Thresholds

Jinyoung Park

New York University

Rutgers University

February 2023

 In this talk I will introduce the Kahn-Kalai Conjecture, a central conjecture in probabilistic combinatorics, and discuss our results related to it.

- In this talk I will introduce the Kahn-Kalai Conjecture, a central conjecture in probabilistic combinatorics, and discuss our results related to it.
- We first start with a brief introduction to **random graphs**, to begin with a concrete picture in mind. (Also, historically random graph theory was the starting point for our story.) **The setting of our work is much more general.**

I. Random Graphs

- *G_{n,p}* (Erdős-Rényi random graph):
 - vertex set = $[n] := \{1, 2, \dots, n\}$; think n (finite but) large.
 - each potential edge is included with probability p independently.

• *G_{n,p}* (Erdős-Rényi random graph):

- vertex set = $[n] := \{1, 2, \dots, n\}$; think n (finite but) large.
- each potential edge is included with probability p independently.

• e.g. $G_{n,p}$ with n = 3, p = 1/2

• *G_{n,p}* (Erdős-Rényi random graph):

- vertex set = $[n] := \{1, 2, \dots, n\}$; think n (finite but) large.
- each potential edge is included with probability p independently.

• e.g.
$$G_{n,p}$$
 with $n = 3, p = 1/2$

• So it makes sense to ask questions such as $\mathbb{P}(G_{n,p} \text{ is planar})?, \mathbb{P}(G_{n,p} \text{ is connected})?, \text{ etc. } \leftrightarrow \text{"typicality"}$

• *G_{n,p}* (Erdős-Rényi random graph):

- vertex set = $[n] := \{1, 2, \dots, n\}$; think n (finite but) large.
- each potential edge is included with probability p independently.

• e.g.
$$G_{n,p}$$
 with $n = 3, p = 1/2$

- So it makes sense to ask questions such as $\mathbb{P}(G_{n,p} \text{ is planar})?, \mathbb{P}(G_{n,p} \text{ is connected})?, \text{ etc. } \leftrightarrow "typicality"$
- whp (with high probability): " $G_{n,p}$ does A whp" means

 $\mathbb{P}(G_{n,p} \text{ does } A) \to 1 \text{ as } n \to \infty.$

Evolution of $G_{n,p}$

One **striking** thing about $G_{n,p}$ is: appearance and disappearance of certain properties are "abrupt." \rightarrow **thresholds**

[Evolution of $G_{n,p}$] – Think as "adding edges one by one at random"

Evolution of $G_{n,p}$

One **striking** thing about $G_{n,p}$ is: appearance and disappearance of certain properties are "abrupt." \rightarrow **thresholds**

[Evolution of $G_{n,p}$] – Think as "adding edges one by one at random"

E.g. (typical) maximum size of connected components of $G_{n,p}$

$$egin{cases} \lesssim \log n & ext{if } np < 1-\epsilon \ lpha & ext{if } np > 1+\epsilon \end{cases}$$

Evolution of $G_{n,p}$

One **striking** thing about $G_{n,p}$ is: appearance and disappearance of certain properties are "abrupt." \rightarrow **thresholds**

[Evolution of $G_{n,p}$] – Think as "adding edges one by one at random"

E.g. (typical) maximum size of connected components of $G_{n,p}$

$$\left\{ egin{array}{ll} \lesssim \log n & ext{if } np < 1-\epsilon \ lpha & ext{if } np > 1+\epsilon \end{array}
ight.$$

Central interest in Probabilistic Combinatorics Find thresholds for various properties!

Thresholds for various properties of random graphs

Some past results on finding thresholds

- Small subgraphs (Erdős-Rényi '59, Bollobás '81)
- Connectivity (Erdős-Rényi '59)

. . .

- Perfect matchings (Erdős-Rényi '66)
- Long paths and cycles (Ajtai-Komlós-Szemerédi '81, de la Vega '79)
- Hamilton cycles (Pósa '76, Bollobás '84, Ajtai-Komlós-Szemerédi '85)
- Ramsey properties (Rödl-Ruciński '95)
- Clique factors (Johansson-Kahn-Vu '08)
- Spanning trees (Krivelevich '10, Montgomery '19)

\rightarrow Study has been done mostly for specific properties.

II. Thresholds

• X: finite set; $2^X = \{ \text{subsets of } X \}$

- X: finite set; $2^X = {$ subsets of $X }$
- μ_p : *p*-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|}(1-p)^{|X\setminus A|} \quad A \subseteq X$$

• $X_p \sim \mu_p$ "*p*-random" subset of X

- X: finite set; $2^X = {$ subsets of $X }$
- μ_p : *p*-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|}(1-p)^{|X\setminus A|} \quad A \subseteq X$$

•
$$X_p \sim \mu_p$$
 "p-random" subset of X
e.g.1. $X = {[n] \choose 2} = E(K_n)$
 $\rightarrow X_p = G_{n,p}$ Erdős-Rényi random graph (\leftrightarrow edge percolation on K_n)

- X: finite set; $2^X = {$ subsets of $X }$
- μ_p : *p*-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|}(1-p)^{|X\setminus A|} \quad A \subseteq X$$

•
$$X_p \sim \mu_p$$
 "p-random" subset of X
e.g.1. $X = {[n] \choose 2} = E(K_n)$
 $\rightarrow X_p = G_{n,p}$ Erdős-Rényi random graph (\leftrightarrow edge percolation on K_n)
e.g.2. $X = \{k\text{-clauses from } \{x_1, \dots, x_n\}\}$
 $\rightarrow X_p$: random CNF formula

- X: finite set; $2^X = {$ subsets of $X }$
- μ_p : *p*-biased product probability measure on 2^X

$$\mu_p(A) = p^{|A|}(1-p)^{|X\setminus A|} \quad A \subseteq X$$

•
$$X_p \sim \mu_p$$
 "*p*-random" subset of X
e.g.1. $X = {\binom{[n]}{2}} = E(K_n)$
 $\rightarrow X_p = G_{n,p}$ Erdős-Rényi random graph (\leftrightarrow edge percolation on K_n)
e.g.2. $X = \{k\text{-clauses from } \{x_1, \dots, x_n\}\}$
 $\rightarrow X_p$: random CNF formula
• $\mathcal{F} \subseteq 2^X$ is an increasing property if
 $B \supseteq A \in \mathcal{F} \Rightarrow B \in \mathcal{F}$
e.g.1. $\mathcal{F} = \{\text{connected}\}; \mathcal{F} = \{\text{contain a triangle}\}$
e.g.2. $\mathcal{F} = \{\text{not satisfiable}\}$

Thresholds

Fact.

For any increasing property $\mathcal{F} \ (\neq \emptyset, 2^X)$, $\mu_p(\mathcal{F}) \ (= \mathbb{P}(X_p \in \mathcal{F}))$ is continuous and strictly increasing in p.

• $p_c(\mathcal{F})$ is called **the threshold** for \mathcal{F} .

Thresholds

Fact.

For any increasing property $\mathcal{F} \ (\neq \emptyset, 2^X)$, $\mu_p(\mathcal{F}) \ (= \mathbb{P}(X_p \in \mathcal{F}))$ is continuous and strictly increasing in p.

• cf. Erdős-Rényi: $p_0 = p_0(n)$ is a threshold function for \mathcal{F}_n if

$$\mu_{p}(\mathcal{F}_{n}) \rightarrow \begin{cases} 0 & \text{if } p \ll p_{0} \\ 1 & \text{if } p \gg p_{0} \end{cases} \quad \text{* } p_{c}(\mathcal{F}_{n}) \text{ is always an Erdős-Rényi} \\ \text{threshold (Bollobás-Thomason '87)} \end{cases}$$

Study of thresholds

- Location of thresholds:
 - historically most of interesting work was on thresholds for specific properties.
 - The Kahn-Kalai Conjecture ('06) suggests a general bound.
- Sharpness of thresholds: Kahn-Kalai-Linial ('88), Friedgut-Kalai ('96), Friedgut ('99) all based on Fourier analysis

III. The Kahn-Kalai Conjecture

"It would probably be more sensible to conjecture that it is **not** true." - Kahn and Kalai (2006)

Question.

What drives $p_c(\mathcal{F})$?

Example 1. Containing a copy of H

 \asymp : same order

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

Example 1. Containing a copy of H

 \asymp : same order

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

• Usual suspect: expectation calculation

$$\mathbb{E}[\# H'\text{s in } G_{n,p}] \asymp n^4 p^5 \to \begin{cases} 0 & \text{if } p \ll n^{-4/5} \\ \infty & \text{if } p \gg n^{-4/5} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-4/5}$

Example 1. Containing a copy of H <

 \asymp : same order

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

• Usual suspect: expectation calculation

$$\mathbb{E}[\texttt{\# }H'\text{s in }G_{n,p}] \asymp n^4 p^5 \to \begin{cases} 0 & \text{if } p \ll n^{-4/5} \\ \infty & \text{if } p \gg n^{-4/5} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-4/5}$

• triv. $p_c(\mathcal{F}_H) \gtrsim n^{-4/5}$ (:: $\mathbb{E}X \to 0 \Rightarrow X = 0$ with high probability)

Example 1. Containing a copy of H <

 \asymp : same order

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); \mathcal{F}_H : contain a copy of H

Example 1.

What's the threshold for $G_{n,p}$ to contain a copy of H?

• Usual suspect: expectation calculation

$$\mathbb{E}[\texttt{\# H's in } G_{n,p}] \asymp n^4 p^5 \rightarrow \begin{cases} 0 & \text{if } p \ll n^{-4/5} \\ \infty & \text{if } p \gg n^{-4/5} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-4/5}$

• triv. $p_c(\mathcal{F}_H) \gtrsim n^{-4/5}$ (: $\mathbb{E}X \to 0 \Rightarrow X = 0$ with high probability) • truth: $p_c(\mathcal{F}_H) \simeq n^{-4/5}$

Dream

 \mathbb{E} predicts $p_c(\mathcal{F})$?

Example 2. Containing a copy of $\tilde{H}~<$

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); $\mathcal{F}_{ ilde{H}}$: contain a copy of $ilde{H}$

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of \tilde{H} ?

Example 2. Containing a copy of \tilde{H}

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); $\mathcal{F}_{ ilde{H}}$: contain a copy of $ilde{H}$

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of \tilde{H} ?

$$\mathbb{E}[\# \tilde{H}' \text{s in } G_{n,p}] \asymp n^5 p^6 \rightarrow \begin{cases} 0 & \text{if } p \ll n^{-5/6} \\ \infty & \text{if } p \gg n^{-5/6} \end{cases}$$

"threshold for $\mathbb{E}'' \asymp n^{-5/6}$

• Q. $p_c(\mathcal{F}_{\tilde{H}}) \asymp n^{-5/6}$? (triv. $p_c(\mathcal{F}_{\tilde{H}}) \gtrsim n^{-5/6}$)

Example 2. Containing a copy of \tilde{H} <

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); $\mathcal{F}_{ ilde{H}}$: contain a copy of $ilde{H}$

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of \tilde{H} ?

$$\mathbb{E}[\# \tilde{H}' \text{s in } G_{n,p}] \asymp n^5 p^6 \to \begin{cases} 0 & \text{if } p \ll n^{-5/6} \\ \infty & \text{if } p \gg n^{-5/6} \end{cases}$$

"threshold for \mathbb{E} " $\asymp n^{-5/6}$

• Q. $p_c(\mathcal{F}_{\tilde{H}}) \asymp n^{-5/6}$? (triv. $p_c(\mathcal{F}_{\tilde{H}}) \gtrsim n^{-5/6}$)

• truth: $p_c(\mathcal{F}_{ ilde{H}}) symp n^{-4/5}$

Example 2. Containing a copy of \tilde{H} <

•
$$X = {[n] \choose 2}$$
 (so $X_p = G_{n,p}$); $\mathcal{F}_{ ilde{H}}$: contain a copy of $ilde{H}$

Example 2.

What's the threshold for $G_{n,p}$ to contain a copy of \tilde{H} ?

$$\mathbb{E}[\# \tilde{H}' \text{s in } G_{n,p}] \asymp n^5 p^6 \to \begin{cases} 0 & \text{if } p \ll n^{-5/6} \\ \infty & \text{if } p \gg n^{-5/6} \end{cases}$$

"threshold for \mathbb{E} " $symp n^{-5/6}$

• Q. $p_c(\mathcal{F}_{\tilde{H}}) \asymp n^{-5/6}$? (triv. $p_c(\mathcal{F}_{\tilde{H}}) \gtrsim n^{-5/6}$)

• truth: $p_c(\mathcal{F}_{\tilde{H}}) \asymp n^{-4/5}$

Erdős-Rényi ('60), Bollobás ('81)

(Rough:) For fixed graph H,

 $p_c(\mathcal{F}_H) \asymp$ "threshold for \mathbb{E} " of the "densest" subgraph of H

$$\mathbb{E}[\text{\# Perfect matchings in } G_{n,p}] \approx \left(\frac{np}{e}\right)^{n/2} \to \begin{cases} 0 & \text{if } p \ll 1/n \\ \infty & \text{if } p \gg 1/n \end{cases}$$

"threshold for \mathbb{E} " symp 1/n

• Q. $p_c(\mathcal{F}) \asymp 1/n$? (triv. $p_c(\mathcal{F}) \gtrsim 1/n$)

$$\mathbb{E}[\text{\# Perfect matchings in } G_{n,p}] \approx \left(\frac{np}{e}\right)^{n/2} \to \begin{cases} 0 & \text{if } p \ll 1/n \\ \infty & \text{if } p \gg 1/n \end{cases}$$

"threshold for \mathbb{E} " symp 1/n

- Q. $p_c(\mathcal{F}) \asymp 1/n$? (triv. $p_c(\mathcal{F}) \gtrsim 1/n$)
- truth: $p_c(\mathcal{F}) \asymp \log n/n$

• "threshold for $\mathbb{E}" symp 1/n$ vs. $p_c(\mathcal{F}) symp \log n/n$

- "threshold for $\mathbb{E}" symp 1/n$ vs. $p_c(\mathcal{F}) symp \log n/n$
- Actually, $\log n/n$ is another trivial lower bound on $p_c(\mathcal{F})$.

Fact. $p \ll \log n/n \Rightarrow G_{n,p}$ has an isolated vertex w.h.p.

- "threshold for $\mathbb{E}" symp 1/n$ vs. $p_c(\mathcal{F}) symp \log n/n$
- Actually, $\log n/n$ is another trivial lower bound on $p_c(\mathcal{F})$.

Fact. $p \ll \log n/n \Rightarrow G_{n,p}$ has an isolated vertex w.h.p.

• **Coupon collector problem**: Each box of cereal contains a random coupon, and there are *n* different types of coupons.

Question.

How many boxes of cereal do we (typically) need to buy to collect all n coupons?

- "threshold for \mathbb{E} " symp 1/n vs. $p_c(\mathcal{F}) symp \log n/n$
- Actually, $\log n/n$ is another trivial lower bound on $p_c(\mathcal{F})$.

Fact. $p \ll \log n/n \Rightarrow G_{n,p}$ has an isolated vertex w.h.p.

• **Coupon collector problem**: Each box of cereal contains a random coupon, and there are *n* different types of coupons.

Question.

How many boxes of cereal do we (typically) need to buy to collect all n coupons?

Answer $\asymp n \log n$

• Now, $X = {[n] \choose r}$

• X_{ρ} = random *r*-uniform hypergraph $\mathcal{H}_{n,\rho}^{r}$

Example 3'. (Shamir's Problem ('80s)) For $r \ge 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

• Now, $X = {[n] \choose r}$

• X_{ρ} = random *r*-uniform hypergraph $\mathcal{H}_{n,\rho}^{r}$

Example 3'. (Shamir's Problem ('80s)) For $r \ge 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

• cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder

• Now, $X = {[n] \choose r}$

• X_{ρ} = random *r*-uniform hypergraph $\mathcal{H}_{n,\rho}^{r}$

Example 3'. (Shamir's Problem ('80s)) For $r \ge 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

• cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder

• e.g. *r* = 3:

- $\mathbb{E}[\text{# perfect mat'gs in } \mathcal{H}^{r}_{n,p}] \asymp \left(n^2 p/e^2\right)^{n/3} \rightarrow \text{``threshold for } \mathbb{E}^{"} \asymp n^{-2}$
- Lower bound from coupon-collector:

 $p_c(\mathcal{F}) \gtrsim \log n/n^2$

• Now, $X = \binom{[n]}{r}$

• X_{ρ} = random *r*-uniform hypergraph $\mathcal{H}_{n,\rho}^{r}$

Example 3'. (Shamir's Problem ('80s)) For $r \ge 3$, what's the threshold for $\mathcal{H}_{n,p}^r$ to contain a perfect matching? (r|n)

• cf. r = 2: Erdős-Rényi ('66) $r \ge 3$ much harder

• e.g. *r* = 3:

- \mathbb{E} [# perfect mat'gs in $\mathcal{H}_{n,p}^r$] $\asymp \left(n^2 p/e^2\right)^{n/3} \to$ "threshold for \mathbb{E} " $\asymp n^{-2}$
- Lower bound from coupon-collector:

 $p_c(\mathcal{F}) \gtrsim \log n/n^2$

• $p_c(\mathcal{F}) \asymp \log n/n^2$ (Johansson-Kahn-Vu '08) * $\log n$ gap again

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/ \tilde{H}): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/ \tilde{H}): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a matching upper bound.

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/\tilde{H}): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a **matching upper bound**.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/\tilde{H}): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a **matching upper bound**.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/\tilde{H}): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a **matching upper bound**.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

$$p_{\mathsf{E}} \asymp n^{-(r-1)} \xrightarrow{\mathsf{KKC}} p_c \lesssim \log n/n^{r-1}$$

- We have some **trivial lower bounds** on *p_c*:
 - Ex 1, 2 (contain H/\tilde{H}): "threshold for \mathbb{E} "
 - Ex 3, 3' (contain a PM): coupon collector-ish behavior (log n gap)
- Historically, in many interesting cases, the main task is to find a **matching upper bound**.

The Kahn-Kalai Conjecture ('06): rough statement

For any increasing property, the threshold is at most $\log |X|$ times the "expectation threshold".

- This is a VERY strong conjecture: immediately implies (e.g.)
 - threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

$$p_{\scriptscriptstyle \mathsf{E}} \asymp n^{-(r-1)} \stackrel{\mathsf{KKC}}{\Longrightarrow} p_c \lesssim \log n/n^{r-1}$$

 threshold for bounded degree spanning trees ("tree conjecture"; Montgomery '19) For abstract *F*, it's unclear whose expectation we want to compute, so need a careful definition for the "threshold for E."

Observation

 $p_c(\mathcal{F}) \geq q$ if $\exists \ \mathcal{G} \subseteq 2^X$ such that

Observation $p_c(\mathcal{F}) \ge q$ if $\exists \mathcal{G} \subseteq 2^X$ such that **1** " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ **2** $\sum_{S \in \mathcal{G}} q^{|S|} \le \frac{1}{2}$ ("q-cheap")

e.g. in Ex 2,
$$X={[n]\choose 2}$$
, ${\cal F}$: contain a copy of $ilde{H}$ $ilde{ heta}$

Observation $p_c(\mathcal{F}) \ge q$ if $\exists \mathcal{G} \subseteq 2^X$ such that \mathfrak{G} " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $\mathfrak{G} \sum_{S \in \mathcal{G}} q^{|S|} \le \frac{1}{2}$ ("q-cheap")

e.g. in Ex 2,
$$X=inom{[n]}{2}$$
, \mathcal{F} : contain a copy of $ilde{H}$ \diamondsuit

•
$$\mathcal{G}_1 = \{ \text{all (labeled) copies of } \tilde{H} \bigcirc \forall s \}$$

 $\rightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 \text{ for } q \lesssim n^{-5/6}$

Observation $p_c(\mathcal{F}) \ge q$ if $\exists \mathcal{G} \subseteq 2^X$ such that \mathfrak{G} covers \mathcal{F} '': $\forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $\mathfrak{G} \sum_{S \in \mathcal{G}} q^{|S|} \le \frac{1}{2}$ ("q-cheap")

e.g. in Ex 2,
$$X={[n]\choose 2}$$
, \mathcal{F} : contain a copy of $ilde{H}$ (

•
$$\mathcal{G}_1 = \{ \text{all (labeled) copies of } \tilde{H} \land f \\ \rightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 \text{ for } q \lesssim n^{-5/6} \rightarrow n^{-5/6} \lesssim p_c(\mathcal{F}) \}$$

Ķ,

Observation $p_c(\mathcal{F}) \ge q$ if $\exists \mathcal{G} \subseteq 2^X$ such that \mathfrak{G} covers $\mathcal{F}'': \forall A \in \mathcal{F} \ \exists B \in \mathcal{G}$ such that $A \supseteq B$ $\mathfrak{G} \sum_{S \in \mathcal{G}} q^{|S|} \le \frac{1}{2}$ ("q-cheap")

e.g. in Ex 2,
$$X={[n]\choose 2}$$
, \mathcal{F} : contain a copy of $ilde{H}$ \diamondsuit

•
$$\mathcal{G}_1 = \{ \text{all (labeled) copies of } \widetilde{H} \bigcirc s \}$$

 $\rightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 \text{ for } q \lesssim n^{-5/6} \rightarrow n^{-5/6} \lesssim p_c(\mathcal{F})$
• $\mathcal{G}_2 = \{ \text{all (labeled) copies of } H \bigcirc s \}$
 $\rightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \le 1/2 \text{ for } q \le n^{-4/5}$

Kn

Observation $p_c(\mathcal{F}) \geq q$ if $\exists \mathcal{G} \subseteq 2^X$ such that • " \mathcal{G} covers \mathcal{F} ": $\forall A \in \mathcal{F} \exists B \in \mathcal{G}$ such that $A \supset B$ $\bigcirc \sum_{S \in G} q^{|S|} \leq \frac{1}{2} \quad (``q-cheap'')$ e.g. in Ex 2, $X = {[n] \choose 2}$, \mathcal{F} : contain a copy of \tilde{H}

• $\mathcal{G}_1 = \{ \text{all (labeled) copies of } \tilde{H} \lor s \}$ $\rightarrow \sum_{S \in \mathcal{G}_1} q^{|S|} \leq 1/2 \text{ for } q \lesssim n^{-5/6} \rightarrow n^{-5/6} \lesssim p_c(\mathcal{F})$ • $\mathcal{G}_2 = \{ \text{all (labeled) copies of } H \lor s \}$ $\rightarrow \sum_{S \in \mathcal{G}_2} q^{|S|} \leq 1/2 \text{ for } q \lesssim n^{-4/5} \rightarrow n^{-4/5} \lesssim p_c(\mathcal{F})$

Kn

Observation

 $p_c(\mathcal{F}) \geq q$ if $\exists \ \mathcal{G} \subseteq 2^X$ such that

- $\ \, {}^{\circ}\mathcal{G} \text{ covers } \mathcal{F}^{\circ}: \forall A \in \mathcal{F} \ \exists B \in \mathcal{G} \text{ such that } A \supseteq B \quad (\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$
- ② $\sum_{S \in \mathcal{G}} q^{|S|} \le \frac{1}{2}$ ("*q*-cheap")

the upset generated by \mathcal{G}

• $p_{E}(\mathcal{F}) := \max\{q : \exists \mathcal{G}\} \to \text{a trivial lower bound on } p_{c}(\mathcal{F})$

Observation

 $p_c(\mathcal{F}) \geq q$ if $\exists \ \mathcal{G} \subseteq 2^X$ such that

- $\ \, {}^{\circ}\mathcal{G} \text{ covers } \mathcal{F}^{\circ}: \forall A \in \mathcal{F} \ \exists B \in \mathcal{G} \text{ such that } A \supseteq B \quad (\mathcal{F} \subseteq \langle \mathcal{G} \rangle)$
- $2 \sum_{S \in \mathcal{G}} q^{|S|} \leq \frac{1}{2} \quad ("q-cheap")$

•
$$p_{\mathsf{E}}(\mathcal{F}) := \max\{q : \exists \mathcal{G}\} \to \mathsf{a} \text{ trivial lower bound on } p_{c}(\mathcal{F})$$

The Kahn-Kalai Conjecture ('06)

There exists a universal K>0 such that for every finite X and increasing $\mathcal{F}\subseteq 2^X$,

$$(p_{\mathsf{E}}(\mathcal{F}) \leq) p_{c}(\mathcal{F}) \leq Kp_{\mathsf{E}}(\mathcal{F}) \log |X|$$

the *upset*

generated by G

Results and Proof Sketch

- $p_{_{\rm F}}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - $\bullet\,$ skip def: roughly, replace cover ${\cal G}$ by "fractional cover"

- $p_{_{\rm F}}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - $\bullet\,$ skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\mathsf{E}}(\mathcal{F}) \leq p_{\mathsf{E}}^*(\mathcal{F}) \leq p_c(\mathcal{F})$

- $p_{_{\rm F}}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - $\bullet\,$ skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\mathsf{E}}(\mathcal{F}) \leq p_{\mathsf{E}}^*(\mathcal{F}) \leq p_c(\mathcal{F})$

Conj (Talagrand '10); proved by Frankston-Kahn-Narayanan-P. ('19). There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp^*_{E}(\mathcal{F}) \log \ell(\mathcal{F}).$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}

- $p_{_{\rm F}}^*(\mathcal{F})$: the fractional expectation threshold for \mathcal{F}
 - $\bullet\,$ skip def: roughly, replace cover ${\cal G}$ by "fractional cover"
- Easy. $p_{\mathsf{E}}(\mathcal{F}) \leq p_{\mathsf{E}}^*(\mathcal{F}) \leq p_{\mathsf{c}}(\mathcal{F})$

Conj (Talagrand '10); proved by Frankston-Kahn-Narayanan-P. ('19). There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq Kp_{E}^{*}(\mathcal{F}) \log \ell(\mathcal{F}).$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}

- Weaker than KKC, but in all known applications, $p_{E}(\mathcal{F}) \asymp p_{F}^{*}(\mathcal{F})$
- Proof inspired by Alweiss-Lovett-Wu-Zhang

"Erdős-Rado Sunflower Conjecture"

Conjecture (Kahn-Kalai '06); proved by P.-Pham ('22)

There exists a universal K > 0 such that for every finite X and increasing $\mathcal{F} \subseteq 2^X$,

$$p_c(\mathcal{F}) \leq \mathit{Kp}_{\mathsf{E}}(\mathcal{F}) \log \ell(\mathcal{F})$$

* $\ell(\mathcal{F})$: the size of a largest minimal element of \mathcal{F}

 Proofs inspired by ALWZ (sunflower) and FKNP (fractional Kahn-Kalai) but implementation different

Thank you!