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What are these?

n! :

1,2,6,24,120,720,5040, . . .

2n − 1 :

1,3,7,15,31,63,127,255, . . .

b(n) :

1,1,2,5,15,52,203,877, . . .

A(n) :

0,1,1,3,9,31,121,523, . . .

The A(n) are called Gould numbers. Remember that!

2



What are these?

n! :

1,2,6,24,120,720,5040, . . .

2n − 1 :

1,3,7,15,31,63,127,255, . . .

b(n) :

1,1,2,5,15,52,203,877, . . .

A(n) :

0,1,1,3,9,31,121,523, . . .

The A(n) are called Gould numbers. Remember that!

2



What are these?

n! : 1,2,6,24,120,720,5040, . . .

2n − 1 :

1,3,7,15,31,63,127,255, . . .

b(n) :

1,1,2,5,15,52,203,877, . . .

A(n) :

0,1,1,3,9,31,121,523, . . .

The A(n) are called Gould numbers. Remember that!

2



What are these?

n! : 1,2,6,24,120,720,5040, . . .

2n − 1 : 1,3,7,15,31,63,127,255, . . .

b(n) :

1,1,2,5,15,52,203,877, . . .

A(n) :

0,1,1,3,9,31,121,523, . . .

The A(n) are called Gould numbers. Remember that!

2



What are these?

n! : 1,2,6,24,120,720,5040, . . .

2n − 1 : 1,3,7,15,31,63,127,255, . . .

b(n) : 1,1,2,5,15,52,203,877, . . .

A(n) :

0,1,1,3,9,31,121,523, . . .

The A(n) are called Gould numbers. Remember that!

2



What are these?

n! : 1,2,6,24,120,720,5040, . . .

2n − 1 : 1,3,7,15,31,63,127,255, . . .

b(n) : 1,1,2,5,15,52,203,877, . . .

A(n) : 0,1,1,3,9,31,121,523, . . .

The A(n) are called Gould numbers. Remember that!

2



Sums

n−1∑
k=0

2k =

2n − 1

n−1∑
k=0

Fk =

Fn+1 − 1

n−1∑
k=0

1
k !

=

???

Unfortunately, not every sum has a closed form answer.
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n∑
k=0

k − 1
k !

= −
1
n!

n∑
k=0

k2 − 2
k !

= −
n + 2

n!
n∑

k=0

k3 − 5
k !

= −
n2 + 3n + 5

n!
n∑

k=0

k4 − 15
k !

= −
n3 + 4n2 + 9n + 15

n!
n∑

k=0

k5 − 52
k !

= −
n4 + 5n3 + 14n2 + 31n + 52

n!

1, 2, 5, 15, 52, . . .
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A function f (n) is hypergeometric if f (n + 1)/f (n) is rational in n.

“Closed form” is usually short-hand for hypergeometric.

The question is to determine when
∑

k f (k) itself is hypergeometric.

Gosper’s miracle algorithm
Given a hypergeometric function f (k), produce an explicit
hypergeometric s(n) such that

s(n + 1) − s(n) = f (n)

or output a proof that no such s(n) exists.
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Reduction

Gosper’s algorithm relies on reductions.

Fact
If

s(n + 1) − s(n) = f (n)

and both f and s are hypergeometric, then

s(n) = y(n)f (n)

for some rational function y .

Just factor out an s(n):

s(n) =
1

s(n + 1)/s(n) − 1
f (n).
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Hypergeometric terms have two parts: pure and polynomial.

The “pure” part cancels in the quotient.

The “polynomial” part is everything else. (Very roughly.)

f (n) = (n − 3)︸ ︷︷ ︸
polynomial

· n!
2n︸︷︷︸

pure

f (n + 1)
f (n)

=
n − 2
n − 3

n + 1
2
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Decompose the quotient with this idea:

f (n + 1)
f (n)

=
a(n)
b(n)

c(n + 1)
c(n)

Gosper’s equation
A hypergeometric antidifference s(n) exists if and only if there is a
polynomial x(n) such that

x(n + 1)a(n) − x(n)b(n − 1) = c(n).

In that case,

s(n) =
b(n − 1)

c(n)
x(n).
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Example

When is f (n) = p(n)n! summable?

f (n + 1)
f (n)

=
n + 1

1
p(n + 1)

p(n)

a(n) = n + 1 b(n) = 1 c(n) = p(n)

When p(n) lies in the vector space

{x(n + 1)(n + 1) − x(n) | x(n) ∈ F [n]}.

First few basis terms:

{n, n2 + 1, n3 − 1, . . . }
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Every “pure” hypergeometric term has a vector space of “good
polynomial parts.”

n∑
k=0

k − 1
k !

= −
1
n!

n∑
k=0

k2 − 2
k !

= −
n + 2

n!
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k !

= −
n2 + 3n + 5
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k=0
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k !

= −
n3 + 4n2 + 9n + 15

n!
n∑

k=0

k5 − 52
k !

= −
n4 + 5n3 + 14n2 + 31n + 52

n!
.

These are a basis for the “good polynomial parts” for f (k) = 1
k! .
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How do you get this basis?

You get a basis by setting x(n) = −nk in Gosper’s equation:

pk (n) = nk+1 − (n + 1)k .

First few terms:

p0(n) = n − 1

p1(n) = n2 − n − 1

p2(n) = n3 − n2 − 2n − 1

Subtract the correct multiples to simplify:

p0(n) = n − 1

p1(n) + p0(n) = n2 − 2

p2(n) + p1(n) + 3p0(n) = n3 − 5
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n − 1
n2 − 2
n3 − 5

n4 − 15
n5 − 52

...


=



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
3 1 1 0 0 · · ·
9 4 1 1 0 · · ·
31 14 5 1 1 · · ·
...





n − 1
n2 − n − 1

n3 − n2 − 2n − 1
n4 − n3 − 3n2 − 3n − 1

n5 − n4 − 4n3 − 6n2 − 4n − 1
...



The constants on the left are the row sums:

1 = 1

2 = 1 + 1

5 = 3 + 1 + 1

15 = 9 + 4 + 1 + 1

52 = 31 + 14 + 5 + 1 + 1

These are bell numbers!
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1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
3 1 1 0 0 · · ·
9 4 1 1 0 · · ·

31 14 5 1 1 · · ·
...


This matrix was first studied by Gould and Quaintance (2007).

It’s defined by Bdd = 1 and

B(d+1)j =
∑

k

(
d
k

)
Bkj .

The row sums b(d) =
∑

j Bdj satisfy

b(d + 1) =
∑

k

(
d
k

)
b(k).

This explains the bell numbers.
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Gould numbers

The entries in the first column are the Gould numbers A(n).

∑
k≥0

A(n)
n!

xn = eex−1
∫ x

0
e1−et

dt .

A(n): number of partitions of {1,2, ...,n} where the last block is a
singleton. (Blocks are arranged in order of their least element.)

A(3) = 3:

{1}, {2}, {3}

{1,2}, {3}

{1,3}, {2}
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Amazingly, it turns out that

lim
n→∞ A(n)

b(n)
=

∫∞
0

e−t

t + 1
dt ≈ 0.6.

This integral is called the Gompertz constant.

Conjecture by Gould and Quaintance.

Proof by Asakly and friends (2014).
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The closed form

There are some combinatorial things here.

With the change of basis matrix, we can “evaluate” the sum:

∑
k

kd − b(d)
k !

= −

∑
j≥1 Bdjk j+1

k !
.

Implied bell number identity
For any n ≥ 1 and any integer d ≥ 0,

b(d) =

∑n−1
k=0 kdnn−k +

∑
j≥1 Bdjnj∑n−1

k=0 nn−k

What happens if you let n → ∞?

16



The closed form

There are some combinatorial things here.

With the change of basis matrix, we can “evaluate” the sum:

∑
k

kd − b(d)
k !

= −

∑
j≥1 Bdjk j+1

k !
.

Implied bell number identity
For any n ≥ 1 and any integer d ≥ 0,

b(d) =

∑n−1
k=0 kdnn−k +

∑
j≥1 Bdjnj∑n−1

k=0 nn−k

What happens if you let n → ∞?

16



Recap
The sum

n∑
k=0

kd − b(d)
k !

can be expressed in closed form if and only if b(d) is the d th bell
number.

Proposition
The hypergeometric term

zk (kd − c(d))
ak

is Gosper summable if and only if

c(d) = [xd/d !]ezex−z−(a−1)x
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That exponential generating function is related to the bell numbers:

ezex−z−(a−1)x = B(x)ze(1−a)x ,

where
B(x) =

∑
n≥0

b(n)
n!

xn = eex−1.

This implies some neat things. For example,

n∑
k=0

(kd − c(d))2k

k !

has a closed form answer if and only if

c(d) =
∑

k

(
n
k

)
b(k)b(n − k).
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Summary

Using Gosper’s algorithm as a key tool:

1. Make bad sums good.

2. Find patterns.

3. Prove them.
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