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ENUMERATIVE COMBINATORICS

‣ A combinatorial family is a set of objects defined by 
some property.
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‣ walks in the plane that never collide with 
themselves 

‣ permutations whose entries never form certain 
patterns 

‣ polyominoes whose columns are all convex 



ENUMERATIVE COMBINATORICS

‣ Questions:
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‣ How many are there of each size? 
‣ explicit formula, generating function, polynomial-time algorithm  

‣ How does the counting sequence grow asymptotically as  

? 

‣ How can I sample an object of size  uniformly at random? 

‣ How can I build the objects of size  from the objects of 
smaller size? 

n → ∞

n

n



THE WORKFLOW OF ENUMERATIVE COMBINATORICS 5

Find a structural 
description of the 

combinatorial family

Convert to a 
generating function 

symbolic combinatorics

Apply analytic 
combinatorics to learn 

about the sequence

analytic combinatorics
the hard part!



EXAMPLE: WALKS

An up-down walk is a walk in the plane that starts at 
the origin and takes only NE and SE steps.
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size = # of steps = 20



EXAMPLE: WALKS 7

Before we ask questions, we need to understand the 
structure.

‣ The set of up-down walks of size  can be built by 
appending either a NE step or a SE step to every up-

down walk of size . 

‣ Let’s write this structural description in a tree format.

n

n − 1
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Structural description: 

        Let  be the set of up-down walks.𝒲

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

Every walk is either empty, or 

ends with  or ends with .↗ ↘

Every walk that ends in  is the 

concatenation of [any walk] + [ ]

↗
↗

Every walk that ends in  is the 

concatenation of [any walk] + [ ]

↘
↘
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𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

What do we learn from this structural decomposition?

A

B C D

A E A F

Systems of equations for generating functions!

A(x) = B(x) + C(x) + D(x)

B(x) = 1

C(x) = A(x)E(x)

D(x) = A(x)F(x)

E(x) = x

F(x) = x

⟹ A(x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + ⋯
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𝒲

ε 𝒲↗

𝒲 ↗ 𝒲 ↘

These structural description trees are just a pictorial 
way to represent a combinatorial specification.

A

B C D

A E A F

A → (B, C, D)

B → {ε}

C → (A, E)

D → (A, F)

E → { ↗ }

F → { ↘ }

every symbol on the right-hand side 
appears on exactly one left-hand side 

𝒲↘
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Slightly more complicated: 

    = the set of walks that don’t go up three times in a rowℱ

ℱ

ε ℱ↗ ℱ↘

ℱ ↗ ℱ ↘

How do you find the right 
structure? Experience, 
trial-and-error, intuition, …



THE HARD PART… 12

Find a structural 
description of the 

set of objects

Convert to a 
generating function 

symbolic combinatorics

Apply analytic 
combinatorics to learn 

about the sequence

analytic combinatorics
let’s automate 

this part 
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Requirements: 
‣ a domain of all objects (up-down walks) 
‣ a representation for the sets of objects that you’ll be working with 

(“ ” is the set of up-down walks that end with ) 

‣ decomposition strategies to split the sets into (hopefully) simpler sets 

𝒲↗ ↗

develop strategies for 
a whole domain

apply them to subsets 
of the domain you want 

to learn about
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B C D E F G

H I J K L M N O P Q R S

this is just a pictorial version of a list 
of combinatorial rules 

A → (B, C)

A → (D, E)

A → (F, G)

B → (H, I )

B → (J, K )

D → (L, M)

E → (N, O)

E → (P, Q)
G → (R, S)

when the giant list of rules you’re generating contains 
a subset that is a combinatorial specification, you win! 

A
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Caveats: 

‣ This is the main idea, but there’s a lot of 
complicated machinery going on under the hood. 

‣ Many of the internal steps require clever efficient 
algorithms. 

‣ If you’re not careful, the combinatorial 
specifications you get as output could be 
tautological. 

‣ ~ 31,000 lines of Python code
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To run Combinatorial Exploration on a new type of 
object, you just need to: 

‣ decide on a good way to represent sets of those 
objects, and write a Python class for it 

‣ decide on effective decomposition strategies (this is 
where domain-specific experience comes in handy)   

‣ plug these right into our framework, and hit go  

‣ Framework: ~ 7,300 lines of code 

‣ Binary words example: ~ 200 lines of code 

‣ Permutation Patterns: ~24,000 lines of code

https://github.com/PermutaTriangle/comb_spec_searcher
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Domains we’ve coded: 

‣ permutation patterns (inspired this work) 

‣ set partitions   

‣ Motzkin paths 

Domains that seem promising on paper: 

‣ polyominoes 

‣ inversion sequences 

‣ alternating sign matrices



Given a set of permutations , you can study the set of 

permutations avoiding the permutations in  as  
patterns — these sets are called permutation classes. 

 

For the cases where  contains two permutations of 
length 4, there are essentially 56 different permutation 
classes. 
                    (https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes) 

 

Their enumerations are all known now, but it took 
several decades and dozens of papers. 

Combinatorial Exploration can enumerate all of them.

B

B

B

PERMUTATION PATTERNS 18



‣ 6/7 avoiding 1 pattern of length 4 — all except 
Av(1324) 

‣ 56/56 avoiding 2 patterns of length 4 

‣ 317/317 avoiding 3 patterns of length 4 

‣ And all avoiding 4-24 patterns of length 4 

‣ Dozens of known results and dozens of new results, 
and corrects several wrong results.

PERMUTATION PATTERNS 19
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https://permpal.com
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Av(1234, 1243) Av(1234, 1342) Av(1234, 1432) Av(1234, 2143) Av(1234, 2341) Av(1234, 2413) Av(1234, 2431) Av(1234, 3412) Av(1234, 3421)

Av(1234, 4231) Av(1243, 1324) Av(1243, 1342) Av(1243, 2134) Av(1243, 2143) Av(1243, 2314) Av(1243, 2341) Av(1243, 2413) Av(1243, 2431)

Av(1243, 3214) Av(1243, 3241) Av(1243, 3412) Av(1243, 3421) Av(1243, 4231) Av(1324, 1342) Av(1324, 1432) Av(1324, 2143) Av(1324, 2341)

Av(1324, 2413) Av(1324, 2431) Av(1324, 3412) Av(1324, 4231) Av(1342, 1423) Av(1342, 1432) Av(1342, 2143) Av(1342, 2314) Av(1342, 2341)

Av(1342, 2413) Av(1342, 2431) Av(1342, 3124) Av(1342, 3142) Av(1342, 3214) Av(1342, 3241) Av(1342, 3412) Av(1342, 4123) Av(1342, 4213)

Av(1432, 2143) Av(1432, 2341) Av(1432, 2413) Av(1432, 3214) Av(1432, 3412) Av(2143, 2413) Av(2143, 3412) Av(2413, 3142)



Computational Difficulties 

Permutations avoiding 132: 

 

Permutations avoiding 1432 and 2143: 

 

550 equations  guess-and-check

F0(x) = F1(x) + F2(x)

F1(x) = F0(x)2 ⋅ F3(x)

F2(x) = 1

F3(x) = x

F0(x) = F547(x) + F373(x)

F1(x) = F0(x) − F118(x)
⋯

F549(x) = 0

⟶
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Computational Difficulties  — with 1 catalytic variable! 

Permutations avoiding 123: 

 

F0(x) = F11(x) + F6(x)

F1(x) = F12(x) ⋅ F2(x)

F2(x) = F3(x,1)

F3(x, y) = F7(x, y) + F8(x, y)

F4(x, y) = F12(x) ⋅ F5(x, y) ⋅ F8(x, y)

F5(x, y) =
yF3(x, y) − F3(x,1)

y − 1

F6(x) = F1(x)

F7(x, y) = F4(x, y)

F8(x, y) = F10(x, y) + F11(x)

F9(x, y) = F13(x, y) ⋅ F8(x, y)

F10(x, y) = F9(x, y)

F11(x) = 1

F12(x) = x

F13(x, y) = xy
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Computational Difficulties  — with 2+ catalytic 
variables! 
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F0(x) = F1(x) + F15(x)

F1(x) = F16(x) ⋅ F2(x)

F2(x) = F3(x,1)

F3(x, y) = F12(x, y) + F15(x) + F4(x, y)

F4(x, y) = F17(x, y) ⋅ F5(x, y)

F5(x, y) = F14(x,1,y)

F6(x, y, z) = F11(x, y, z) + F15(x) + F7(x, y, z) + F9(x, y, z)

F7(x, y, z) = F17(x, z) ⋅ F8(x, y, z)

F8(x, y, z) =

yF14 (x,
y

z
, z) − z ⋅ F14(x,1,z)

y − z

F9(x, y, z) = F10(x, y, z) ⋅ F16(x)

F10(x, y, z) =
zF6(x, y, z) − F6(x, y,1)

z − 1

F11(x, y, z) = F17(x, y) ⋅ F6(x, y, z)

F12(x, y) = F13(x, y) ⋅ F16(x)

F13(x, y) =
yF3(x, y) − F3(x,1)

y − 1

F14(x, y, z) = F6(x, yz, z)

F15(x) = 1

F16(x) = x

F17(x, y) = xy
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T1(x) = 1 + T2(x)

T2(x) = T4(x) + T6(x)

T4(x) = T1(x) ⋅ T5(x)

T5(x) = x

T6(x) = T5(x)2 ⋅ T7(x)

T7(x) =
d

dx
(x ⋅ T1(x))

 T1(x) = 1 + (x + x2)T1(x) + x3
d

dx
T1(x)
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T1(x) = 1 + T2(x)

T2(x) = T3(x,1)

T3(x, y) = T4(x, y) + T5(x, y) + T6(x, y)

T4(x, y) = T7(x, y) + T8(x, y)

T5(x, y) = T9(x, y) + T10(x, y) + T11(x, y)

T6(x, y) = T3(x, xy)

T7(x, y) = xy

T8(x, y) = T4(x, y) ⋅ T7(x, y)

T9(x, y) = 0

T10(x, y) = T5(x, y) ⋅ T7(x, y)

T11(x, y) = T6(x, y) ⋅ T7(x, y)

T1(x) =

∞

∏
i=1

1

1 − xi



ALTERNATING SIGN MATRICES 32

T1(x) =
3 − x − 1 − 6x + x2

2
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Thank you!

https://permpal.com


