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PLAN

@ In this talk | will introduce the Kahn-Kalai Conjecture, a central
conjecture in probabilistic combinatorics, and discuss our results
related to it.

o We first start with a brief introduction to random graphs, to begin
with a concrete picture in mind. (Also, historically random graph
theory was the starting point for our story.) The setting of our

work is much more general.
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e G, (Erdés-Rényi random graph):
o vertex set = [n] :={1,2,..., n}; think n (finite but) large.
e each potential edge is included with probability p independently.

e eg Gppwithn=3p=1/2

Sl st
Tapd AN AN A

@ So it makes sense to ask questions such as
P(Gh,p is planar)?, P(Gp p is connected)?, etc. « "typicality”

e whp (with high probability): “G, , does A whp" means

P(Gp,p does A) — 1 as n — oo.
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=<: same order
One striking thing about G, , is: appearance and disappearance of certain
properties are “abrupt.” — thresholds

[Evolution of G, ] — Think as "adding edges one by one at random”

p=0 1

E.g. (typical) maximum size of connected components of G,
<logn ifnp<l—e¢
=n if np>1+c¢

Central interest in Probabilistic Combinatorics
Find thresholds for various properties! J




Thresholds for various properties of random graphs

P:O 1

Some past results on finding thresholds

Small subgraphs (Erdés-Rényi '59, Bollobas '81)

Connectivity (Erdds-Rényi '59)

Perfect matchings (Erdés-Rényi '66)

Long paths and cycles (Ajtai-Komlds-Szemerédi '81, de la Vega '79)
Hamilton cycles (Pésa '76, Bollobas '84, Ajtai-Komldés-Szemerédi '85)
Ramsey properties (Rodl-Rucinski '95)

Clique factors (Johansson-Kahn-Vu '08)

Spanning trees (Krivelevich '10, Montgomery '19)

— Study has been done mostly for specific properties.
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Basic definitions * K,: the complete graph on n vertices

o X: finite set; 2% = {subsets of X}
e 1,: p-biased product probability measure on 2%
pp(A) = pA(1— p)X\A A C X
@ X, ~ up "p-random” subset of X
egl X= ([’2’]) = E(K,)
— Xp = G,,,p Erd8s-Rényi random graph (< edge percolation on Kj)

e.g.2. X = {k-clauses from {x1,...,xp}}
— Xp : random CNF formula X

e F C 2X is an increasing property if
BODOAe F=Be¢cF

e.g.l. F = {connected}; F = {contain a triangle}
e.g.2. F = {not satisfiable} 0
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Thresholds

Fact.
For any increasing property F (# 0,2%), up(F) (= P(X, € F)) is

continuous and strictly increasing in p.

HP(}—)

]
o jﬁ @ pc(F) is called the threshold for F.

0 PC(]:) !
e cf. Erd8s-Rényi: pg = po(n) is a threshold function for F,, if

p

0 ifp<po * pc(Fn) is always an Erdds-Rényi

pp(Fn) = _
1 if p> po threshold (Bollobds-Thomason '87).



Study of thresholds

1/2 J

@ Location of thresholds:

o historically most of interesting work was on thresholds for specific
properties.
e The Kahn-Kalai Conjecture ('06) suggests a general bound.
@ Sharpness of thresholds: Kahn-Kalai-Linial ('88), Friedgut-Kalai
('96), Friedgut ('99) all based on Fourier analysis



1. The Kahn-Kalai Conjecture

"It would probably be more sensible to conjecture that
it is not true.”
- Kahn and Kalai (2006)

Question.

What drives p.(F)?
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Example 1. Containing a copy of H <D _

° X = (['27]) (so Xp = n,p); FH: contain a copy of H

Example 1.
What's the threshold for G, , to contain a copy of H?

same order

@ Usual suspect: expectation calculation

0 if p<n >
E[# H'sin G, p) < n*p> — P
0o if p>nts

“threshold for E” =< n—4/5

o triv. pco(Fy) = n*> (- EX — 0= X =0 with high probability)

o truth: p.(Fy) = n4/°
Dream

E predicts p.(F)?
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Example 2.

What's the threshold for G, , to contain a copy of A?

- 0 if p<n®e
E[# A'sin G,p] < n°p°® — P
0o if p>no/0
“threshold for E" = n=5/°
© Q. po(Fg) =< n=507  (triv. po(Fp) = n°/°)
o truth: pc(Fp) = n~*/°
Erdés-Rényi ('60), Bollobas ('81)
(Rough:) For fixed graph H,
pc(Fu) =< "threshold for E” of the "densest” subgraph of H




Example 3. Containing a perfect matching [ I I [
NI

n vertices

o X = ([g]) (so Xp = Gpp); F: contain a perfect matching

Example 3.
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Example 3.
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/2 0 if < 1/n
E[# Perfect matchings in G, p] ~ (L:)n - p /

oo if p>1/n
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o truth: p.(F) =<logn/n
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How many boxes of cereal do we (typically) need to buy to collect all n
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Y
Example 3. n vertices

What's the threshold for G, , to contain a perfect matching?

e “threshold for E" <1/n vs. p(F)=<logn/n
e Actually, log n/n is another trivial lower bound on p.(F).

Fact. p < logn/n = G, p has an isolated vertex w.h.p.
@ Coupon collector problem: Each box of cereal contains a random
coupon, and there are n different types of coupons.

Question.
How many boxes of cereal do we (typically) need to buy to collect all n

coupons?

Answer =< nlogn
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One more example: perfect hypergraph matchings

o Now, X = (I

e X, = random r-uniform hypergraph H; ,

Example 3'. (Shamir’s Problem (‘80s))

For r > 3, what's the threshold for Hf,yp to contain a perfect matching?

(r[n)

o cf. r = 2: ErdGs-Rényi ('66) r > 3 much harder

e eg. r=23:
o E[# perfect mat'gs in 1], )] < (n2p/e2)"/3 — “threshold for E" < n—2
o Lower bound from coupon-collector:

pe(F) = log n/n?

e p.(F)=logn/n* (Johansson-Kahn-Vu '08) * log n gap again
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What drives p.(F)?

@ We have some trivial lower bounds on p.:
o Ex 1, 2 (contain H/H): "threshold for E”

e Ex 3, 3/ (contain a PM): coupon collector-ish behavior (log n gap)
@ Historically, in many interesting cases, the main task is to find a
matching upper bound.
The Kahn-Kalai Conjecture (‘06): rough statement

For any increasing property, the threshold is at most log | X| times the

"expectation threshold"”.

e This is a VERY strong conjecture: immediately implies (e.g.)

o threshold for perfect hypergraph matchings (Johansson-Kahn-Vu '08)

pe = n =Y K, e <logn/n"t

o threshold for bounded degree spanning trees ("tree conjecture”;
Montgomery '19)



pe(F): the expectation threshold

@ For abstract F, it's unclear whose expectation we want to compute,
so need a careful definition for the "threshold for E.”
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o Gi = {all (labeled) copies of H *." "s} ‘W
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pe(F): the expectation threshold

Observation
pe(F) > g if 3 G C 2X such that
@ "G covers F': VAe F dB € G such that AD B

@ >5egdP <3 (“g-cheap”)

eg. inEx2, X = ([;’]), F: contain a copy of H <P

o G1 = {all (labeled) copies of H *." ’s} s A

— Y seq qlSl <1/2for g < n7 56— 030 < p (F)

e G = {all (labeled) copies of H ".""'s}

— Y56, qlsl < 1/2for g < n %5 = n %5 < p(F)
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pe(F): the expectation threshold

Observation
pe(F) > q if 3 G C 2X such that
Q "Gcovers F': VA€ F 3Be Gsuchthat AD B (F C(G))

the upset
S 1 u "
2] ZSEQ ql ‘ <3 ( g-cheap ) generated by G

o p.(F):=max{qg:3 G} — a trivial lower bound on p.(F)
The Kahn-Kalai Conjecture (‘06)

There exists a universal K > 0 such that for every finite X and increasing
F C2X,

(pe(F) <) pe(F) < Kpe(F) log | X|




Results and Proof Sketch
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Conj of Talagrand: fractional version of Kahn-Kalai Conj

® pI(F): the fractional expectation threshold for F

o skip def: roughly, replace cover G by "fractional cover”
o Easy. p.(F) < pi(F) < pe(F)
Conj (Talagrand ‘10); proved by Frankston-Kahn-Narayanan-P. (‘19).
There exists a universal K > 0 such that for every finite X and increasing

Fc2X,
pc(F) < Kp;(F) log ¢(F).

* ¢(F): the size of a largest minimal element of F

o Weaker than KKC, but in all known applications, p.(F) < pZ(F)
@ Proof inspired by Alweiss-Lovett-Wu-Zhang

"Erd6s-Rado Sunflower Conjecture”



New result

Conjecture (Kahn-Kalai '06); proved by P.-Pham ('22)

There exists a universal K > 0 such that for every finite X and increasing
F C 2%,

pc(F) < Kpg(F) log £(F)

* {(F): the size of a largest minimal element of F

@ Proofs inspired by ALWZ (sunflower) and FKNP (fractional
Kahn-Kalai) but implementation different



Thank you!
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