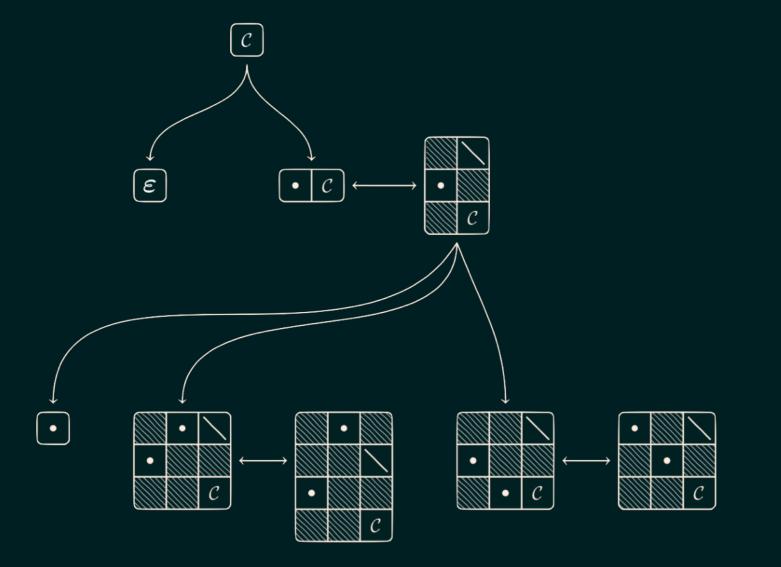
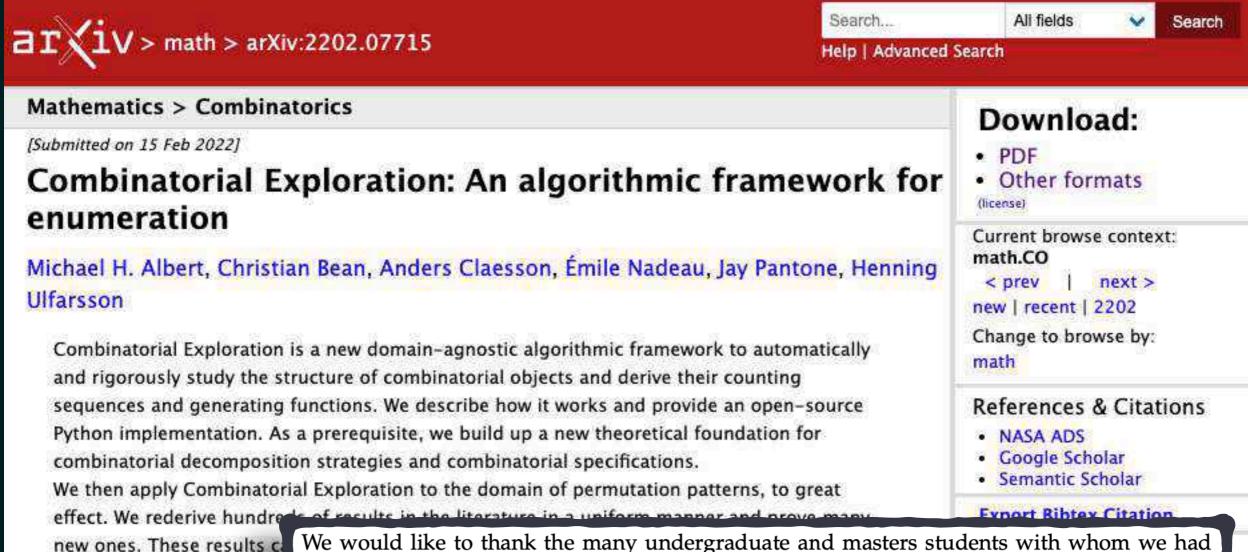
Combinatorial Exploration

an algorithmic framework for enumeration

Jay Pantone Marquette University

> with: Michael Albert Christian Bean Anders Claesson Émile Nadeau Henning Ulfarsson





new ones. These results c Avoidance Library (PermPA concept, showing example of alternating sign matrice

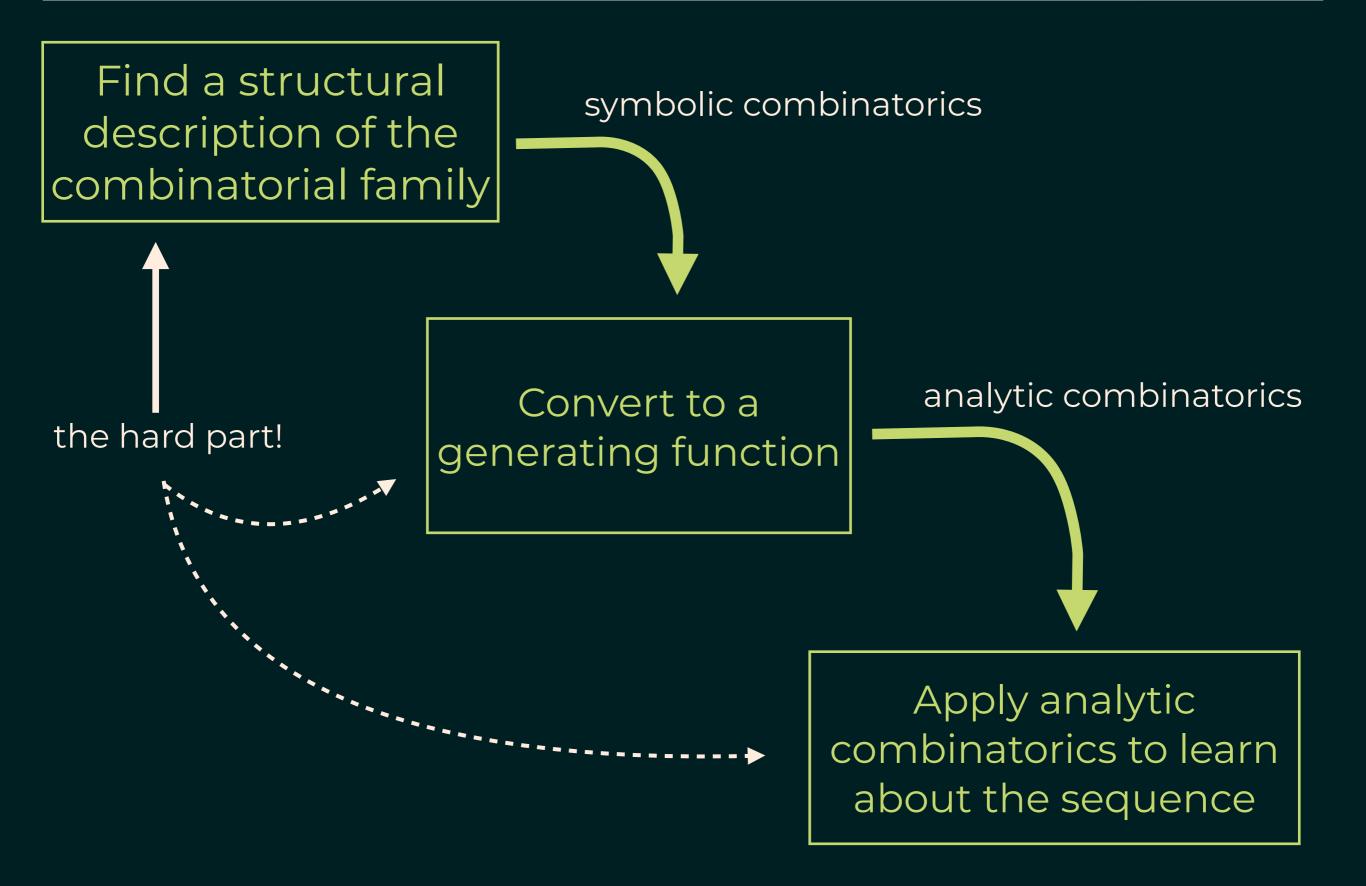
Subjects: Combinatorics (math.) Cite as: arXiv:2202.07715 [mathefile] (or arXiv:2202.07715 [mathefile]

We would like to thank the many undergraduate and masters students with whom we had invaluable discussions and who contributed to this work, including (with references to their theses when applicable): Annija Apine, Ragnar Páll Árdal [13], Arnar Bjarni Arnarsson [14, 15], Alfur Birkir Bjarnason [15], Jon Steinn Eliasson [75], Unnar Freyr Erlendsson [15, 76], Kolbeinn Páll Erlingsson [87], Bjarki Ágúst Guðmundsson, Björn Gunnarsson [87], Sigurður Helgason [126], Kristmundur Ágúst Jónsson [87], Tómas Ken Magnússon [111], James Robb [126], Óðinn Hjaltason Schiöth, Murray Tannock, and Sigurjón Freyr Viktorsson [15].

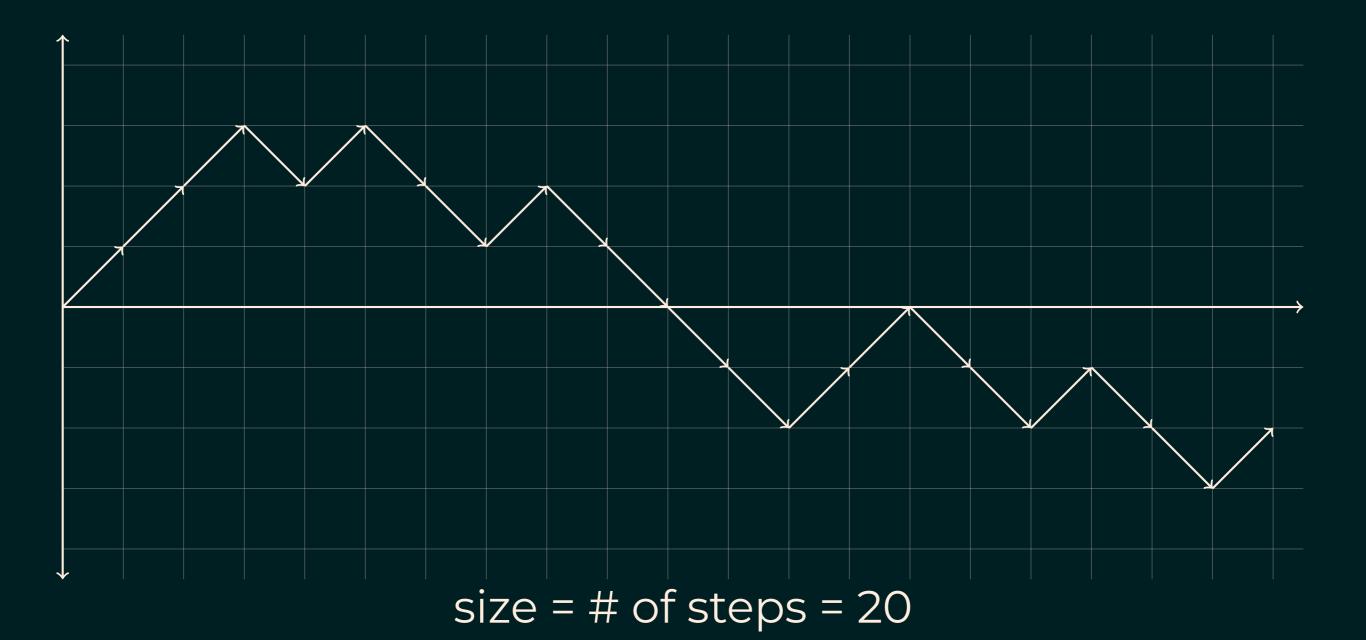
https://doi.org/10.48550/arXiv.2202.07715

- A <u>combinatorial family</u> is a set of objects defined by some property.
 - walks in the plane that never collide with themselves
 - permutations whose entries never form certain patterns
 - polyominoes whose columns are all convex

- Questions:
 - How many are there of each size?
 - explicit formula, generating function, polynomial-time algorithm
 - How does the counting sequence grow asymptotically as $n \to \infty$?
 - How can I sample an object of size n uniformly at random?
 - How can I build the objects of size n from the objects of smaller size?

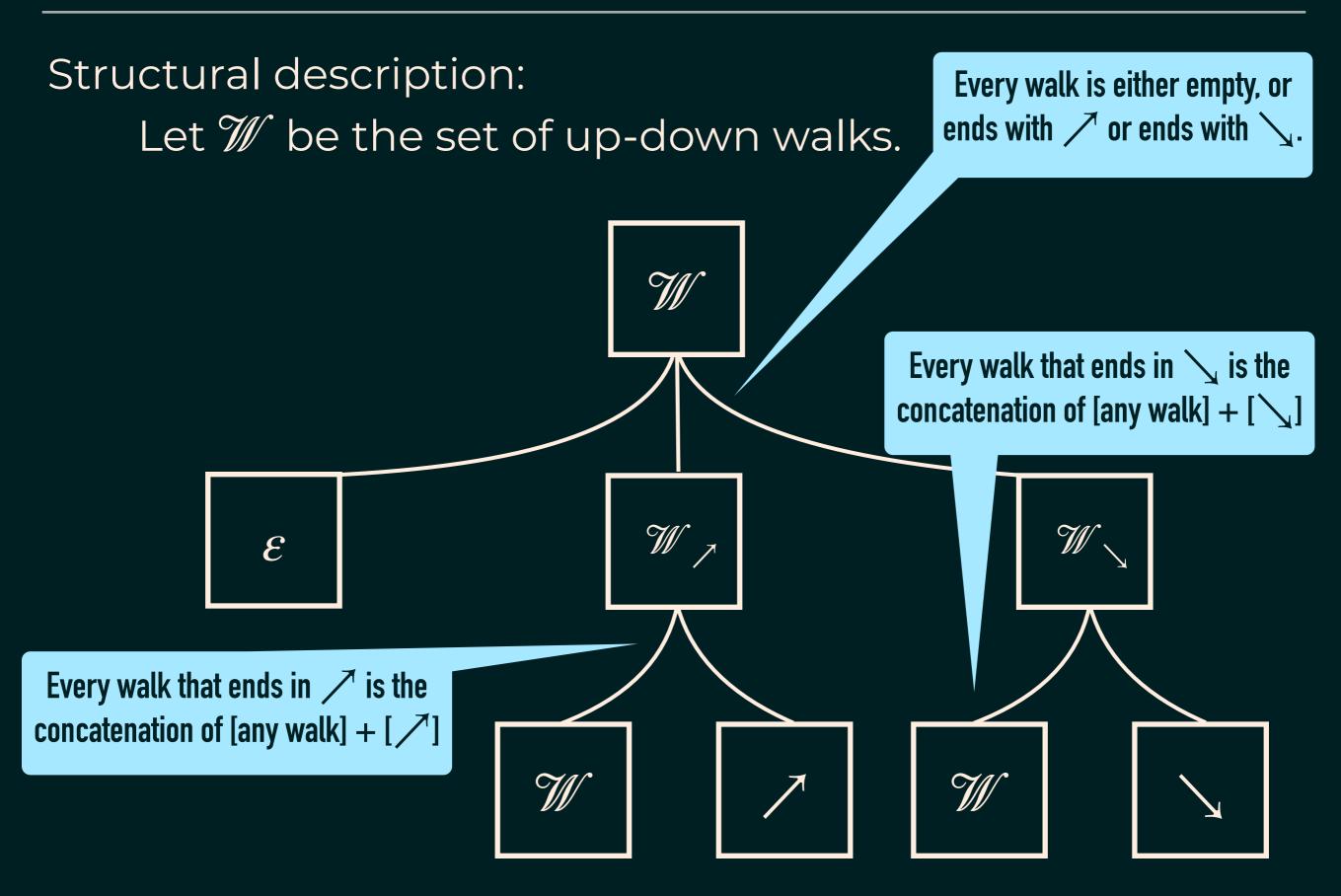


An *up-down walk* is a walk in the plane that starts at the origin and takes only NE and SE steps.



Before we ask questions, we need to understand the structure.

- The set of up-down walks of size n can be built by appending either a NE step or a SE step to every up-down walk of size n 1.
- Let's write this <u>structural description</u> in a tree format.



What do we learn from this structural decomposition? Systems of equations for generating functions!

$$A(x) = B(x) + C(x) + D(x)$$

$$B(x) = 1$$

$$C(x) = A(x)E(x)$$

$$D(x) = A(x)F(x)$$

$$E(x) = x$$

$$F(x) = x$$

$$A(x) = \frac{1}{1 - 2x} = 1 + 2x + 4x^{2} + 8x^{3} + \cdots$$

$$M(x) = \frac{1}{1 - 2x} = 1 + 2x + 4x^{2} + 8x^{3} + \cdots$$

every sy

These structural description trees are just a pictorial way to represent a combinatorial specification.

$$A \rightarrow (B, C, D)$$

$$B \rightarrow \{\varepsilon\}$$

$$C \rightarrow (A, E)$$

$$D \rightarrow (A, F)$$

$$E \rightarrow \{ \nearrow \}$$

$$F \rightarrow \{ \searrow \}$$

$$F \rightarrow \{ \searrow \}$$
every symbol on the right-hand side appears on exactly one left-hand side $\mathcal{W} \nearrow \mathcal{W}$

Е

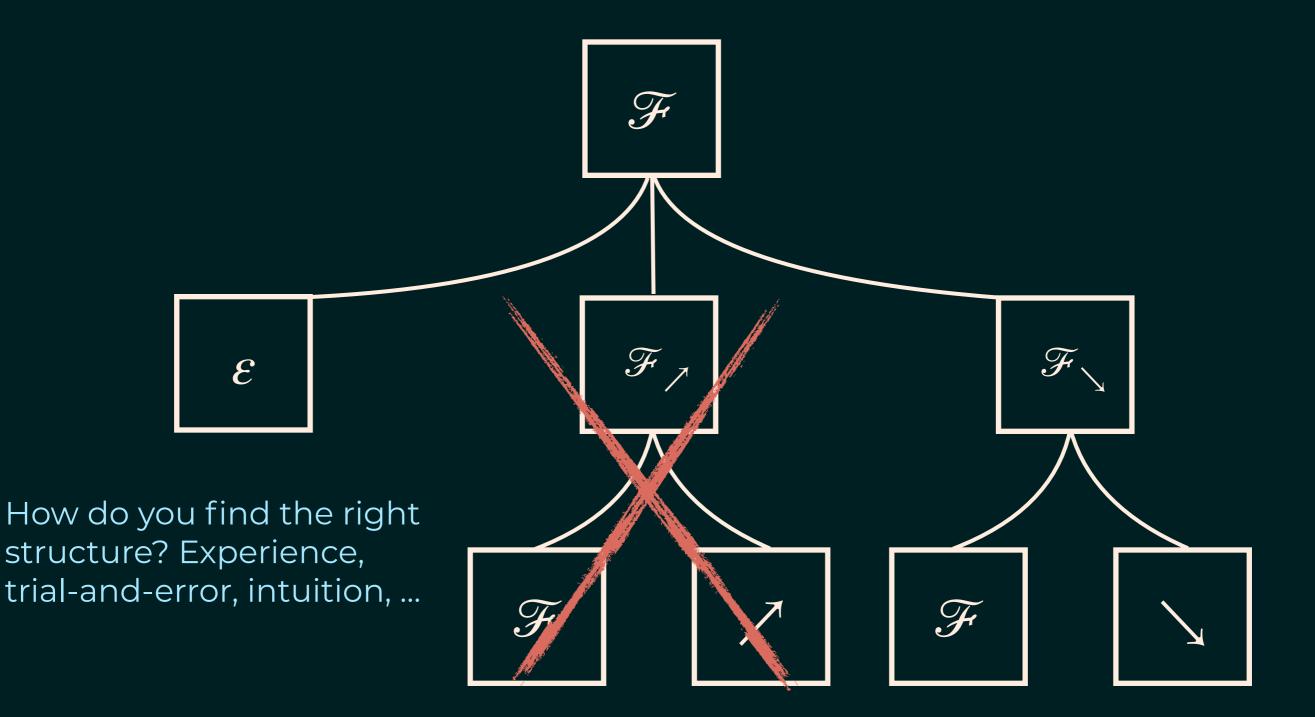
Α

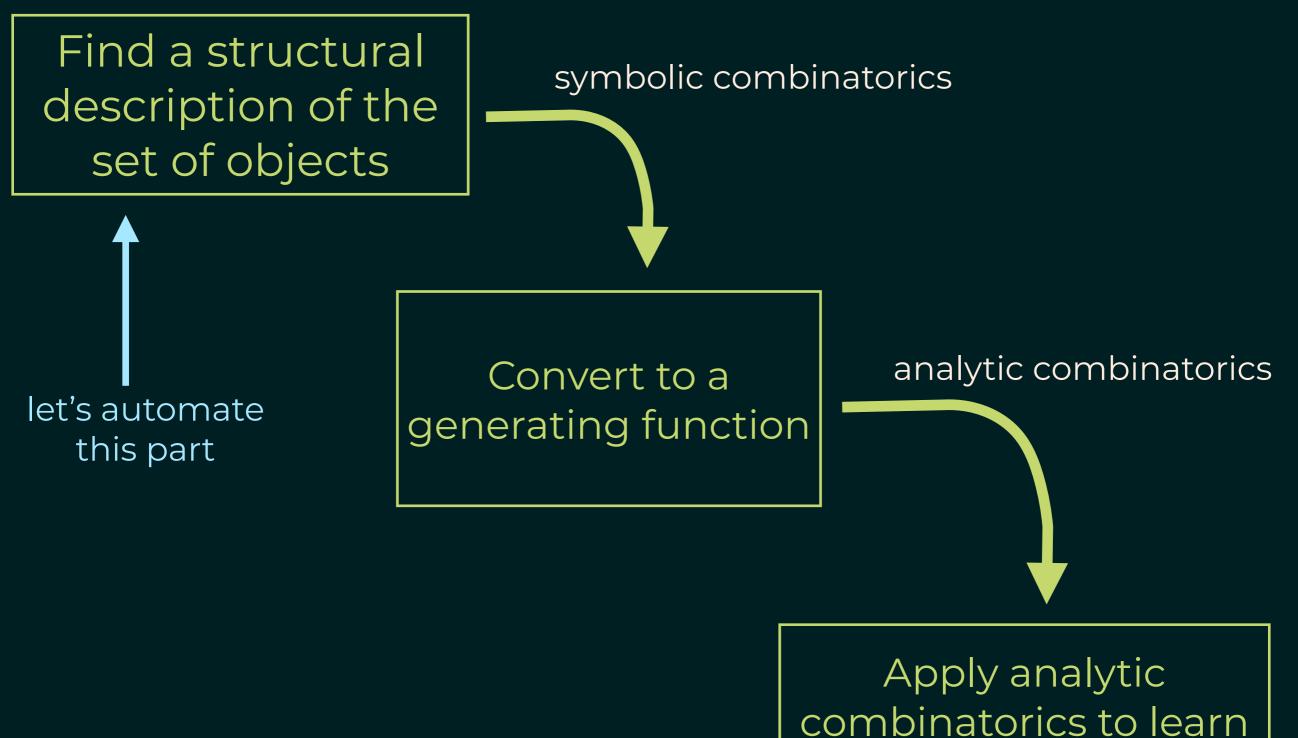
Α

F

Slightly more complicated:

 \mathcal{F} = the set of walks that don't go up three times in a row



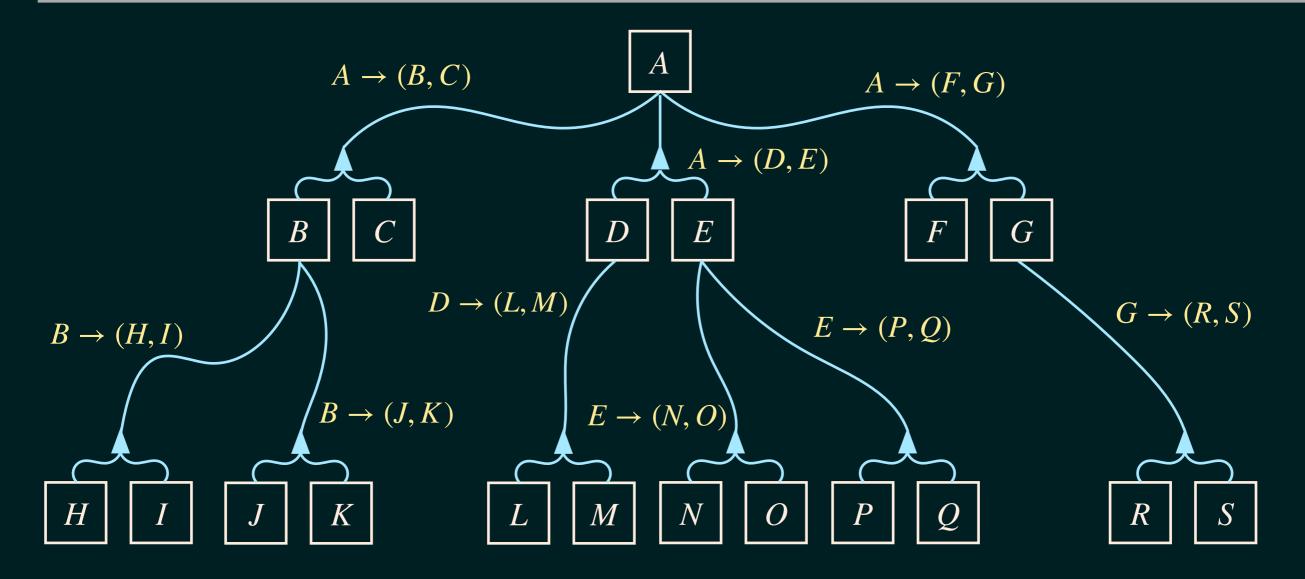


about the sequence

Requirements:

- a domain of all objects (up-down walks)
- ▶ a representation for the sets of objects that you'll be working with $("\mathcal{W}_{\mathcal{I}}"$ is the set of up-down walks that end with \mathcal{I})
- decomposition strategies to split the sets into (hopefully) simpler sets

COMBINATORIAL EXPLORATION



this is just a pictorial version of a list of combinatorial rules

> when the giant list of rules you're generating contains a subset that is a combinatorial specification, you win!

Caveats:

- This is the main idea, but there's a lot of complicated machinery going on under the hood.
- Many of the internal steps require clever efficient algorithms.
- If you're not careful, the combinatorial specifications you get as output could be tautological.
- ~ 31,000 lines of Python code

To run Combinatorial Exploration on a new type of object, you just need to:

- decide on a good way to represent sets of those objects, and write a Python class for it
- decide on effective decomposition strategies (this is where domain-specific experience comes in handy)
- plug these right into our framework, and hit go
 - Framework: ~ 7,300 lines of code
 - Binary words example: ~ 200 lines of code
 - Permutation Patterns: ~24,000 lines of code

https://github.com/PermutaTriangle/comb_spec_searcher

Domains we've coded:

- permutation patterns (inspired this work)
- set partitions
- Motzkin paths

Domains that seem promising on paper:

- polyominoes
- inversion sequences
- alternating sign matrices

Given a set of permutations B, you can study the set of permutations avoiding the permutations in B as patterns — these sets are called permutation classes.

For the cases where B contains two permutations of length 4, there are essentially 56 different permutation classes.

(https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes)

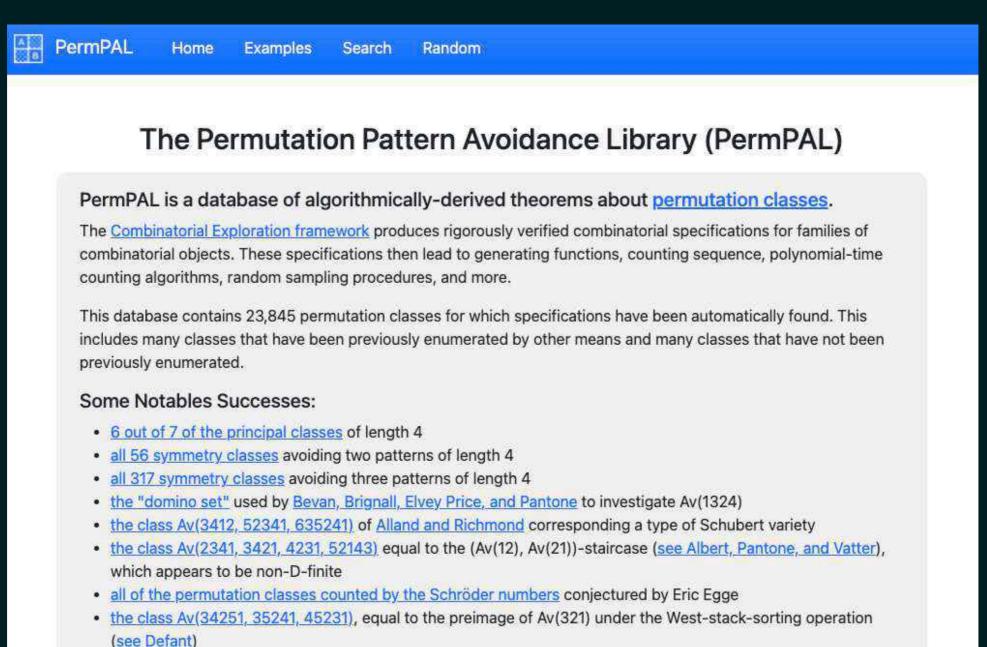
Their enumerations are all known now, but it took several decades and dozens of papers.

Combinatorial Exploration can enumerate all of them.

- 6/7 avoiding 1 pattern of length 4 all except Av(1324)
- 56/56 avoiding 2 patterns of length 4
- 317/317 avoiding 3 patterns of length 4
- And all avoiding 4-24 patterns of length 4

Dozens of known results and dozens of new results, and corrects several wrong results.

https://permpal.com



Section 2.4 of the article <u>Combinatorial Exploration</u>: An Algorithmic Framework for Enumeration gives a more comprehensive list of notable results.

The <u>comb_spec_searcher</u> github repository contains the open-source python framework for Combinatorial Exploration, and the <u>tilings</u> github repository contains the code needed to apply it to the field of permutation patterns.

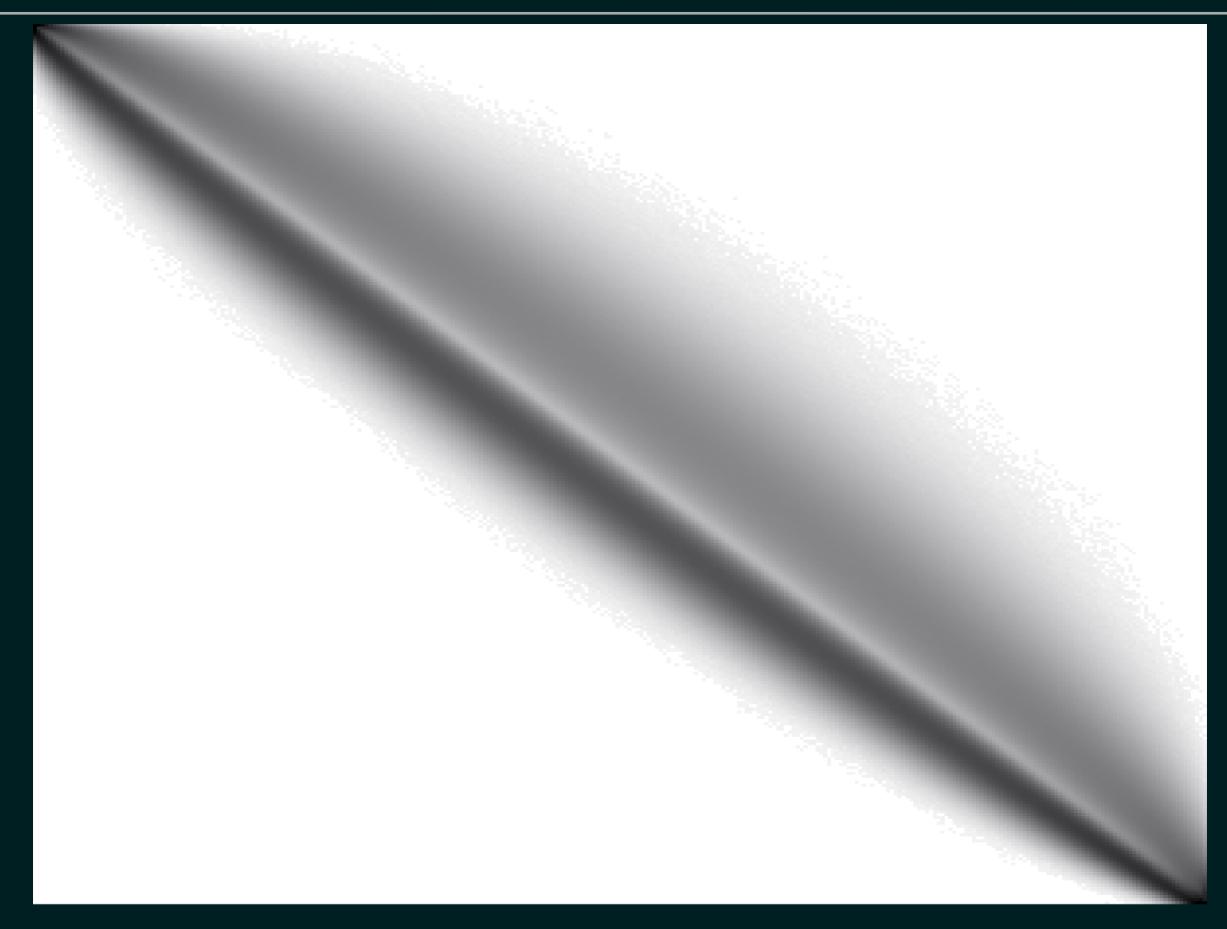
v(1342)	
w Raw Data	
Generating Function	Counting Sequence
$\frac{-8\sqrt{-8x+1}x-8x^2+\sqrt{-8x+1}+20x+1}{2(x+1)^3}$	1, 1, 2, 6, 23, 103, 512, 2740, 15485, 91245, 555662, 3475090, 22214707, 144640291, 956560748,
Copy to clipboard: latex Maple sympy Search on PermPAL	Copy 101 terms to clipboard Search on OEIS Search on PermPAL
Recurrence	Implicit Equation for the Generating Function
$egin{aligned} a(0) &= 1\ a(1) &= 1\ a(n+2) &= rac{4\left(3+2n ight)a(n)}{n+2} + rac{\left(-8+7n ight)a(n+1 ight)}{n+2}, & n \geq 2 \end{aligned}$	$(x+1)^3F(x)^2+ig(8x^2-20x-1ig)F(x)+16x=0$
	Copy to clipboard: latex Maple Search on PermPAL
Copy to clipboard: latex Maple	

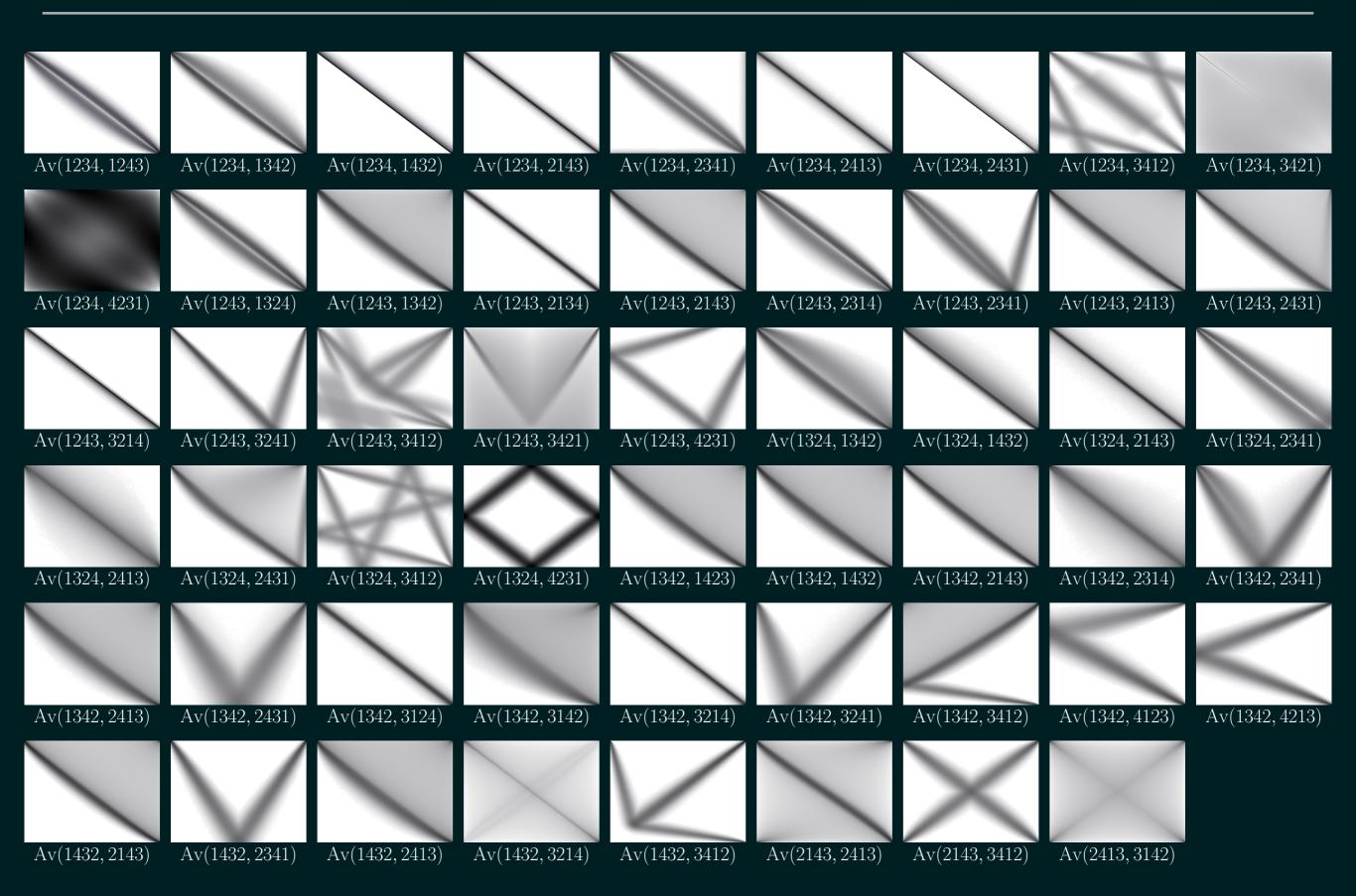
This specification was found using the strategy pack "Point And Col Placements Tracked Fusion" and has 29 rules.

Found on May 26, 2021. Finding the specification took 1720 seconds.

System of Equations Copy 29 equations to clipboard: latex Maple. $F_0(x) = F_1(x) + F_2(x)$ $F_1(x) = 1$ $F_2(x) = F_3(x)$ $F_3(x) = F_4(x)F_5(x)$ $F_4(x) = x$ $F_5(x) = F_6(x,1)$ $F_6(x,y) = F_0(x) + F_7(x,y)$ $F_7(x,y) = F_8(x,y)$ $F_8(x,y) = F_{14}(x,y)F_9(x,y)$ $F_9(x,y) = F_{10}(x,y) + F_{15}(x,y)$ $F_{10}(x,y) = F_{11}(x,y)F_6(x,y)$ $F_{11}(x,y) = F_1(x) + F_{12}(x,y)$ $F_{12}(x,y) = F_{13}(x,y)$ $F_{13}(x,y) = F_{11}(x,y)^2 F_{14}(x,y)$ $F_{14}(x,y) = yx$ $F_{15}(x,y) = F_{16}(x,y)$ $F_{16}(x,y) = F_{17}(x,y)F_4(x)F_6(x,y)$ $F_{18}(x,y) = F_0(x)F_{17}(x,y)F_4(x)$ $F_{18}(x,y) = F_{19}(x,y)$ $F_{20}(x,y) = F_{19}(x,y) + F_{28}(x,y)$ $F_{20}(x,y) = F_{21}(x,y) + F_6(x,y)$ $F_{21}(x,y) = F_{22}(x,y)$ $F_{22}(x,y) = F_{23}(x,y)F_4(x)$ $F_{23}(x,y)=rac{yF_{24}(x,y)-F_{24}(x,1)}{-1+y}$ $F_{24}(x,y) = F_{25}(x,y) + F_{26}(x,y)$ $F_{25}(x,y) = F_{11}(x,y)F_5(x)$ $F_{26}(x,y) = F_{27}(x,y)$ $F_{27}(x,y) = F_{17}(x,y)F_4(x)F_5(x)$ $F_{28}(x,y) = F_0(x)F_{11}(x,y)$

sympy





Computational Difficulties

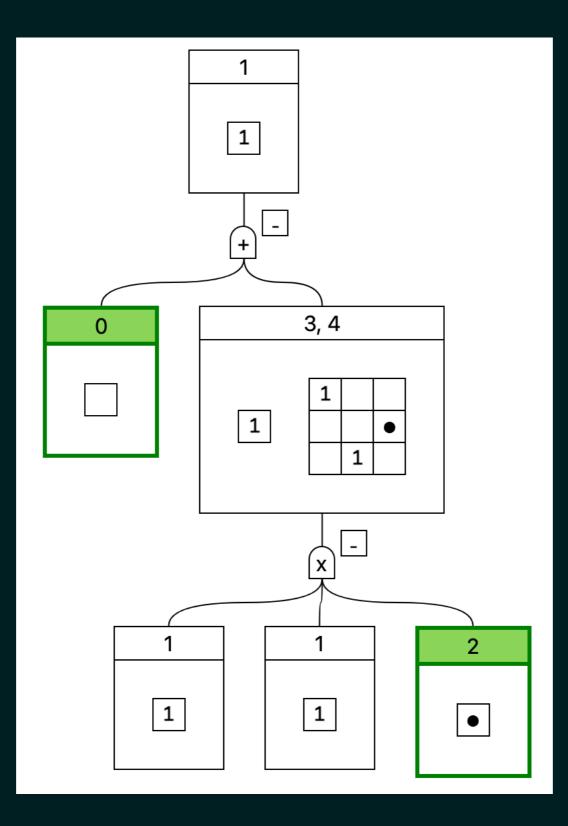
Permutations avoiding 132:

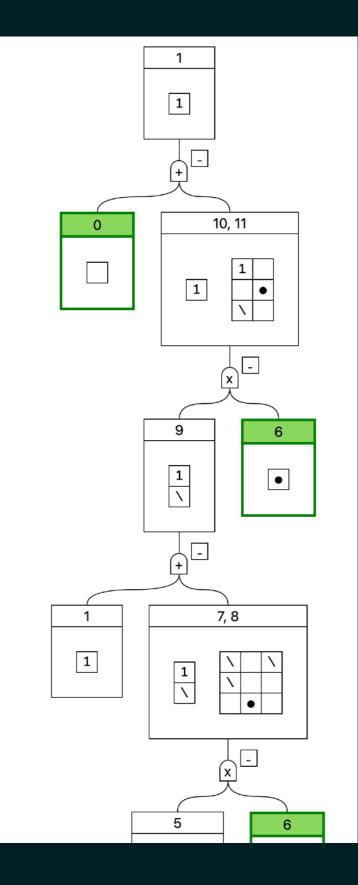
 $F_0(x) = F_1(x) + F_2(x)$ $F_1(x) = F_0(x)^2 \cdot F_3(x)$ $F_2(x) = 1$ $F_3(x) = x$

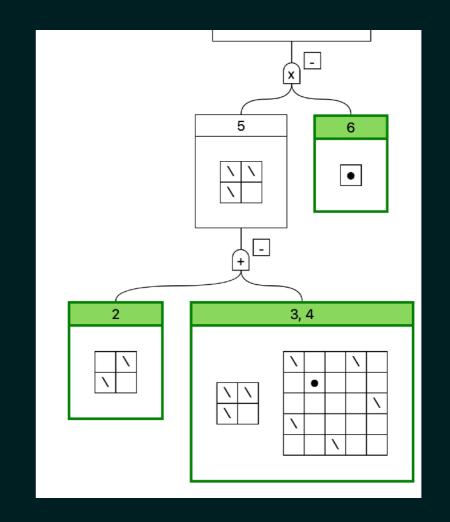
Permutations avoiding 1432 and 2143:

 $F_{0}(x) = F_{547}(x) + F_{373}(x)$ $F_{1}(x) = F_{0}(x) - F_{118}(x)$... $F_{549}(x) = 0$

550 equations \longrightarrow guess-and-check







<u>Computational Difficulties</u> — with 1 catalytic variable!

Permutations avoiding 123:

$$F_{0}(x) = F_{11}(x) + F_{6}(x)$$

$$F_{1}(x) = F_{12}(x) \cdot F_{2}(x)$$

$$F_{2}(x) = F_{3}(x,1)$$

$$F_{3}(x,y) = F_{7}(x,y) + F_{8}(x,y)$$

$$F_{4}(x,y) = F_{12}(x) \cdot F_{5}(x,y) \cdot F_{8}(x,y)$$

$$F_{4}(x,y) = F_{12}(x) \cdot F_{5}(x,y) \cdot F_{8}(x,y)$$

$$F_{5}(x,y) = \frac{yF_{3}(x,y) - F_{3}(x,1)}{y - 1}$$

$$F_{6}(x) = F_{1}(x)$$

$$F_{7}(x,y) = F_{4}(x,y)$$

$$F_{8}(x,y) = F_{10}(x,y) + F_{11}(x)$$

$$F_{9}(x,y) = F_{13}(x,y) \cdot F_{8}(x,y)$$

$$F_{10}(x,y) = F_{9}(x,y)$$

$$F_{11}(x) = 1$$

$$F_{12}(x) = x$$

$$F_{13}(x,y) = xy$$

<u>Computational Difficulties</u> — with 2+ catalytic variables!

$$F_{0}(x) = F_{1}(x) + F_{15}(x)$$

$$F_{1}(x) = F_{16}(x) \cdot F_{2}(x)$$

$$F_{2}(x) = F_{3}(x,1)$$

$$F_{3}(x,y) = F_{12}(x,y) + F_{15}(x) + F_{4}(x,y)$$

$$F_{4}(x,y) = F_{17}(x,y) \cdot F_{5}(x,y)$$

$$F_{5}(x,y) = F_{14}(x,1,y)$$

$$F_{6}(x,y,z) = F_{11}(x,y,z) + F_{15}(x) + F_{7}(x,y,z) + F_{9}(x,y,z)$$

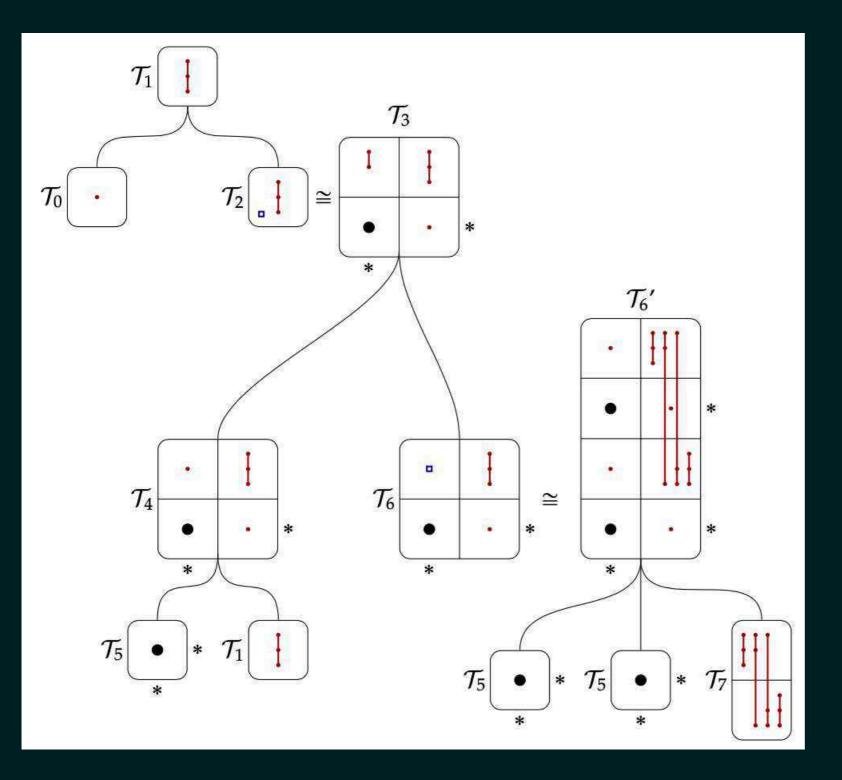
$$F_{7}(x,y,z) = F_{17}(x,z) \cdot F_{8}(x,y,z)$$

$$F_{14}(x,\frac{y}{z},z) - z \cdot F_{14}(x,1,z)$$

$$F_{8}(x,y,z) = F_{10}(x,y,z) \cdot F_{16}(x)$$

$$\begin{split} F_{10}(x,y,z) &= \frac{zF_6(x,y,z) - F_6(x,y,1)}{z-1} \\ F_{11}(x,y,z) &= F_{17}(x,y) \cdot F_6(x,y,z) \\ F_{12}(x,y) &= F_{13}(x,y) \cdot F_{16}(x) \\ F_{13}(x,y) &= \frac{yF_3(x,y) - F_3(x,1)}{y-1} \\ \hline F_{14}(x,y,z) &= F_6(x,yz,z) \\ F_{15}(x) &= 1 \\ F_{16}(x) &= x \\ F_{17}(x,y) &= xy \end{split}$$

SET PARTITIONS



$$T_{1}(x) = 1 + T_{2}(x)$$

$$T_{2}(x) = T_{4}(x) + T_{6}(x)$$

$$T_{4}(x) = T_{1}(x) \cdot T_{5}(x)$$

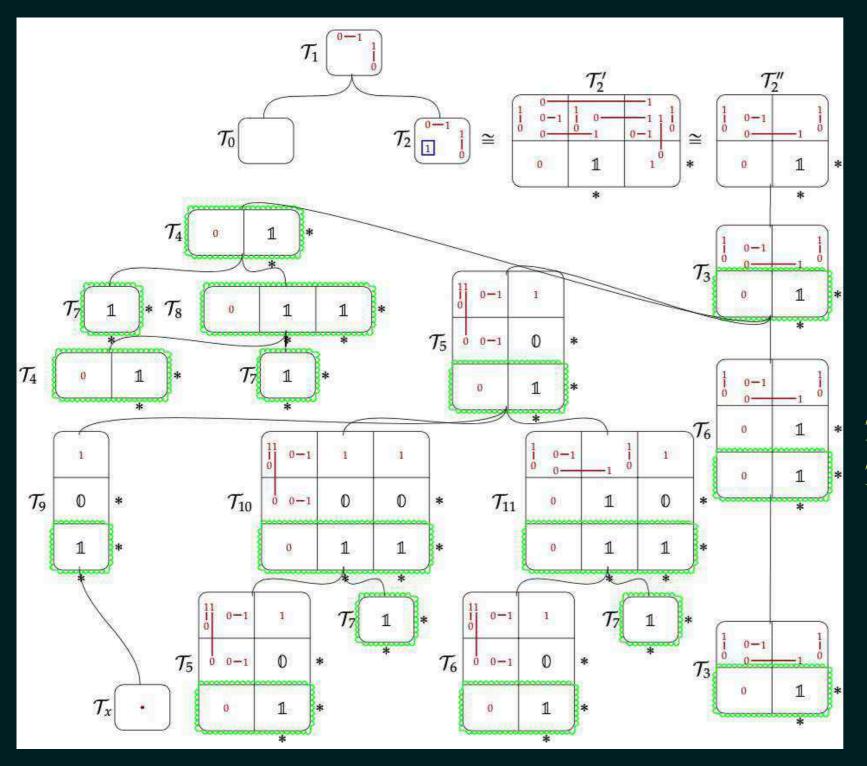
$$T_{5}(x) = x$$

$$T_{6}(x) = T_{5}(x)^{2} \cdot T_{7}(x)$$

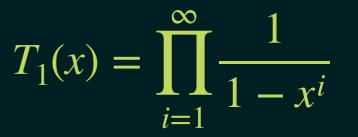
$$T_{7}(x) = \frac{d}{dx}(x \cdot T_{1}(x))$$

$$T_1(x) = 1 + (x + x^2)T_1(x) + x^3 \frac{d}{dx}T_1(x)$$

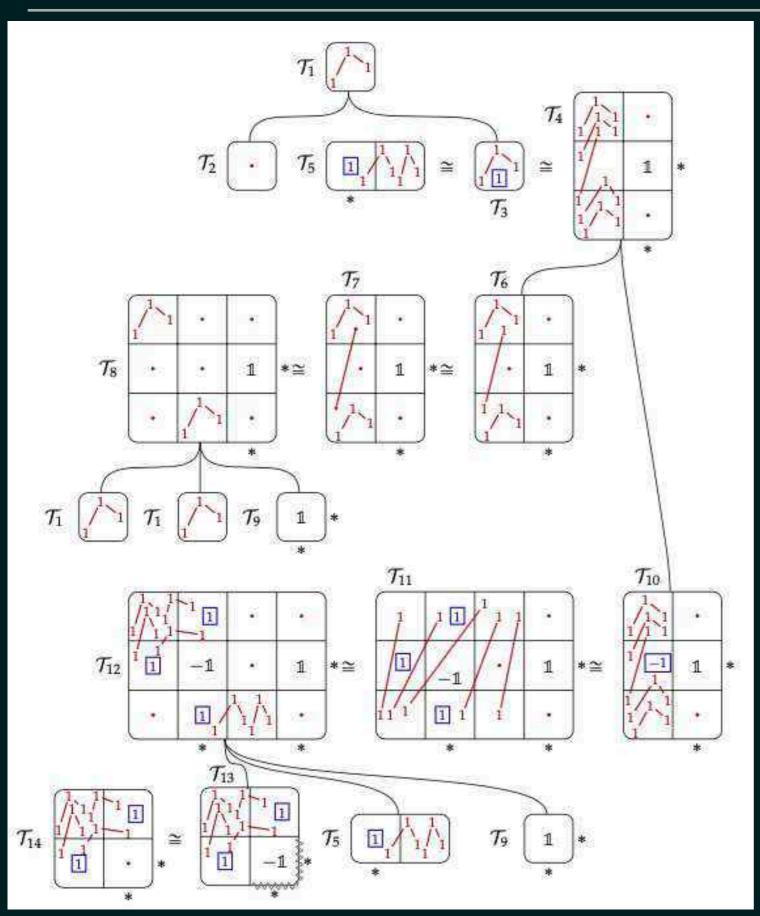
POLYOMINOES

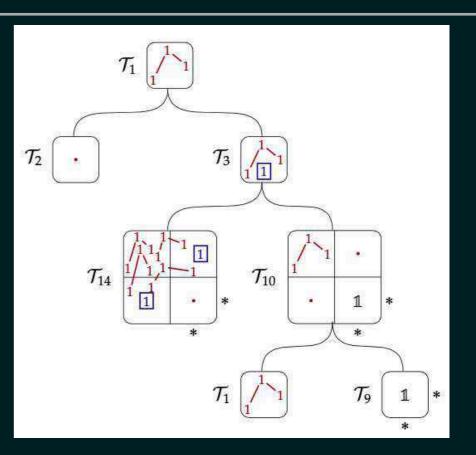


 $T_{1}(x) = 1 + T_{2}(x)$ $T_{2}(x) = T_{3}(x,1)$ $T_{3}(x,y) = T_{4}(x,y) + T_{5}(x,y) + T_{6}(x,y)$ $T_{4}(x,y) = T_{7}(x,y) + T_{8}(x,y)$ $T_{5}(x,y) = T_{9}(x,y) + T_{10}(x,y) + T_{11}(x,y)$ $T_{6}(x,y) = T_{3}(x,xy)$ $T_{7}(x,y) = xy$ $T_{8}(x,y) = T_{4}(x,y) \cdot T_{7}(x,y)$ $T_{9}(x,y) = 0$ $T_{10}(x,y) = T_{5}(x,y) \cdot T_{7}(x,y)$ $T_{11}(x,y) = T_{6}(x,y) \cdot T_{7}(x,y)$



ALTERNATING SIGN MATRICES





$$T_1(x) = \frac{3 - x - \sqrt{1 - 6x + x^2}}{2}$$

Thank you!

https://permpal.com