Comma Sequences, Part II

Natalya Ter-Saakov

Rutgers University
natalya.tersaakov@rutgers.edu
Joint work with Robert Dougherty-Bliss

Exprimental Seminar Spring 2024

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):
$1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots$

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):
$1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots$
Comma Transform:

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:
12,

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:
12,

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:
12, 25,

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:
12, 25,

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:

$$
12,25,51,
$$

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:
$12,25,51,44,21,24,91,4,21,65,62,27 \ldots$

Comma Transform of Catalan Numbers

Catalan Sequence (A000108):

$$
1,2,5,14,42,132,429,1430,4862,16796,58786,208012, \ldots
$$

Comma Transform:

$$
12,25,51,44,21,24,91,4,21,65,62,27 \ldots
$$

Differences (A000245):
$1,3,9,28,90,297,1001,3432,11934,41990,149226,534888, \ldots$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

1 ,

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

1 ,

Comma Transform:

$$
1 x
$$

Next Term:

$$
1+1 x
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

1 ,

Comma Transform:

11

Next Term:

$$
1+11=12
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

1,12 ,

Comma Transform:

11

Next Term:

$$
1+11=12
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

1,12 ,

Comma Transform:

$$
11,2 x
$$

Next Term:

$$
12+2 x
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

1,12 ,

Comma Transform:

$$
11,23
$$

Next Term:

$$
12+23=35
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.
$1,12,35$,

Comma Transform:

$$
11,23
$$

Next Term:

$$
12+23=35
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

$$
1,12,35,
$$

Comma Transform:

$$
11,23,5 x
$$

Next Term:

$$
35+5 x
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

$$
1,12,35,
$$

Comma Transform:

$$
11,23,58
$$

Next Term:

$$
35+58=93
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

$$
1,12,35,
$$

Comma Transform:

$$
11,23,59
$$

Next Term:

$$
35+59=94
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

$$
1,12,35,94,
$$

Comma Transform:

$$
11,23,59
$$

Next Term:

$$
35+59=94
$$

The Original Comma Sequence

Goal

Lexicographically earliest sequence where the comma transform is the difference.

Comma Sequence (A121805):
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$,
$651,667,744,791,809,908,997,1068,1149,1240,1241,1252,1273$,
$1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764, \ldots$
Comma Transform/Differences (A366487):
$11,23,59,41,51,62,83,13,43,74,14,55,5,55,5,56,16,77,47,18$,
$99,89,71,81,91,1,11,21,31,41,51,61,71,81,91,1,11,21,31,41, \ldots$

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$, 651, 667, 744, 791, 809, 908, 997, 1068, 1149, 1240, 1241, 1252, 1273, $1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764, \ldots$

Question: Can we keep going forever?

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$, $651,667,744,791,809,908,997,1068,1149,1240,1241,1252,1273$, $1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764, \ldots$

Question: Can we keep going forever? If we start with 3 instead

$$
3,36
$$

Next Term:

$$
36+6 x=
$$

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$, $651,667,744,791,809,908,997,1068,1149,1240,1241,1252,1273$, $1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764, \ldots$

Question: Can we keep going forever? If we start with 3 instead

$$
3,36
$$

Next Term:

$$
36+69=103
$$

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$, $651,667,744,791,809,908,997,1068,1149,1240,1241,1252,1273$, $1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764, \ldots$

Question: Can we keep going forever? If we start with 3 instead

$$
3,36
$$

Next Term:

$$
36+69=103 \text { or } 36+61=97
$$

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$, 651, 667, 744, 791, 809, 908, 997, 1068, 1149, 1240, 1241, 1252, 1273, $1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764$,
..., 99999945 (provided by W. Edwin Clark in 2006)

Next Term:
$99999945+5 x=$

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$, 651, 667, 744, 791, 809, 908, 997, 1068, 1149, 1240, 1241, 1252, 1273, $1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764$,
..., 99999945 (provided by W. Edwin Clark in 2006)

Next Term:

$$
99999945+59=100000004
$$

The Original Comma Sequence

Comma Sequence (A121805):

(Submitted to the OEIS in 2006 by Eric Angelini)
$1,12,35,94,135,186,248,331,344,387,461,475,530,535,590,595$,
651, 667, 744, 791, 809, 908, 997, 1068, 1149, 1240, 1241, 1252, 1273,
$1304,1345,1396,1457,1528,1609,1700,1701,1712,1733,1764$,
..., 99999945 (provided by W. Edwin Clark in 2006)

Next Term:
$99999945+59=100000004$ or $99999945+51=99999996$

The Conjecture

Conjecture (Angelini et al, 2024)

For any positive initial value, the sequence will terminate.

The Conjecture

Conjecture (Angelini et al, 2024)
For any positive initial value, for any base greater than 2, the sequence will terminate.

From here, we will work in base b with $b \geq 3$.

Danger Zones

■ For numbers from $d \cdot b^{k}$ to $(d+1) \cdot b^{k}-b^{2}$, comma numbers have a units digit of d (with $1 \leq d<b, k \geq 3$). eg 30045

Danger Zones

- For numbers from $d \cdot b^{k}$ to $(d+1) \cdot b^{k}-b^{2}$, comma numbers have a units digit of d (with $1 \leq d<b, k \geq 3$).
- From $d \cdot b^{k}-b^{2}$ to $d \cdot b^{k}-1$ the units digit of a comma number is either $d-1$ or d unless...

Danger Zones

- For numbers from $d \cdot b^{k}$ to $(d+1) \cdot b^{k}-b^{2}$, comma numbers have a units digit of d (with $1 \leq d<b, k \geq 3$).
- From $d \cdot b^{k}-b^{2}$ to $d \cdot b^{k}-1$ the units digit of a comma number is either $d-1$ or d unless...
■ If $d=1$, it is possible to not have a successor e.g. 99999945 in base 10 or 2211 in base 3.

Danger Zones

- For numbers from $d \cdot b^{k}$ to $(d+1) \cdot b^{k}-b^{2}$, comma numbers have a units digit of d (with $1 \leq d<b, k \geq 3$).
- From $d \cdot b^{k}-b^{2}$ to $d \cdot b^{k}-1$ the units digit of a comma number is either $d-1$ or d unless...
■ If $d=1$, it is possible to not have a successor e.g. 99999945 in base 10 or 2211 in base 3.

Danger Zone

For $k \geq 2$, the interval from $b^{k}-b^{2}$ to $b^{k}-1$ is a danger zone and the intervals from $d \cdot b^{k}-b^{2}$ to $d \cdot b^{k}-1$ for $1<d<b$ is a pseudo-danger zone

Landmines

Landmine

A landmine is a number that has no comma successor.

Landmines

Landmine

A landmine is a number that has no comma successor.

- All landmines live in a danger zone.

Landmines

Landmine

A landmine is a number that has no comma successor.

- All landmines live in a danger zone.
- Landmines greater than b^{2} have the form

$$
(b-1) \cdots(b-1) x y
$$

where $x+y=b-1$ and $0<x, y<b$

Landmines

Landmine

A landmine is a number that has no comma successor.

- All landmines live in a danger zone.
- Landmines greater than b^{2} have the form

$$
(b-1) \cdots(b-1) x y
$$

where $x+y=b-1$ and $0<x, y<b-1$.
Next Term:

$$
\begin{array}{r}
(b-1) \cdots(b-1) x y+y(b-1) \geq b^{k} \\
(b-1) \cdots(b-1) x y+y 1<b^{k}
\end{array}
$$

Birthpoints

Birthpoint

A birthpoint is a number that has no comma predecessor.

Birthpoints

Birthpoint

A birthpoint is a number that has no comma predecessor.

- Birthpoints greater than b^{2} have the form

$$
d \cdot b^{k}
$$

where $k \geq 2$ and $1<d<b$.

Better Than Brute Force?

Brute Force

For every b and every number with no predecessor, calculate the comme sequence and see if it ends.

■ Check for landmines

- Only need to check danger zones

■ Easy to find comma successor outside of danger and pseudo danger zones

Fast Computation

How to compute quickly:
1 Start with $d \cdot b^{k}-u$

An example with $b=10$:
1 Start with $5992=6 \cdot 10^{3}-8$

Fast Computation

How to compute quickly:
1 Start with $d \cdot b^{k}-u$
2 Compute the comma numbers

An example with $b=10$:
1 Start with $5992=6 \cdot 10^{3}-8$
2 Comma numbers: $26,86,46,06,66$,

Fast Computation

How to compute quickly:
1 Start with $d \cdot b^{k}-u$
2 Compute the cycle of comma numbers

An example with $b=10$:
1 Start with $5992=6 \cdot 10^{3}-8$
2 Comma numbers: $26,86,46,06,66$, repeat!

Fast Computation

How to compute quickly:
1 Start with $d \cdot b^{k}-u$
2 Compute the cycle of comma numbers

3 Add the cycle as many times as possible (ie find $b^{k} \bmod$ the sum of the cycle)

An example with $b=10$:
1 Start with $5992=6 \cdot 10^{3}-8$
2 Comma numbers: $26,86,46,06,66$, repeat!

3 Sum of the cycle: 230 $10^{3} \mathrm{mod} 230$ is 80 , so we get $7 \cdot 10^{3}-88=6912$

Fast Computation

How to compute quickly:
1 Start with $d \cdot b^{k}-u$
2 Compute the cycle of comma numbers

3 Add the cycle as many times as possible (ie find $b^{k} \bmod$ the sum of the cycle)
4 Try to fill in as many more comma numbers as possible

An example with $b=10$:
1 Start with $5992=6 \cdot 10^{3}-8$
2 Comma numbers: $26,86,46,06,66$, repeat!
3 Sum of the cycle: 230 $10^{3} \bmod 230$ is 80 , so we get $7 \cdot 10^{3}-88=6912$
$46912+26=6938$. The new d is 7 and the new u is 62 .

Faster Computation

How to compute even faster:
1 Start with $1 \cdot b^{k}-u$
2 Run $b-1$ fast computations
3 Check if you ended at a landmine

Faster Computation

How to compute even faster:
1 Start with $1 \cdot b^{k}-u$
2 Run $b-1$ fast computations
3 Check if you ended at a landmine
Just need to check every

$$
\begin{aligned}
& 2 \leq d<b \\
& 2<k
\end{aligned}
$$

Making the Computation Finite

Key Idea
For any mod, b^{k} is eventually periodic.

Making the Computation Finite

Key Idea
For any mod, b^{k} is eventually periodic.
Just need to check every

$$
\begin{aligned}
& 2 \leq d<b \\
& C<k \leq L+C
\end{aligned}
$$

where L is the Icm of the periods of b^{k} mod the cycle sum.

$$
b=3(L=4)
$$

- Actually depict only $d=1$
- Labeled by (u, k)

■ Do not depict birthpoints

- Landmines have loops
$b=6$

$\mathrm{b}=$?

Theorem (Dougherty-Bliss \& TS)

For all initial values, comma sequences are finite in bases 3 through 19 , as well as 22 and 23.

- Base 3 was known by Angelini et al
- Code generates paths and checks if all the vertices are there
- In theory, one could run the code for any base

Uniformity of u

Conjecture

For a given value of u, the distribution of u^{\prime} is (approximately) uniform over all (valid) u.

- Experimentally true
- Any cycle must have length cL for some c e.g. $b=10: L=924$, average length of path: 6.75 , longest path: 45
■ Should be unlikely to survive that long, but no independence

Complex Model

- Want to approximate how many danger zones passed through

Complex Model

- Want to approximate how many danger zones passed through
- If initial value lands on a path P, average number of danger zones is $\binom{|P|}{2}$
- So total average is

Complex Model

- Want to approximate how many danger zones passed through
- If initial value lands on a path P, average number of danger zones is $\binom{|P|}{2}$
- So total average is
- Note that this only works if we know there are no cycles

Simple vs Complex Model: $b=10$

- Simple Model: Out of the 100 numbers before $10^{k}, 12$ die, so expect to see $100 / 12 \approx 8.33$ danger zones

Simple vs Complex Model: $b=10$

- Simple Model: Out of the 100 numbers before $10^{k}, 12$ die, so expect to see $100 / 12 \approx 8.33$ danger zones
■ Complex Model: Summing up over all paths, expect to see ≈ 5.42

Simple vs Complex Model: $b=10$

- Simple Model: Out of the 100 numbers before $10^{k}, 12$ die, so expect to see $100 / 12 \approx 8.33$ danger zones
■ Complex Model: Summing up over all paths, expect to see ≈ 5.42
■ Empirical Value: (using A330129) ≈ 5.28

Complex Model Approximated: $b=10$

■ Really want to approximate distribution of path lengths
■ In base 10,

Base 10 path lengths

Thank You!

Any questions?

