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(25 − 21 + 1)−1 ≡ −22 (mod 25 − 23 + 1)

(210 − 22 + 1)−1 ≡ −24 (mod 210 − 26 + 1)
(215 − 23 + 1)−1 ≡ −26 (mod 215 − 29 + 1)
(220 − 24 + 1)−1 ≡ −28 (mod 220 − 212 + 1)
(25c − 2c + 1)−1 ≡ −22c (mod 25c − 23c + 1)

Why? Plug in x = 2c into the identity

(x5 − x + 1)(−x2) + (x5 − x3 + 1)(x2 + 1) = 1.

How do you find this identity? Extended GCD algorithm.
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(26 − 22 + 1)−1 ≡ 24 − 22 + 1 (mod 26 − 25 + 1)

(212 − 24 + 1)−1 ≡ N/A (mod 212 − 210 + 1) (GCD is 7)
(218 − 28 + 1)−1 ≡ 218 − 216 + 214 + 211 − 27 + 23 + 1 (mod 218 − 215 + 1)
(26c − 22c + 1)−1 ≡ ??? (mod 26c − 25c + 1)

What went wrong?

(x6 − x2 + 1)(−x5 + 4x4 − 5x3 + x2 − 3x + 2)
+ (x6 − x5 + 1)(x5 − 3x4 + 2x3 + x2 + 3x + 5) = 7.

The 7 ruins us!
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(x5 − x + 1, x5 − x3 + 1) → good inverse pattern!

(x6 − x2 + 1, x6 − x5 + 1) → bad inverse pattern!

What’s the difference?

res(x5 − x + 1, x5 − x3 + 1) = 1
res(x6 − x2 + 1, x6 − x5 + 1) = 7,

where res(f, g) is the resultant of f and g.
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For the non-experts: Resultants are like determinants.

If f and g are monic, then

res(f, g) = ±
∏

f(z)=0
g(w)=0

(z − w)

= ±
∏

f(z)=0
g(z)

= ±
∏

g(z)=0
f(z).

Important facts:

• Resultants can be computed without knowing any roots.
• If f and g have integer coefficients, then res(f, g) is an integer.
• res(f, g) = 0 iff f and g have a common factor.
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res(x5 − x + 1, x5 − x3 + 1) = 1
res(x6 − x2 + 1, x6 − x5 + 1) = 7

The inverse sequence

(2cn − 2ck + 1)−1 mod (2cn − 2cj + 1)

will be “nice” if and only if res(xn − xk + 1, xn − xj + 1) is ± a power of 2.

Definition
xn − xk + 1 and xn − xj + 1 dyadically resolve if their resultant is a signed
power of 2.
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Original motivation: Faster Chinese remaindering for integer computations.

The “trinomial moduli”

2n − 2k + 1 (n fixed, 0 < k < n)

have nice binary properties, but we need nice inverse sequences!

Basic questions

1. When do two trinomial moduli have “good” inverses?
2. Are there arbitrarily large sets of moduli that have pairwise “good”

inverses?
3. How can we efficiently find these sets?

Basic questions (new)

1. When do xn − xk + 1 and xn − xj + 1 dyadically resolve?
2. Are there arbitrarily large sets of dyadically resolving trinomials?
3. How can we efficiently find these sets?
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Definition
Let T(n) be the graph with vertices {1, 2, 3, . . . , n − 1} that contains the edge
{k, j} if and only if xn − xk + 1 and xn − xj + 1 dyadically resolve.

T(40) and T(100)

What’s going on here?

Symmetry? Heart? Circle?
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Queston 1
When is res(xn − xk + 1, xn − xj + 1) a signed power of 2?

What are the edges of T(n)?



0 1 3 1 3 31 9 8 3
1 0 1 1 4 1 31 16 8
3 1 0 1 3 1 3 31 9
1 1 1 0 1 1 1 1 31
3 4 3 1 0 1 3 4 3
31 1 1 1 1 0 1 1 1
9 31 3 1 3 1 0 1 3
8 16 31 1 4 1 1 0 1
3 8 9 31 3 1 3 1 0


M(k, j) = res(x10 − xk + 1, x10 − xj + 1)

There are not usually “formulas” for resultants, so this could be hard.

Looks like mostly powers of 2?
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Adjacency matrix of T(200).
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dyadically resolving
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Very few powers of 2! But lots of relatively prime pairs?
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Theorem (RDB, Kobayashi, Ter-Saakov, Zima)
If g(x) := gcd(xn − xk + 1, xn − xj + 1) ̸= 1, then:

• n is even;
• k − j is divisible by 6; and
• g(x) is a product of cyclotomic polynomials whose orders are multiples of 6.

Approximately 97% of all pairs of trinomials for large n are relatively prime.

We have no corresponding statement for dyadically resolving pairs.

The proportion should go to 0.
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To understand how complicated this might be, look at this evaluation:

res(x900 − x22 + 1, x900 − x72 + 1) = 1125899839733761.

Where does this number come from?
Special case

If k − j divides n, then

res(xn − xk + 1, xn − xj + 1) = ±

 ∏
m|

k−j
gcd(k,j)

Φm(2)


gcd(k,j)

where Φm is the mth cyclotomic polynomial.

res(x900 − x22 + 1, x900 − x72 + 1) = 1125899839733761
= (Φ5(2)Φ25(2))2

.

We know of essentially no other formulas!
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T(40) and T(100)

Questions 2 and 3
What is the largest set of pairwise dyadically resolving trinomials with degree
n?

What is the largest clique in T(n)?

Computing maximum cliques is fast!
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Size of maximum clique in T(n)

It took approximately 10 years of CPU time to produce this graph.

Clique growth looks slow, but…

Theorem
The clique number of T(n) goes to ∞ as n → ∞.
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Theorem
The clique number of T(n) goes to ∞ as n → ∞.

Our proof is constructive, but the exponents are big:

{1}
{1, 2}
{2, 3, 4}
{12, 15, 16, 18}
{720, 760, 765, 768, 780}
{48372480, 48434496, 48435465, 48435712, 48436128, 48439664}

The last set implies that there is a clique of size 6 in T(n) for n > 48439664.

But there’s a clique of size 6 in T(22)!
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We do not know the true growth rate of the clique numbers.

We have not found a reasonable clique of size 11.

clique size k smallest n
2 3
3 5
4 5
5 10
6 11
7 22
8 41
9 82
10 1668
11 ≥ 2985

The best estimate we have is the following.

Theorem
The largest clique in T(n) has size no larger than 2⌊log2 n⌋ − v2(n), where
v2(n) = v is the largest v such that 2v divides n.
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A greedy coloring of T(50) with nine colors.

If a graph can be colored with k colors, then it cannot have a clique of size
bigger than k.
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How we found the coloring

We found a coloring with the right number of colors purely by experimentation.

The NetworkX library does greedy coloring, so we asked nicely.

Colors for n = 30:

{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29}
{2, 8, 14, 20, 26}
{4, 10, 16, 22, 28}
{24}
{18}
{12}
{6}

This is 1 mod 2, 2 mod 6, 4 mod 6, then some noise.

The library is slightly too eager, but you can get inspired.
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How you prove the coloring

Let’s try to compute a resultant. Say that i and k are both odd.

res(x10 − xi + 1, xn − xk + 1) = res(x10 − xi + 1, xk − xi)

= res(x10 − xi + 1, xi(xk−i − 1))
= res(x10 − xi + 1, xk−i − 1).

Because k − i is even, x + 1 divides xk−i − 1. So,

res(x10 − xi + 1, x + 1) = (−1)10 − (−1)i + 1 = 3

divides our resultant.

These cannot dyadically resolve!

Meaning: {1, 3, 5, 7, . . . } is an independent set in T(n).

Repeat this for different congruence classes.
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Symmetries

T(40) and T(100)

The heart is really there.

So is the circle.

So is the reflectional symmetry.

Conjecture: For n large enough, the automorphism group of T(n) is Z2.
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Open questions
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Edge density of T(n)?

Faster way to compute T(n)?

Other moduli shapes: 2n ± 2k ± 1, …
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