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Quadratic Golden Siegel Disk

f (z) = z2 − (0.39054+ 0.58678i)

Rotation number = φ (i.e., rotates by angle 2πφ)

Conjecture. (L. Carleson, ca. 1990) The distance from the center of rotation to the

boundary of the disk is
1
4 . (attained at the critical value)
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Our Approach (joint with M. Aspenberg, Lund University)

Try and compute the exact radius of convergence of the conjugating map.

φ(z) = z +
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∑
4-paths

λΣ descents = 14+ 4λ2 + 6λ3

Here, 14 = C4 since Catalan numbers count paths without descents.

Goal:

∑
n-paths

λΣ descents = O(4n).

Strategy: Collect paths in Catalan equivalence families and prove that the

contribution of each family is bounded.
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Catalan Equivalence Class I

Treat a path like a Lehmer code.

113231547 encodes the permutation 624857913:
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2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class I

Treat a path like a Lehmer code. 113231547 encodes the permutation 624857913:

1

2 1

2 1 3

2 4 1 3

2 4 5 1 3

6 2 4 5 1 3

6 2 4 5 7 1 3

6 2 4 8 5 7 1 3

6 2 4 8 5 7 9 1 3

Then a descent translates into an instance of the pattern 213, where the left and

right values are consecutive (a dissent):

113231547 −→ 624857913

113231547 −→ 624857913

113231547 −→ 624857913

Notice that paths with no descents translate to permutations with no dissents:

111344679 −→ 324657819



Catalan Equivalence Class II

The two sample paths 113231547, 111344679 in the previous slide were selected

because their corresponding permutations have the same binary tree structure:

624857913

324657819

Each tree equivalence class of permutations contains exactly one representative

without dissents, namely the one obtained by labeling vertices in ascending order

while traversing the tree in clockwise fashion starting at the root. This

permutation contributes 1 to the coefficient sum; while all other permutations

contribute a power of λ.

Revised Goal. Given a binary tree, collect the contributions of all equivalent

permutations, and prove that their sum is bounded.

Since there are Cn such trees, there are O(4n) equivalence classes. If each provides

a bounded contribution to an, the coefficients an will have exponential growth 4n.
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Catalan Equivalence Class III

Example. The tree below represents 8 permutations:

43512 53412 42513 52413

32514 52314 32415 42315

Their dissents are, respectively

2 (2,4) 3 (3,4)

4 4 0 3

Thus the contribution of this tree is 1+ λ2 + 2λ3 + 2λ4 + λ6 + λ7
.
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Catalan Equivalence Class IV

Observation. Had we used permutations of {0, 1, 2, 3}, the true dissents

2 (2,4) 3 (3,4)

4 4 0 3

would become

1 (1,3) 2 (2,3)

3 3 0 2

and the contribution of the tree would be

1+ λ+ 2λ2 + 2λ3 + λ4 + λ5 = (1+ λ+ λ2 + λ3)(1+ λ2)

Enticing, since (1+λ2) is the contribution of the left sub-tree, while (1+λ+λ2+λ3)
is the Gaussian binomial describing the allocation of values on left/right branches.
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Main Result

Theorem. (P-Aspenberg, ’22) If the tree T holds subtrees L, R on its left and right

branches, its reduced contribution is

P̃(T) = P(L) · P̃(G) · P(R),

where G is the unbranched tree with m = |L| vertices on the left branch, and

n = |R| vertices on the right. Moreover, this reduced polynomial is Gaussian:

P̃(G) =

[
m+ n
m

]
=

[
m+ n

n

]
.

Guiding idea. Reduction boils down to lowering λ exponents:

• A permutation with dissent 2 contributes λ2
to P(T), but only λ to P̃(T).

• A permutation with dissents (2, 4) contributes λ6
to P(T), but only λ4

to P̃(T).

Solution. Use a 2-variable polynomial to keep track of the number of dissents.

For our sample tree, dissents at 0, 1, 2, 2, 3, 3, (1, 3), (2, 3) yield

P = 1+ (λ+ 2λ2 + 2λ3)µ+ (λ4 + λ5)µ2
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For our sample tree, dissents at 0, 1, 2, 2, 3, 3, (1, 3), (2, 3) yield

P = 1+ (λ+ 2λ2 + 2λ3)µ+ (λ4 + λ5)µ2
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2-variable Gaussian Binomials

Classically, the binomial

[m+n
m

]
=
[m+n

n

]
enumerates paths in an m× n grid,

ranking them by area. We find the same distribution for a different statistic.

Identify the down/right path with a branched tree that has m vertices on the left

and n on the right. Then every corner counts a right-left jump; i.e., a dissent.

Proposition.

[m+n
m

]
enumerates paths in the m× n grid, ranked by corner sum.

In this example, the 2-variable polynomial is

Pλ,µ = 1+ (1+ 2λ2 + λ3)µ+ (λ4)µ2.

Substituting µ = 1 yields the reduced version

P̃ = 1+ λ+ 2λ2 + λ3 + λ4 =
[4
2

]
.

Substituting µ = λ returns the correct, non-reduced version:

P = 1+ λ2 + 2λ3 + λ4 + λ6.
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Basic Vandermonde

Again:

Proposition.

[m+n
m

]
enumerates paths in the m× n grid, ranked by corner sum.

Restrict to paths with c corners:

The sum of horizontal corner coordinates is

[m
c

]
λc(c+1)/2

.

The sum of vertical corner coordinates is

[n
c

]
λc(c−1)/2

.

Since exponents add to c2,

∑
λ#corners =

∑
c

[
m
c

][
n
c

]
λc2 =

[
m+ n
m

]
,

as claimed.

The last equality is a symmetric version of the standard Chu-Vandermonde.
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Ornated Grids

The sub-tree L, hanging from the left branch of T , may hold m and n vertices in its

two branches,

except...

▶ Vertex labels are shifted by one because of the need to label the root of T .
This is the source of the reduced/unreduced dichotomy.

▶ L may receive extra dissents directly from the right sub-tree R.
These increase the contribution of any given permutation, and the pattern of

increase is dictated by a grid ornament.

The updated dissents are
(1,4) (1,2,4) (2,3)

(2,4) 3 (1,3)

The polynomial becomes

PO
λ,µ = (λ3)µ+ (λ4 + 2λ5 + λ6)µ2 + (λ7)µ3.

Substituting µ = 1 yields

P̃O = λ3 + λ4 + 2λ5 + λ6 + λ7 = λ3

[
4
2

]
.
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Main Result Finally! (no proofs...)

Theorem. (P-Aspenberg, ’22) For any ornament O = (H ,V ) on the m× n grid,

with |H | = d and |V | = r , the generating function of the bi-statistic

(cindex, corners) over all paths is the polynomial[
m+ n
m

]O
λ,µ

= λs ·
∑
c

[
m+ r − d

c − d

]
·

[
n+ d − r
c − r

]
· λ(c−d)(c−r) · µc
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