Robert Dougherty-Bliss O< C><

Rutgers Experimental Mathematics Seminar
14 April 2022



Cassini’s identity

Let F(n) be the nth Fibonacci number.

F(in—1)F(n+1)



Cassini’s identity

Induction?
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The C-finite ansatz

Definition (C-finite sequences)

A sequence a(n) is C-finite if it satisfies a linear recurrence with
constant coefficients. That is,

d
a(n) =) ckaln—k).
P

(We call d order of a(n).)
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Equivalent definitions

For differential equators:

satisfies a linear differential equation with constant coefficients.

For generatingfunctionologists:

is a rational function.



Perrin numbers (A001608):

P0)=3 P(1)=0 P(2)=2
P(n+3)=P(n+1)+ P(n).

(If pis prime, then p divides P(p).



Perrin numbers (A001608):

P0)=3 P(1)=0 P(2)=2
P(n+3)=P(n+1)+ P(n).

(If p is prime, then p divides P(p).)
Pell numbers (A000129):

AO0)=1 A(1)=0
AnN+2)=2A\(n+ 1)+ A(n).

(A(n—1)/A(n) is a good approximation to v/2 — 1.)



Closure-properties

If a(n) and b(n) are C-finite with order d; and dp, then so are the

following:
Sequence Order <
= a(mn+i) d;
e g(n) =+ b(n) d; + dp
e g(n)b(n) d.dp

- Y a(k)b(n—k) | da+dp
k=0
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The C-finite ansatz

Cassini’s identity again:




Conjecture = Proof

Some more identities:

ZF F(n+2)—1
1+v5\  (1-vB)
o (5 (05

) F(k)??=F(nmF(n+1)

Every “finitely-generated” C-finite identity is routine to prove.

If you guess it, it is almost certainly true.



Fibonacci recurrences

The closure properties of C-finite sequences are effective.
Computing a recurrence for, say, F(2n) is easy.
o

Let x = F(2n)and y = F(2n+1).
Pa— g C——
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Fibonacci recurrences

The closure properties of C-finite sequences are effective.
Computing a recurrence for, say, F(2n) is easy.
-yl

Let x = F(2n)and y = F(2n+1).

F(2(n+2))=F(2n+2)+ F(2n+ 3)
,
= 2x + 3y.

FLuk2) - QE(244)) # FL22)<0
Cl(2n)= 5 FC2627 ) ) — FQ2Cr-¢)
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Fibonacci recurrences

Here are the first few recurrences for n+— F(mn):

Fn=Fn_1+ Fno
Fon = 3F2(n—1) — Fa(n—2)
Fan = 4F3n_1) + F3(n—2)
Fan = 7F4n—1) — Fan—2)
Fsn = 11Fs5(n_1) + F5(n—2).
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A general recurrence

Conjecture:

F(mn)=LmF(mn—1))+ (=)™ F(m(n—2)),
S “Wi»
where L(m) is the mth Lucas number.

Less routine! “Finite checking” is harder!.

IBut it works.
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Finite-checking works anyway!

If a(n) is C-finite with order d, then

a(mn) =Y ck(m)a(m(n—k))

where cx(m) is C-finite and has order not exceeding (§).
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Finite-checking works anyway!

If a(n) is C-finite with order d, then

d
a(mn) =Y ck(m)a(m(n—k))
k=1

where cx(m) is C-finite and has order not exceeding (§).

In particular,

F(mn)=ci(mF(m(n—1))+ c(mF(m(n—2))
- o
for some C-finite sequences ¢;(m) and cx(m).

ci(m): order < 2.
Co(m): order < 1.
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Conjecture = Proof Il

F(mn)=LmF(mn—1))+ (=)™ F(m(n—2)),

Fn=Fn1+ Fno
Fon = 3Fs(n—1) — Fa(n—2)
Fan = 4F3n—1) + F3(n—2)
Fan = TFa(n—1) — Fa(n—2)
Fsn = 11F5(n_1) + F5(n_2)-

This is a proof!
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What'’s the idea?

It's just r™ = (r™)".
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What'’s the idea?

It's just r™ = (r™)".

Every C-finite sequence can be written as

Pk (n): polynomials.

rg: roots of the characteristic polynomial of a(n).



Characteristic polynomials

Let polynomials in x act on a(n) by
x'a(n) = a(n+i).

The characteristic polynomial is the polynomial for a(n)’s recurrence.

(F(n+2) —F(n+1)+ F(n)

I

There’s a map between closed forms and characteristic polynomials.

X =x-1= Lx'lf)f’(’fﬂ) S
F(nN=z K ~P Y
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What'’s the idea?

Zpk

M2
NP awm) = l;— P/é‘_a"’”) e

r, =l -P/__
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What'’s the idea?

The characteristic polynomial of a(mn) is (a multiple of)
N

(x— ) x— i) -+ (x— ).

Coefficients:

(-Ein/je WL F M

x9: 1
X (=)
X2 (1)) + ()" + - )

Coefficients are C-finite with respect to m by the closure properties!



Something non-Fibonacci

Perrin sequence again:

P0O)=3 P(1)=0 P(2)=2
P(in+3)=P(n+1)+ P(n).
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Something non-Fibonacci

Perrin sequence again:

P0O)=3 P(1)=0 P(2)=2
P(in+3)=P(n+1)+ P(n).

Result:
nH P(mn) = P(mP(m(n—1)) + cx(mP(m(n—2)) + P(m(n—3)),

where c;(m) = A078712(m).
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Using recurrences

Recurrences give us access to:

« Summation identities
» Generating function identities
» Asymptotics

We have uniform recurrences in two variables.

20



Summation identities

Here’s an earlier identity:

Y F(k)=F(n+1)—1.

0<k<n
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Summation identities

Here’s an earlier identity:

Y F(k)=F(n+1)—1.
0<k<n

Here is its older brother:

~ F(m(n+1))+ (1 = L(m))F(mn) — F(m)
> F(mk) = [ — =7 =1 .

0<k<n

This is easy to get from a (not well-known) recurrence trick.

(Ask me later if you want details!)
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Little more complicated for the Perrin numbers:

> P(mk)

0<k<n
~ Pm(n+2))+ (1 —P(m)P(m(n+1))+ (1 — P(m) — c2(m))P(mn)
P(m) + c2(m)
P2m)+ (1 —P(m)P(m)+3(1 — P(m)— cx(m))
P(m) + cz(m) '
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These polynomial arguments apply to other settings.

As long as you can handle the following deep identities:

r"=(r"" and r'r} =(rr)".

ne F(in) FCin)
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These polynomial arguments apply to other settings.

As long as you can handle the following deep identities:

=(r'"M" and rr] =(rr)".

Let a(n) be C-finite of order d, and set Pj;(n) = a(in)a(jn). Then,
Pji(n) satisfies

O

Pj(n) = ) _ck(i,f)Pj(n—k)

k=1

where each c(i, ) is C-finite in i and j, symmetric in i and j, and
2
has order not exceeding (%,).
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One example

Let Pji(n) = F(in)F(jn).
Then:
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One example

Let Pji(n) = F(in)F(jn).
Then:

Pj(n) = ((=1YL(i —j) = L(i + /) Pj(n—1)
— (=Y (L(i = HL( + ) +2(=1))Py(n - 2)
+ (=) (Ll + (=1 + L(i = ))Py(n—3)

— P,j(n — 4)

There are implicit (messy!) summation identities.
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If a(n) is C-finite, then there are “meta” C-finite patterns.

« Uniform recurrences for a(mn)

Uniform summation identities for }_, a(mk)

Uniform generating functions Y, a(mk)x* (Not shown, but easy!)

Uniform recurrences for a(in)a(jn)
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