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Cassini’s identity

Let F (n) be the nth Fibonacci number.

F (n - 1)F (n + 1) = F (n)2 + (-1)n
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Cassini’s identity

Induction?
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The C-finite ansatz

Definition (C-finite sequences)

A sequence a(n) is C-finite if it satisfies a linear recurrence with
constant coefficients. That is,

a(n) =
dX

k=1

ck a(n - k).

(We call d the order of a(n).)
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Equivalent definitions

For differential equators:

y(x) =
X

k�0

a(k)
k !

xk

satisfies a linear differential equation with constant coefficients.

For generatingfunctionologists:

f (x) =
X

k�0

a(k)xk

is a rational function.
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Examples

Perrin numbers (A001608):

P(0) = 3 P(1) = 0 P(2) = 2

P(n + 3) = P(n + 1) + P(n).

(If p is prime, then p divides P(p).)

Pell numbers (A000129):

�(0) = 1 �(1) = 0

�(n + 2) = 2�(n + 1) + �(n).

(�(n - 1)/�(n) is a good approximation to
p

2 - 1.)
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Closure-properties

If a(n) and b(n) are C-finite with order da and db, then so are the
following:

Sequence Order 
a(mn + i) da

a(n)± b(n) da + db

a(n)b(n) dadb
nX

k=0

a(k)b(n - k) da + db
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The C-finite ansatz

Cassini’s identity again:

F (n - 1)F (n + 1)- F (n)2 - (-1)n = 0
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Conjecture = Proof

Some more identities:
nX

k=0

F (k) = F (n + 2)- 1

p
5F (n) =

 
1 +

p
5

2

!n

-

 
1 -

p
5

2

!n

nX

k=0

F (k)2 = F (n)F (n + 1)

Every “finitely-generated” C-finite identity is routine to prove.

If you guess it, it is almost certainly true.
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Fibonacci recurrences

The closure properties of C-finite sequences are effective.

Computing a recurrence for, say, F (2n) is easy.

Let x = F (2n) and y = F (2n + 1).

F (2n) = x

F (2(n + 1)) = x + y

F (2(n + 2)) = F (2n + 2) + F (2n + 3)

= 2x + 3y .
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Fibonacci recurrences

Here are the first few recurrences for n 7! F (mn):

Fn = Fn-1 + Fn-2

F2n = 3F2(n-1) - F2(n-2)

F3n = 4F3(n-1) + F3(n-2)

F4n = 7F4(n-1) - F4(n-2)

F5n = 11F5(n-1) + F5(n-2).
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A general recurrence

Conjecture:

F (mn) = L(m)F (m(n - 1)) + (-1)m+1F (m(n - 2)),

where L(m) is the mth Lucas number.

Less routine! “Finite checking” is harder1.

1But it works.
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Finite-checking works anyway!

Theorem

If a(n) is C-finite with order d, then

a(mn) =
dX

k=1

ck (m)a(m(n - k))

where ck (m) is C-finite and has order not exceeding
�d

k

�
.

In particular,

F (mn) = c1(m)F (m(n - 1)) + c2(m)F (m(n - 2))

for some C-finite sequences c1(m) and c2(m).

c1(m): order  2.

c2(m): order  1.
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Conjecture = Proof II

F (mn) = L(m)F (m(n - 1)) + (-1)m+1F (m(n - 2)),

Fn = Fn-1 + Fn-2

F2n = 3F2(n-1) - F2(n-2)

F3n = 4F3(n-1) + F3(n-2)

F4n = 7F4(n-1) - F4(n-2)

F5n = 11F5(n-1) + F5(n-2).

This is a proof!

14



What’s the idea?

It’s just rmn = (rm)n.

Every C-finite sequence can be written as

a(n) =
X

k

pk (n)r n
k .

pk (n): polynomials.

rk : roots of the characteristic polynomial of a(n).
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Characteristic polynomials

Let polynomials in x act on a(n) by

xia(n) = a(n + i).

The characteristic polynomial is the polynomial for a(n)’s recurrence.

F (n + 2) =F (n + 1) + F (n)

m
x2-x - 1

There’s a map between closed forms and characteristic polynomials.
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X

k
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What’s the idea?

The characteristic polynomial of a(mn) is (a multiple of)

(x - rm
1 )(x - rm

2 ) · · · (x - rm
d ).

Coefficients:

xd : 1

xd-1 : (-1)d (rm
1 + rm

2 + · · ·+ rm
d )

xd-2 : (-1)d ((r1r2)
m + (r1r3)

m + · · · )
...

Coefficients are C-finite with respect to m by the closure properties!
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Something non-Fibonacci

Perrin sequence again:

P(0) = 3 P(1) = 0 P(2) = 2

P(n + 3) = P(n + 1) + P(n).

Result:

P(mn) = P(m)P(m(n - 1)) + c2(m)P(m(n - 2)) + P(m(n - 3)),

where c2(m) = A078712(m).
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Using recurrences

Recurrences give us access to:

• Summation identities

• Generating function identities

• Asymptotics

We have uniform recurrences in two variables.
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Summation identities

Here’s an earlier identity:
X

0k<n

F (k) = F (n + 1)- 1.

Here is its older brother:
X

0k<n

F (mk) =
F (m(n + 1)) + (1 - L(m))F (mn)- F (m)

L(m)- (-1)m - 1
.

This is easy to get from a (not well-known) recurrence trick.

(Ask me later if you want details!)
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Perrin sum

Little more complicated for the Perrin numbers:
X

0k<n

P(mk)

=
P(m(n + 2)) + (1 - P(m))P(m(n + 1)) + (1 - P(m)- c2(m))P(mn)

P(m) + c2(m)

-
P(2m) + (1 - P(m))P(m) + 3(1 - P(m)- c2(m))

P(m) + c2(m)
.

22



Products

These polynomial arguments apply to other settings.

As long as you can handle the following deep identities:

rmn = (rm)n and r n
1 r n

2 = (r1r2)
n.

Theorem

Let a(n) be C-finite of order d, and set Pij(n) = a(in)a(jn). Then,
Pij(n) satisfies

Pij(n) =
DX

k=1

ck (i , j)Pij(n - k)

where each ck (i , j) is C-finite in i and j, symmetric in i and j, and
has order not exceeding

�d2

k

�
.
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One example

Let Pij(n) = F (in)F (jn).

Then:

Pij(n) = ((-1)j L(i - j)- L(i + j))Pij(n - 1)

- (-1)j(L(i - j)L(i + j) + 2(-1)i)Pij(n - 2)

+ (-1)i(L(i + j)(-1)j + L(i - j))Pij(n - 3)

- Pij(n - 4).

There are implicit (messy!) summation identities.
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Review

If a(n) is C-finite, then there are “meta” C-finite patterns.

• Uniform recurrences for a(mn)

• Uniform summation identities for
P

k a(mk)

• Uniform generating functions
P

k a(mk)xk (Not shown, but easy!)

• Uniform recurrences for a(in)a(jn)

• · · ·
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