
Combinatorial
Exploration

Jay Pantone

Marquette University

with:
Michael Albert
Christian Bean

Anders Claesson
Émile Nadeau

Henning Ulfarsson
an algorithmic framework
for enumeration

COMBINATORIAL EXPLORATION 2

ENUMERATIVE COMBINATORICS

‣ A combinatorial family is a set of objects defined by
some property.

3

‣ walks in the plane that never collide with
themselves

‣ permutations whose entries never form certain
patterns

‣ polyominoes whose columns are all convex

ENUMERATIVE COMBINATORICS

‣ Questions:

4

‣ How many are there of each size?
‣ explicit formula, generating function, polynomial-time algorithm

‣ How does the counting sequence grow asymptotically as

?

‣ How can I sample an object of size uniformly at random?

‣ How can I build the objects of size from the objects of
smaller size?

n → ∞

n

n

THE WORKFLOW OF ENUMERATIVE COMBINATORICS 5

Find a structural
description of the

combinatorial family

Convert to a
generating function

symbolic combinatorics

Apply analytic
combinatorics to learn

about the sequence

analytic combinatorics
the hard part!

EXAMPLE: WALKS

An up-down walk is a walk in the plane that starts at
the origin and takes only NE and SE steps.

6

size = # of steps = 20

EXAMPLE: WALKS 7

Before we ask questions, we need to understand the
structure.

‣ The set of up-down walks of size can be built by
appending either a NE step or a SE step to every up-

down walk of size .

‣ Let’s write this structural description in a tree format.

n

n − 1

EXAMPLE: WALKS 8

Structural description:

 Let be the set of up-down walks.𝒲

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

Every walk is either empty, or

ends with or ends with .↗ ↘

Every walk that ends in is the

concatenation of [any walk] + []

↗
↗

Every walk that ends in is the

concatenation of [any walk] + []

↘
↘

EXAMPLE: WALKS 9

𝒲

ε 𝒲↗ 𝒲↘

𝒲 ↗ 𝒲 ↘

What do we learn from this structural decomposition?

A

B C D

A E A F

Systems of equations for generating functions!

A(x) = B(x) + C(x) + D(x)

B(x) = 1

C(x) = A(x)E(x)

D(x) = A(x)F(x)

E(x) = x

F(x) = x

⟹ A(x) =
1

1 − 2x
= 1 + 2x + 4x2 + 8x3 + ⋯

EXAMPLE: WALKS 10

𝒲

ε 𝒲↗

𝒲 ↗ 𝒲 ↘

These structural description trees are just a pictorial
way to represent a combinatorial specification.

A

B C D

A E A F

A → (B, C, D)

B → {ε}

C → (A, E)

D → (A, F)

E → { ↗ }

F → { ↘ }

every symbol on the right-hand side
appears on exactly one left-hand side

𝒲↘

EXAMPLE: WALKS 11

Slightly more complicated:

 = the set of walks that don’t go up three times in a rowℱ

ℱ

ε ℱ↗ ℱ↘

ℱ ↗ ℱ ↘

How do you find the right
structure? Experience,
trial-and-error, intuition, …

THE HARD PART… 12

Find a structural
description of the

set of objects

Convert to a
generating function

symbolic combinatorics

Apply analytic
combinatorics to learn

about the sequence

analytic combinatorics
let’s automate

this part

COMBINATORIAL EXPLORATION 13

Requirements:
‣ a domain of all objects (up-down walks)
‣ a representation for the sets of objects that you’ll be working with

(“ ” is the set of up-down walks that end with)

‣ decomposition strategies to split the sets into (hopefully) simpler sets

𝒲↗ ↗

develop strategies for
a whole domain

apply them to subsets
of the domain you want

to learn about

COMBINATORIAL EXPLORATION 14

B C D E F G

H I J K L M N O P Q R S

this is just a pictorial version of a list
of combinatorial rules

A → (B, C)

A → (D, E)

A → (F, G)

B → (H, I)

B → (J, K)

D → (L, M)

E → (N, O)

E → (P, Q)
G → (R, S)

when the giant list of rules you’re generating contains
a subset that is a combinatorial specification, you win!

A

COMBINATORIAL EXPLORATION 15

Caveats:

‣ This is the main idea, but there’s a lot of
complicated machinery going on under the hood.

‣ Many of the internal steps require clever efficient
algorithms.

‣ If you’re not careful, the combinatorial
specifications you get as output could be
tautological.

‣ ~ 31,000 lines of Python code

SUCCESSES IN VARIOUS DOMAINS 16

To run Combinatorial Exploration on a new type of
object, you just need to:

‣ decide on a good way to represent sets of those
objects, and write a Python class for it

‣ decide on effective decomposition strategies (this is
where domain-specific experience comes in handy)

‣ plug these right into our framework, and hit go

‣ Framework: ~ 7,300 lines of code

‣ Binary words example: ~ 200 lines of code

‣ Permutation Patterns: ~24,000 lines of code

https://github.com/PermutaTriangle/comb_spec_searcher

SUCCESSES IN VARIOUS DOMAINS 17

Domains we’ve coded:

‣ permutation patterns (inspired this work)

‣ set partitions

‣ Motzkin paths

Domains that seem promising on paper:

‣ polyominoes

‣ inversion sequences

‣ alternating sign matrices

Given a set of permutations , you can study the set of

permutations avoiding the permutations in as
patterns — these sets are called permutation classes.

For the cases where contains two permutations of
length 4, there are essentially 56 different permutation
classes.
 (https://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes)

Their enumerations are all known now, but it took
several decades and dozens of papers.

Combinatorial Exploration can enumerate all of them.

B

B

B

PERMUTATION PATTERNS 18

‣ 6/7 avoiding 1 pattern of length 4 — all except
Av(1324)

‣ 56/56 avoiding 2 patterns of length 4

‣ 317/317 avoiding 3 patterns of length 4

‣ And all avoiding 4-24 patterns of length 4

‣ Dozens of known results and dozens of new results,
and corrects several wrong results.

PERMUTATION PATTERNS 19

PERMUTATION PATTERNS 20

https://permpal.com

PERMUTATION PATTERNS 21

PERMUTATION PATTERNS 22

PERMUTATION PATTERNS 23

PERMUTATION PATTERNS 24

Av(1234, 1243) Av(1234, 1342) Av(1234, 1432) Av(1234, 2143) Av(1234, 2341) Av(1234, 2413) Av(1234, 2431) Av(1234, 3412) Av(1234, 3421)

Av(1234, 4231) Av(1243, 1324) Av(1243, 1342) Av(1243, 2134) Av(1243, 2143) Av(1243, 2314) Av(1243, 2341) Av(1243, 2413) Av(1243, 2431)

Av(1243, 3214) Av(1243, 3241) Av(1243, 3412) Av(1243, 3421) Av(1243, 4231) Av(1324, 1342) Av(1324, 1432) Av(1324, 2143) Av(1324, 2341)

Av(1324, 2413) Av(1324, 2431) Av(1324, 3412) Av(1324, 4231) Av(1342, 1423) Av(1342, 1432) Av(1342, 2143) Av(1342, 2314) Av(1342, 2341)

Av(1342, 2413) Av(1342, 2431) Av(1342, 3124) Av(1342, 3142) Av(1342, 3214) Av(1342, 3241) Av(1342, 3412) Av(1342, 4123) Av(1342, 4213)

Av(1432, 2143) Av(1432, 2341) Av(1432, 2413) Av(1432, 3214) Av(1432, 3412) Av(2143, 2413) Av(2143, 3412) Av(2413, 3142)

Computational Difficulties

Permutations avoiding 132:

Permutations avoiding 1432 and 2143:

550 equations guess-and-check

F0(x) = F1(x) + F2(x)

F1(x) = F0(x)2 ⋅ F3(x)

F2(x) = 1

F3(x) = x

F0(x) = F547(x) + F373(x)

F1(x) = F0(x) − F118(x)
⋯

F549(x) = 0

⟶

PERMUTATION PATTERNS 25

PERMUTATION PATTERNS 26

PERMUTATION PATTERNS 27

Computational Difficulties — with 1 catalytic variable!

Permutations avoiding 123:

F0(x) = F11(x) + F6(x)

F1(x) = F12(x) ⋅ F2(x)

F2(x) = F3(x,1)

F3(x, y) = F7(x, y) + F8(x, y)

F4(x, y) = F12(x) ⋅ F5(x, y) ⋅ F8(x, y)

F5(x, y) =
yF3(x, y) − F3(x,1)

y − 1

F6(x) = F1(x)

F7(x, y) = F4(x, y)

F8(x, y) = F10(x, y) + F11(x)

F9(x, y) = F13(x, y) ⋅ F8(x, y)

F10(x, y) = F9(x, y)

F11(x) = 1

F12(x) = x

F13(x, y) = xy

PERMUTATION PATTERNS 28

Computational Difficulties — with 2+ catalytic
variables!

PERMUTATION PATTERNS 29

F0(x) = F1(x) + F15(x)

F1(x) = F16(x) ⋅ F2(x)

F2(x) = F3(x,1)

F3(x, y) = F12(x, y) + F15(x) + F4(x, y)

F4(x, y) = F17(x, y) ⋅ F5(x, y)

F5(x, y) = F14(x,1,y)

F6(x, y, z) = F11(x, y, z) + F15(x) + F7(x, y, z) + F9(x, y, z)

F7(x, y, z) = F17(x, z) ⋅ F8(x, y, z)

F8(x, y, z) =

yF14 (x,
y

z
, z) − z ⋅ F14(x,1,z)

y − z

F9(x, y, z) = F10(x, y, z) ⋅ F16(x)

F10(x, y, z) =
zF6(x, y, z) − F6(x, y,1)

z − 1

F11(x, y, z) = F17(x, y) ⋅ F6(x, y, z)

F12(x, y) = F13(x, y) ⋅ F16(x)

F13(x, y) =
yF3(x, y) − F3(x,1)

y − 1

F14(x, y, z) = F6(x, yz, z)

F15(x) = 1

F16(x) = x

F17(x, y) = xy

SET PARTITIONS 30

T1(x) = 1 + T2(x)

T2(x) = T4(x) + T6(x)

T4(x) = T1(x) ⋅ T5(x)

T5(x) = x

T6(x) = T5(x)2 ⋅ T7(x)

T7(x) =
d

dx
(x ⋅ T1(x))

 T1(x) = 1 + (x + x2)T1(x) + x3
d

dx
T1(x)

POLYOMINOES 31

T1(x) = 1 + T2(x)

T2(x) = T3(x,1)

T3(x, y) = T4(x, y) + T5(x, y) + T6(x, y)

T4(x, y) = T7(x, y) + T8(x, y)

T5(x, y) = T9(x, y) + T10(x, y) + T11(x, y)

T6(x, y) = T3(x, xy)

T7(x, y) = xy

T8(x, y) = T4(x, y) ⋅ T7(x, y)

T9(x, y) = 0

T10(x, y) = T5(x, y) ⋅ T7(x, y)

T11(x, y) = T6(x, y) ⋅ T7(x, y)

T1(x) =

∞

∏
i=1

1

1 − xi

ALTERNATING SIGN MATRICES 32

T1(x) =
3 − x − 1 − 6x + x2

2

33

Thank you!

https://permpal.com

