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A calculation. Continuation
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0 — k! 0

and

so the integral now becomes

I(a) =3 oua(k +1)
k=0
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A calculation. Continuation

(@) =) dra(k+1)
k=0

solve the linear equation k +1 =0 to get k* = —1
give the sum the value

akr(—k)

dropping the ¢, and the symbol (k + 1)
this gives

This is it. We are done.
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The general problem

Given a function

determine

f:la,b] = R

I(f;a,b) = /b f(x) dx



Wallis’ formula

0 dx mEEEEL 2m
. (X2 i 1)m+1 W 2m+1\ m

Clearly not stated in this form
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A quartic analog

Theorem
Forme N anda> -1

/°° dx o Pm(a)
o (x*+2ax2 4 1)m+1 ) [2(a + 1)]m+l/2

m
=2 dimd
1=0

an-zmEa () ()Y

Coefficients d; ,, have many interesting properties
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A related series

s dx
No a(a; m) = /
0

(x* 4+ 2ax? + 1)m+1



A related series

No.a(a; m) /OO o
am) =
0,4 5 (X4+23X2+1)m+1

Vite=varTe =3 E 0 o - 1yt
at+tVvli+c=+va+1+ ba(a, k —1)c
Tr\/ikzl
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Double square roots

In view of the relation of the quartic integral with double square
roots

| looked for integrals having this function in the integrand

The famous table by Gradshteyn and Ryzhik has

dx T

}1/2 26

_l’_

[l

as entry 3.248.5 (x) is a simple rational function
Beautiful

Unfortunately it is incorrect
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Double square roots

The correct question is

x dx m
ltrue == ==
I (143220 + ol 20

and the answer to the original question is

0 dx
/0 (1 +x2)3/2\/90(><) +/p(x)t
V3-1
V2

with n =2 — /3, a = arcsin \/n, where F(p, k) and M(y, n, k) are
classical elliptic integrals. (Formulas not shown)

Atr/2, m 82y jiF(a, 371/2),
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Using integrals to define functions

X
log x = / to Lt
1

You have to make sure you have created a new function

M(x) :/ et dt
0

Then you can combine them. (Next page).
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Powers of loggamma L, = fol log" '(q) dg

Theorem
(L. Euler)
1
L; = / logI'(q) dg = InV27
0
Theorem

(O. Espinosa, V.M., 2002)

1

L, = /Iog2r(q)dq
0
2 2 / "
iMERER GERARE 4 5 ¢'(2) | ¢"(2)
A PNy B SRR A 7]
pta T3 tah-0+2h) 5+ 55

This came as a corollary of our work on Hurwitz zeta function.



Problem

We asked in 2002: what is

1
L3_/ log>T(q) dg ?
0



Borwein-Bailey-Crandall finally got it in 2013

Theorem

L3

§<@+ L1>A2

4 \ 72 3
¢'(2,1) ¢'(2) 3 C”(2)
2 ( 7T2 + 214 >A+ 2L
3

3
8? (w171,0(17 ]-7 ]-) T 2(&)1,071(1, 17 1))
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Borwein-Bailey-Crandall finally got it in 2013.
Continuation.

o oo
w(r,s,t):zz n"ms(n+ m)t

n=1 m=1

Tornhein-Witten-zeta functions

w(r,s, t) = )/ Li,(o)Lis(o)(— log o)t~ dt

Lis(x) = Zn- for x| <1 and Res > 1
n=1

wi00(r,s, t) = —w(r,s,t)

9
or
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Borwein-Bailey-Crandall finally got it in 2013.
Continuation.

1
A= —L
v+ Sh
1
C(S’ t) T Z ntms
n>m>0

Similar formula for L4 but we know nothing about Ls
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Problems

Prove that

o0
/ e~ log x dx
0

(0.0}
/ e “logx dx = —v
0

is an irrational number.

v is Euler's constant
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A second problem

Invent a new function

x5~ 1dX
¢(s)
"Wk
Riemann did it.
Evaluate the integral

(1—12¢2) iHEREceet
/0 m// log |((o + it)| do dt = ==

This might be hard
Is equivalent to the Riemann hypothesis.
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The method of brackets

fafHi= / x*ldx foraeR
0

this is the bracket corresponding to a € R.
Given the expansion

&9]
FxX) = cax® P ¢ a,8eC
n=0

integrating term by term gives the value of the integral

/OOO f(x)dx = Zc,,(om+5>

n

as a bracket series.
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The method of brackets. What is left to do?

The integrals are divergent. Regularize.
We need to decide rules of evaluation for bracket series

We need to be able to produce bracket series in an efficient
manner.

What about rigor?
Some people still care.



Rules to generate bracket series

Rule 1:

(an+ax+---+a) —

Z n (—a+n+n+
¢1727"' 7rall - afr

...+nr>

M(—a)

ni,nz,-,nr

$12 = Pn Py



Rules for brackets. Continuation

Rule 2. Evaluation of a bracket series:

|
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where n* solves the equation an+ 3 = 0.



Rules for brackets. Continuation

Rule 2. Evaluation of a bracket series:
1
> ¢af(n){an+B) — Wf(n*)r(—n*)

where n* solves the equation an+ 3 = 0.

This is Ramanujan master theorem.



Rules for brackets. Continuation
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Rules for brackets. Continuation

Rule 3:

Z Gy np (N1, n2)(a11n + a12ne + c1)(a21m + axnn + o)

ny,m

1
\311 a» — 312821\

f(n1, )l (—=np)l(=n3)

where (nj, n3) solves the linear system obtained by the vanishing of
brackets

We do not assign a value if the determinant vanishes.
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Rules for brackets. Continuation

Rule 4: If the system is not square, consider separately all square
subsystems.

Rule 5: Divergent answers should be discarded.

May be.
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Wallis’ formula

o0 dx 0o
s T = 1+x%) ™1y
/0 (X2 =N 1)m+1 /O ( + X ) X

m+1+n1+n2> 2
1 ouLumtEAE E 1M x<n2
( +X 01,2 ) X

ny,n2

Im |—>Zgb12r( )<m+1—|—n1+n2)(2n2+1>

ny,m

System: m+1+m+nm=0, 2nmn+1=0

Solution: nj = —(m+1/2), n; =-1/2.
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Wallis’ formula. Continuation

Rule 3 implies

g2 =) T(=n3) _ T(m+1/2)T(1/2)
T2 T(m+1) 2r(m)

The values

F(m)=m!and I(m+1/2) = ;éi (2{:)!

produce

/°° ()
o (x4 1)mtt 2 p2m
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A Bessel integral

l::/0 Jo(ax) sin(bx)dx

2m

£ a
L ¢ X2m
mzo "I (m+ 1)22m

1)
sin(bx) Z¢n 2n—:_2 p2n+1,2n+1

2mb2n+1

i
Z%"zzmwnr( D+ 3/2)

(2m+2n+2).



Evaluation of the Bessel integral
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T ™ 2m+2nT (m 4+ 1) (n + 3/2)
m,n

(2m+2n+2).

Choose m as the free parameter: n* = —m — 1.
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Evaluation of the Bessel integral

I_ﬁ2¢ a2mb2n—|—1
2 et B D2m 28] (o )P+ 3/2)

(2m+2n+2).

Choose m as the free parameter: n* = —m — 1.

VT 1 ay2m 1
= b;¢mw+;)(b) e st L e

Choose n free: m* = —n — 1.
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Evaluation of the Bessel integral

a2mb2n+1

/T
= — m,n
> 2 om 22m+2n[ (m + 1)I (n + 3/2)
m,n

(2m+2n+2).

Choose m as the free parameter: n* = —m — 1.

JE 1 azm 1
=5 Loty (B —ymm A<

Choose n free: m* = —n — 1.

/_bfzqsn (1n+3/2) <b> n:o. |la| > |b].

T 1/vVb% — a2 for |b
/ Jo(ax) sin(bx)dx = {0/\/73 or [b] > |a|
0

for |b| < |a|
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A multi-dimensional example: 4.638.3 in GR

/ / /OO Pl 1 N A p”_l dX]_dX2 INEA an
5 = )
(1+ rlxl)ql + o4 (rxn)9)*

n

k k
denominator — Z ®0,- .n H(rjxj)ql kit ole o+ >
koK1, kn Jj=1 (s)

z <5 -+ ko E S kn>
I > cbo,.--,njl_[l rix;) 9% r(s) [1¢p; + aiks)-

ko,ki,: kn
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A multi-dimensional example. Continuation

n
The solutions are kg = —s + Z < and kj = E8t] for1 <j<n.
=Y qj

1 "5\ 1 (5)
==l |s=) I [] —%
r(s) =) i g



A multi-dimensional example. Continuation

n
The solutions are kg = —s + Z < and kj = E8t] for1 <j<n.
=Y qj

L "\ 7" (%)
==l |s=> 1] —
(s) )i g

There was an error in the answer in GR.
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nk/ / / UJ+1/UJ)2 FpRanmRasEE

reduces to (Jon Borwein-David Bradley)
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Ising integrals

—k—1

dulduQ
nk/ / / UJ+1/UJ)2 FpRanmRasEE

reduces to (Jon Borwein-David Bradley)

on k+1 0 .
Chi= TRl /0 t" Ky (t) dt
where

™1y (x) — (%)
KO(X) 5 I/IE}T]OE SIn7TI/

is the modified Bessel function.

dup,
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Ising integrals. Continuation.

The only known values

00 1 1
G=Ls@=) <(3n+ 17 - (3n+2>2> ’

n=0

Cy = 17'2C(3)
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Difficulties with the method

I—EC __/OO/OO dx dy
At o Jo xy(x+y+1/x+1/y)?

o [ dxdy m—ns. mp—ng \2 M1+ M2+ N3+ ng)
/0 /0 =5 Y prpzax™ My )

ni,n2,n3,n4

Z $123.4(m — n3){n — na)(2+ n + na + n3 + n4)

ni,n2,n3,n4

4 indices and 3 brackets
One free variable
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Difficulties. Continuation
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Difficulties. Continuation
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ny free: n =—ny —1,n3 =ny, ny =—-n -1

i T (=ni)

= %Z(—l)’”l’(nl—kl)r(—nl).
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Difficulties. Continuation

> br23a(m — m){(n — ng)(2+ ny + mo+ n3 + ng)

ny,n2,n3,n4

ny free: n =—ny —1,n3 =ny, ny =—-n -1

b= Y qarr I m)r(-n)
= ;;(_1)mr(nl+1)r(—n1).

Divergent the method gives no information
The same occurs with the other three choices of free variable.
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ReEEes: /OO/OO dx dy
27 Jo Jo xyx+y+1/x+1/y)?
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Every form produces divergent integrals
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Difficulties. Continuation

ReEEes: /OO/OO dx dy
27 Jo Jo xyx+y+1/x+1/y)?

+H /OO/OO xy dx dy
o Jo Ry 2+ x+y)?

Every form produces divergent integrals

The same occur with
/ / xy dx dy
(xy(x+y)+x+y)?

/ / (xv( X+X§dicg<+y))

1
Finally gives I = 5




Integrals coming from Feynman diagrams

The figure shows interaction of three particles

Figure: The triangle



Integrals coming from Feynman diagrams. Continuation.

Schwinger parametrization gives

311321a31

-D/2
i 10 s
I_(‘31 (a2)l(a3) (x1 + x2 + x3)P/2

X exp(xym3 + xom3 + x3m3)

o _C11P1 +2C12P1-P2+C22P2 dscr dboo e
X1 + X2 + X3 TPrpre

X



Integrals coming from Feynman diagrams. Continuation.

Schwinger parametrization gives

a11321a31

1 —D)2 X2
H r(al (a2)l 83/ // X1+X2+X3)D/2

X exp(xym3 + xom3 + x3m3)
C11P? +2Ci12P1 - Py + CaoP,
Lo (_ 11°] +2C12F1 - Po 4+ (oo 2) e e

X

X1+ X2 + X3

The coefficients Cj; are given by

G =x1(x2 +x3), G2 =x1x3, Coo = x3(x1 + x2).



Integrals coming from Feynman diagrams. Continuation.

Conservation of momentum gives P; = P; + P> and then



Integrals coming from Feynman diagrams. Continuation.

Conservation of momentum gives P; = P; + P> and then

-D
G: /2/// 311321831

X exp (xlml + xom3 + x3m3)
o XX P12+X2X3 P22 +x3X1 P3
xp X1+X2+Xx3
X dxidxpdxs.

(x1+ x2 + x3)P/2



Integrals coming from Feynman diagrams. Continuation.

Problem. Evaluate G = G(P1, P2, m;, D, a;).
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Integrals coming from Feynman diagrams. Continuation.

Problem. Evaluate G = G(P1, P2, m;, D, a;).
Special case m; = my = m3 = 0 and P12 = P22 =0.

(-2
[(a1)l(a2)l(a3)

_ o X1x3 2

ai—1_ar—1_az—1 exp < X1+X2+X3 P3)

x XE XS T 5
R (x1 +x2 + x3)

G =

dX]_ dX2 dX3 {

3
T



Integrals coming from Feynman diagrams. Continuation.

Problem. Evaluate G = G(P1, P2, m;, D, a;).
Special case m; = my = m3 = 0 and P12 = P22 =0.

(o
¢ = e

X1X3 D

exp | — P. )

a;—1_ar—1_az3—1 P < x1+xa+x3 " 3

X X1 X5 X3 D2
RY (x1 + x2 + x3)P/

Xm dX2 dX3 {

The method of brackets gives

o ( NV.PY. V¥
G_r [(a3) ZZZZ¢1234 P3)" m

ng np n3 mg



Integrals coming from Feynman diagrams. Continuation.

The brackets A; are

Ay = (D/24 ny+ ny+ n3 + ng),
Ay = (a1 + nm + m),

As (a2 + n3),

Ay (a3 + n1 + na).

This problem has no free indices.

* D * D * * D
N = 5—ar—ax—az, N = —5+ax+as, n3 = —az, Ny = —5+ar+a.



Integrals coming from Feynman diagrams. Continuation.

This gives

] (_1)_D/2 2\D/2—aj—ap—a3
SRR P LU 5

M(a1+ax+ as — %)r(% —ap — a3)r(a2)r(g)r(g —a— a)

F(D—al—ag—ag)



Up to now

Every integral for which the
method gives an answer, it
gives the correct answer.



Thanks for your attention.



