th column deleted.

We have many different ways to evaluate

$$
\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

We have many different ways to evaluate

$$
\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

- Elementary row operations with Laplace expansion

We have many different ways to evaluate

$$
\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

- Elementary row operations with Laplace expansion
- Dodgson's condensation identity

We have many different ways to evaluate

$$
\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

- Elementary row operations with Laplace expansion
- Dodgson's condensation identity
- Computer algebra

We have many different ways to evaluate

$$
\sum_{i, j} \operatorname{det} A_{i}^{j}
$$

- Elementary row operations with Laplace expansion
- Dodgson's condensation identity
- Computer algebra

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .
- Every value must be within r of its king-distance from the top-left corner.

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .
- Every value must be within r of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus r.

Infinite families

Hardin submitted a family of sequences $H_{r}(n, k)$.

Definition (R.H. Hardin)

Let $H_{r}(n, k)$ be the number of $n \times k$ matrices which obey the following rules:

- The top-left entry entry is 0 .
- Every king-step right, down, or south-east must increase values by 0 or 1 .
- Every value must be within r of its king-distance from the top-left corner.
- The bottom-right entry equals its king-distance minus r.

Theorem (RDB, Kauers)

$H_{r}(n, n)$ is D-finite for all $r \geq 1$.

Conjectures

For sufficiently large n :

$$
\begin{aligned}
& H_{2}(n, 1)=\frac{1}{2} n^{2}-\frac{3}{2} n+1 \\
& H_{2}(n, 2)=4 n^{2}-20 n+25 \\
& H_{2}(n, 3)=40 n^{2}-279 n+497 \\
& H_{2}(n, 3)=480 n^{2}-4354 n+10098 \\
& H_{2}(n, 4)=6400 n^{2}-71990 n+206573 \\
& H_{2}(n, 5)=90112 n^{2}-1212288 n+4150790 \\
& H_{2}(n, 6)=1306624 n^{2}-20460244 n+81385043
\end{aligned}
$$

Similar conjectures for all $H_{r}(n, k)$.

Conclusion

- There are lots of conjectures waiting to be discovered in the OEIS.

Conclusion

- There are lots of conjectures waiting to be discovered in the OEIS.
- Computer algebra can help discover and prove them.

Conclusion

- There are lots of conjectures waiting to be discovered in the OEIS.
- Computer algebra can help discover and prove them.
- Linz has really great public transit.

