

Rutgers Experimental Mathematics Seminar

14 April 2022

Let F(n) be the *n*th Fibonacci number.

 $F(n-1)F(n+1) = F(n)^{2} + (-1)^{n}$ 0, 1, 1, 2, 3, 5, 8 $3^2 = 9$ $5^2 = 25$ $2 \cdot 5 = 10$ $3 \cdot 8 = 24$

Cassini's identity

Induction? F(1-1)F(1+1) - F(1)2 = F(n-1)[F(n) + F(n-1)] - F(n) $= -\frac{5}{7}F(n-2)F(n) - F(n-1)^{2}\frac{3}{5}$

The C-finite ansatz

Definition (C-finite sequences)

A sequence a(n) is *C-finite* if it satisfies a linear recurrence with constant coefficients. That is,

$$\mathbf{a}(n) = \sum_{k=1}^{d} c_k \mathbf{a}(n-k).$$

(We call d the order of a(n).)

 $V F(n) = \frac{F(n-1) + F(n-2)}{n!}$

Equivalent definitions

satisfies a linear differential equation with constant coefficients.

For generatingfunctionologists:

$$f(x) = \sum_{k \ge 0} a(k) x^k$$

is a rational function.

Examples

Perrin numbers (A001608):

$$P(0) = 3$$
 $P(1) = 0$ $P(2) = 2$

$$P(n+3) = P(n+1) + P(n).$$

(If p is prime, then p divides P(p).)

Examples

Perrin numbers (A001608):

P(0) = 3 P(1) = 0 P(2) = 2P(n+3) = P(n+1) + P(n).

(If p is prime, then p divides P(p).)

Pell numbers (A000129):

$$\lambda(0) = 1 \quad \lambda(1) = 0$$
$$\lambda(n+2) = 2\lambda(n+1) + \lambda(n).$$

 $(\lambda(n-1)/\lambda(n))$ is a good approximation to $\sqrt{2}-1$.)

Closure-properties

If a(n) and b(n) are C-finite with order d_a and d_b , then so are the following:

Sequence	$Order \leq$
a(mn+i)	d _a
$a(n) \pm b(n)$	$d_a + d_b$
<i>a</i> (<i>n</i>) <i>b</i> (<i>n</i>)	$d_a d_b$
$\sum_{k=0}^{n} a(k)b(n-k)$	$d_a + d_b$

F(n) - F(n-D)F(m)

Cassini's identity again:

$$F(n-1)F(n+1) - F(n)^{2} - (-1)^{n} = 0$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

$$= 4$$

Conjecture = Proof

Some more identities:

$$\sum_{k=0}^{n} F(k) = F(n+2) - 1$$
$$\sqrt{5}F(n) = \left(\frac{1+\sqrt{5}}{2}\right)^{n} - \left(\frac{1-\sqrt{5}}{2}\right)^{n}$$
$$\sum_{k=0}^{n} F(k)^{2} = F(n)F(n+1)$$

Every "finitely-generated" C-finite identity is routine to prove.

If you guess it, it is almost certainly true.

Fibonacci recurrences

The closure properties of C-finite sequences are *effective*.

Computing a recurrence for, say, F(2n) is easy.

Let
$$x = F(2n)$$
 and $y = F(2n+1)$.

Fibonacci recurrences

The closure properties of C-finite sequences are *effective*. Computing a recurrence for, say, F(2n) is easy. Let x = F(2n) and y = F(2n + 1).

Fibonacci recurrences

Here are the first few recurrences for $n \mapsto F(mn)$:

$$F_{n} = F_{n-1} + F_{n-2}$$

$$F_{2n} = 3F_{2(n-1)} - F_{2(n-2)}$$

$$F_{3n} = 4F_{3(n-1)} + F_{3(n-2)}$$

$$F_{4n} = 7F_{4(n-1)} - F_{4(n-2)}$$

$$F_{5n} = 11F_{5(n-1)} + F_{5(n-2)}.$$

Conjecture:

$$F(mn) = L(m)F(m(n-1)) + (-1)^{m+1}F(m(n-2)),$$

where L(m) is the *m*th Lucas number.

Less routine! "Finite checking" is harder¹.

Finite-checking works anyway!

Theorem

Finite-checking works anyway!

Theorem

If a(n) is C-finite with order d, then

$$a(mn) = \sum_{k=1}^{d} c_k(m) a(m(n-k))$$

where $c_k(m)$ is C-finite and has order not exceeding $\binom{d}{k}$.

In particular,

$$F(mn) = c_1(m)F(m(n-1)) + c_2(m)F(m(n-2))$$

for *some* C-finite sequences $c_1(m)$ and $c_2(m)$.

 $c_1(m)$: order ≤ 2 . $c_2(m)$: order ≤ 1 .

$$F(mn) = L(m)F(m(n-1)) + (-1)^{m+1}F(m(n-2)),$$

$$F_{n} = F_{n-1} + F_{n-2}$$

$$F_{2n} = 3F_{2(n-1)} - F_{2(n-2)}$$

$$F_{3n} = 4F_{3(n-1)} + F_{3(n-2)}$$

$$F_{4n} = 7F_{4(n-1)} - F_{4(n-2)}$$

$$F_{5n} = 11F_{5(n-1)} + F_{5(n-2)}$$

.

This is a proof!

It's just $r^{mn} = (r^m)^n$.

It's just $r^{mn} = (r^m)^n$.

Every C-finite sequence can be written as

$$a(n) = \sum_{k} p_{k}(n) r_{k}^{n}.$$

 $p_k(n)$: polynomials.

 r_k : roots of the characteristic polynomial of a(n).

Characteristic polynomials

Let polynomials in x act on a(n) by

$$x^i a(n) = a(n+i).$$

The characteristic polynomial is the polynomial for a(n)'s recurrence.

There's a map between closed forms and characteristic polynomials.

$$x^{2} \cdot x - i = (x - \varphi)(x - \widehat{\varphi})$$

$$F(n) = \mathcal{A} \varphi^{n} + \mathcal{B} \widehat{\varphi}^{n}$$

What's the idea?

 $a(n)=\sum p_k(n)r_k^n.$ $\Lambda H (Mn) = \sum_{k} P_{k}(m) (k)$ $= \sum_{k} P_{k} (n) (r_{k})^{n}$ My HATH

What's the idea?

The characteristic polynomial of a(mn) is (a multiple of)

$$(x-r_1^m)(x-r_2^m)\cdots(x-r_d^m).$$

Coefficients:

Coefficients are C-finite with respect to *m* by the closure properties!

Perrin sequence again:

$$P(0) = 3$$
 $P(1) = 0$ $P(2) = 2$
 $P(n+3) = P(n+1) + P(n).$

Perrin sequence again:

$$P(0) = 3$$
 $P(1) = 0$ $P(2) = 2$
 $P(n+3) = P(n+1) + P(n).$

Result:

$$P(mn) = P(m)P(m(n-1)) + c_2(m)P(m(n-2)) + P(m(n-3)),$$

where $c_2(m) = A078712(m)$.

Recurrences give us access to:

- Summation identities
- Generating function identities
- Asymptotics

We have *uniform* recurrences in two variables.

Here's an earlier identity:

$$\sum_{0 \le k < n} F(k) = F(n+1) - 1.$$

Here's an earlier identity:

$$\sum_{0 \le k < n} F(k) = F(n+1) - 1.$$

Here is its older brother:

$$\sum_{0 \le k < n} F(mk) = \frac{F(m(n+1)) + (1 - L(m))F(mn) - F(m)}{L(m) - (-1)^m - 1}.$$

This is easy to get from a (not well-known) recurrence trick.

(Ask me later if you want details!)

Little more complicated for the Perrin numbers:

$$\sum_{0 \le k < n} P(mk)$$

$$= \frac{P(m(n+2)) + (1 - P(m))P(m(n+1)) + (1 - P(m) - c_2(m))P(mn)}{P(m) + c_2(m)}$$

$$- \frac{P(2m) + (1 - P(m))P(m) + 3(1 - P(m) - c_2(m))}{P(m) + c_2(m)}.$$

Products

These polynomial arguments apply to other settings.

As long as you can handle the following deep identities:

$$r^{mn} = (r^m)^n$$
 and $r_1^n r_2^n = (r_1 r_2)^n$.

NA F(in) F(in)

Products

These polynomial arguments apply to other settings.

As long as you can handle the following deep identities:

$$r^{mn} = (r^m)^n$$
 and $r_1^n r_2^n = (r_1 r_2)^n$.

Theorem

Let a(n) be C-finite of order d, and set $P_{ij}(n) = a(in)a(jn)$. Then, $P_{ij}(n)$ satisfies

$$P_{ij}(n) = \sum_{k=1}^{D} c_k(i,j) P_{ij}(n-k)$$

where each $c_k(i, j)$ is C-finite in *i* and *j*, symmetric in *i* and *j*, and has order not exceeding $\binom{d^2}{k}$.

Let
$$P_{ij}(n) = F(in)F(jn)$$
.

Then:

Let $P_{ij}(n) = F(in)F(jn)$.

Then:

$$P_{ij}(n) = ((-1)^{j}L(i-j) - L(i+j))P_{ij}(n-1)$$

- (-1)^{j}(L(i-j)L(i+j) + 2(-1)^{i})P_{ij}(n-2)
+ (-1)^{i}(L(i+j)(-1)^{j} + L(i-j))P_{ij}(n-3)
- $P_{ij}(n-4).$

There are implicit (messy!) summation identities.

If a(n) is C-finite, then there are "meta" C-finite patterns.

- Uniform recurrences for *a*(*mn*)
- Uniform summation identities for $\sum_{k} a(mk)$
- Uniform generating functions $\sum_{k} a(mk)x^{k}$ (Not shown, but easy!)
- Uniform recurrences for *a*(*in*)*a*(*jn*)
- • •