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Today’s object of attention

We will talk about the nonlinear Schrödinger equation

−∆ψ(s)− 2
∫
R3

1
|s− s′|

|ψ|2(s′)d3s′ ψ(s) = Eψ(s) (1)

where s = (x , y , z) ∈ R3 and ∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian.
We inquire into the unique (modulo translations) positive solution
ψ1 : R3 → R+ satisfying

∫
|ψ1|2(s)d3s = 1, and into its eigenvalue E1.

The integro-PDE formulation of the problem is equiv. to the PDE system

−∆u(s) + V (s)u(s) = −u(s), (2)

∆V (s) = |u|2(s); (3)

together with u > 0 and
∫
|u|2(s)d3s <∞, and V (s)→ 0 as |s| → ∞.

N.B.:
∫
|u|2(s)d3s = 8π/

√
|E | .

By uniqueness, ψ1(s) = ψ1(r), where r = |s| =⇒ (2)+(3)≡ 4th order ODE.
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“Omnes viae Romam ducunt” (All roads lead to Rome)

Different physical models all end up with the same equation!
(mathematically speaking)

1) Condensed matter: the polaron (L. Landau; S. Pekar; H. Fröhlich)
2) Condensed matter: 1-component quantum plasma (P. Choquard)
3) Dark matter: gravitating spin-0 bosons (J. Rueda & R. Ruffini)
4) Foundations of QM: gravity-induced collapse of WF (R. Penrose)
N.B.:
E. H. Lieb coined the name Choquard’s equation for (1)
Other authors have called it Pekar’s equation.
R. Penrose called (1) the Schrödinger–Newton eqn.
D. Greiner & G. Wunner called (1) the Newton–Schrödinger eqn.
Yet other authors called (2),(3) the Schrödinger–Poisson system.
BUT: The first who could have written it down is ... Erwin Schrödinger:
0) Foundations of QM: interpretation of Ψ as matter wave.
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“Omnes viae Romam ducunt” (All roads lead to Rome)

Herbert Fröhlich
December 09, 1905 – January 23, 1991
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“Omnes viae Romam ducunt” (All roads lead to Rome)

Solomon Isaakovich Pekar
March 16, 1917 – July 08, 1985
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“Omnes viae Romam ducunt” (All roads lead to Rome)

Philippe Choquard
May 23, 1929 – August 24, 2018
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Rigorous works: A brief history

A selective list of important rigorous papers on the ground state:

E. H. Lieb, Studies Appl. Math (1977).
M. D. Donsker and S. R. S. Varadhan, Phys. Rep. (1981).
M. D. Donsker and S. R. S. Varadhan, CPAM (1983).
E. H. Lieb and L. E. Thomas, CMP (1997).
K. P. Tod and I. Moroz, Nonlinearity (1999).
K. P. Tod, Phys. Lett. A (2001).
V. Moroz and J. van Schaftingen, J. Funct. Anal. (2013).

A recent survey of rigorous results for equation (1), resp. (2),(3), is:
V. Moroz and J. van Schaftingen, J. Fixed Pt. Theor. Appl. (2017).
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What is the asymptotic limit of the ground state?

The asymptotic limit of the CPSN... equation

Assuming for the moment that |ψ|2(r) is exponentially small (in r ) for
large r , the CPSN... equation (1) takes on the asymptotic form

−∆ψ(∞)(s)− 2
1
|s|
ψ(∞)(s) = Eψ(∞)(s) (4)

which is formally a Schrödinger equation for a “hydrogenic ion.”
The pertinent normalized ground state solution of (4) (assuming (4)
holds everywhere) indeed is exponentially decaying,

ψ
(∞)
1 (r) = A exp(−r)

with ground state energy
E (∞)

1 = −1.
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What is the asymptotic limit of the ground state?

Mixed messages

K. P. Tod and I. Moroz (1999) claim, without proof, that if u(r) is a
positive radial solution to (2),(3), then

u(r) = Ae−r/r + l .o.t .

D. Kumar and V. Soni (2000) claim that

u(r) = Ae−r + l .o.t .

Based on this claim they concluded that the ground state energy
E1 = −1.
K. P. Tod (2001) proves that E1 > −1.
V. Moroz and J. van Schaftingen (2013) prove that

u(r) = Ae−r/r1−‖u‖2
2/8π + l .o.t .

where ‖u‖2 is the L2 norm of u.
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What is the asymptotic limit of the ground state?

Remarks on the conflicting results

K. P. Tod and I. Moroz announced their claim in a joint paper with
R. Penrose (1998).
Their claim was repeated in the Ph.D. thesis of R. Harrison (2001).
What IS proved by Tod and I. Moroz is that for every positive
C < 1 there are A > 0 and b > 0 such that u(r) < Ae−Cr/r for all
r > b, (incidentally, a factor eCb is obviously missing at r.h.s.(3.9)
of their paper); however, such an upper bound alone cannot
establish the asymptotic behavior claimed.
Kumar and Soni conclude from their asymptotics of u(r) that
E1 = −1; however, a nonlocal quantity like an eigenvalue cannot
be determined by a truncated asymptotic expansion!
The value of ‖u‖22 was left open by V. Moroz and van Schaftingen.
Their result rules out the asymptotic behavior claimed by Tod and
I. Moroz, but leaves the possibility that Kumar and Soni are right.
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What is the asymptotic limit of the ground state?

QUESTION: What is the value of ‖u‖22 ?

We know that ‖u‖22 > 0, but is:

‖u‖22 ∈ (0,8π)? If so, r‖u‖
2
2/8π−1 is decreasing.

‖u‖22 = 8π? If so, r‖u‖
2
2/8π−1 = 1 is constant (Kumar-Soni).

‖u‖22 ∈ (8π,16π)? If so, r‖u‖
2
2/8π−1 is increasing and concave.

‖u‖22 = 16π? If so, r‖u‖
2
2/8π−1 = r is increasing and linear.

‖u‖22 > 16π? If so, r‖u‖
2
2/8π−1 is increasing and convex.
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Sorting things out rigorously (with the assistance of MAPLE)

We will prove (in parts assisted by MAPLE):

Proposition: The L2 norm of the positive H1 solution u(r) of (2),(3)
obeys the bounds

21/33π2 ≤ ‖u‖22 ≤ 8π3/2. (5)

Numerically,
11.875π ≤ ‖u‖22 ≤ 14.18π. (6)

COMMENTS: This is strong enough to rigorously rule out the
asymptotic form of u(r) proposed by Kumar and Soni (since
21/33π2 > 8π), showing that the monomial prefactor of e−r is
increasing with r , and strong enough (since 8π3/2 < 16π), to
prove that the monomial prefactor of e−r is strictly concave.
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Sorting things out rigorously (with the assistance of MAPLE)

Proof of the Proposition

For convenience, here is (1) again,

−∆ψ(s)− 2
∫
R3

1
|s− s′|

|ψ|2(s′)d3s′ ψ(s) = Eψ(s). (7)

N.B.: In this form the Schrödinger–Newton equation appears in
Lieb’s work (1977; Choquard’s eqn.), and in a paper by
Greiner and Wunner (2006; Newton–Schrödinger eqn.).
Eq.(7) is the Euler–Lagrange equation for minimizing the functional

E(ψ) :=

∫
R3
|∇ψ|2(s)d3s −

∫
R3

∫
R3

|ψ|2(s)|ψ|2(s′)
|s− s′|

d3sd3s′ (8)

on the Sobolev space H1(R3) under the constraint
∫
R3 |ψ|2(s)d3s = 1.

The eigenvalue E is the Lagrange multiplier for this constraint.
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Sorting things out rigorously (with the assistance of MAPLE)

Proof of the Proposition (cont.d )

Let ψ1(r) be the minimizer.
For real λ > 0, define ψλ(r) := λ3/2ψ1(λr). Then ∀λ : ‖ψλ‖2 = 1.
By noting that d

dλE(ψλ)|λ=1 = 0 we obtain the virial identity

2
∫
R3
|∇ψ1|2(s)d3s =

∫
R3

∫
R3

|ψ1|2(s)|ψ1|2(s′)
|s− s′|

d3sd3s′. (9)

On the other hand, setting ψ = ψ1 in (7), then multiplying (7) by ψ1 and
integrating over R3, yields for the ground state energy

E1 =

∫
R3
|∇ψ1|2(s)d3s − 2

∫
R3

∫
R3

|ψ1|2(s)|ψ1|2(s′)
|s− s′|

d3sd3s′. (10)

Now using (9) in (10) and also in (8), by comparison we obtain

E1 = 3 E(ψ1). (11)

Thus, upper or lower bounds on E(ψ) over H1 under the normalization
constraint ‖ψ‖2 = 1 translate into corresponding upper and lower
bounds on the ground state energy E1.

Michael K.-H. Kiessling (Rutgers) MAPLE-assisted study of a Schrödinger-Newton, a.k.a. Schrödinger-Poisson, a.k.a. Choquard, a.k.a. Pekar, a.k.a. ... equation
“Experimental Mathematics Seminar” Rutgers, March 11, 2021 15

/ 34



Sorting things out rigorously (with the assistance of MAPLE)

Proof of the Proposition (cont.d )

Next, by Sobolev’s inequality [cf. p.174 in Tod (2001)],∫
R3
|∇ψ|2(s)d3s ≥ 3

[π
2

]4
3
(∫

R3
|ψ|6(s)d3s

)1
3

. (12)

On the other hand, the Hardy–Littlewood–Sobolev inequality yields∫
R3×R3

|ψ|2(s)|ψ|2(s′)
|s− s′|

d3sd3s′ ≤ 4
3

[
8
π

]1
3
(∫

R3
|ψ|

12
5 (s)d3s

)5
3

, (13)

and Hölder’s inequality gives [cf. p.175 in Tod (2001)]∫
R3
|ψ|

12
5 (s)d3s ≤

(∫
R3
|ψ|2(s)d3s

)9
10
(∫

R3
|ψ|6(s)d3s

)1
10

, (14)

which simplifies because
∫
R3 |ψ|2(s)d3s = 1.
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Sorting things out rigorously (with the assistance of MAPLE)

Proof of the Proposition (cont.d )

Now setting
∫
R3 |ψ1|6(s)d3s =: x6, our chain of inequalities yields

E(ψ1) ≥ 3
[π

2

]4
3 x2 − 4

3

[
8
π

]1
3

x ; (15)

and since we don’t know x , to be on the safe side we minimize
r.h.s.(15) w.r.t. x > 0 and obtain

E(ψ1) ≥ −32
27

21/3

π2 ≈ −0.1513. (16)

Multiplication by 3 yields

E1 ≥ −
32
9

21/3

π2 ≈ −0.4539. (17)
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Sorting things out rigorously (with the assistance of MAPLE)

Proof of the Proposition (cont.d )

Rescaling the ground state energy to E = −1 yields ‖u‖22 = 8π/
√
|E1|,

and so, since also E1 < 0, by (17) we have

‖u‖22 ≥ 21/33π2 ≈ 11.875π (18)

This proves the lower bound l.h.s.(5) in our Proposition.
To obtain the upper bound in our Proposition we insert the Gaussian
trial wave function ψG(r) := exp(−r2/2R2)/(π3/4R3/2) into E(ψ) and
minimize w.r.t. R, obtaining an upper bound on E(ψ1). Rescaling to
units in which the ground state energy E = −1 yields r.h.s.(5). �

REMARKS: Our upper and lower bounds on E1 are slightly strikter
than corresponding bounds obtained by K. P. Tod (2001), who did not
extract upper and lower bounds on ‖u‖22 from his bounds.
Our upper bound was computed algebraically with the help of MAPLE.
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Sorting things out rigorously (with the assistance of MAPLE)

Comments on the MAPLE computations

E(ψ) is a sum of a three- and a six-dimensional integral, but ...
ψ1 is invariant under SO(3) action, so for ψ = ψ(r), ...
E(ψ) can be rewritten as

E(ψ) = 4π
∫ ∞

0
|ψ′(r)|2r2dr − 4π

∫ ∞
0

r2ψ(r)2
(∫ ∞

r

M(s)

s2 ds
)

dr

where

M(r) = 4π
∫ r

0
|ψ(s)|2s2ds.

N.B.: lim
r→∞

M(r) = 1.
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Sorting things out rigorously (with the assistance of MAPLE)

Comments on the MAPLE computations cont.d

Paul Tod uses
ψT (r) =

1√
πR3

exp
(
− r

R

)
which yields

3E(ψT ) =
1

R2 −
5

8R
≥ − 75

256
≈ −0.293 ≥ E1

N.B.: Multiplication by 1
2

G2m5

~2 gives Penrose’s quantum units.
Using instead a Gaussian,

ψG(r) =
1√√
π

3R3
exp

(
−1

2
r2

R2

)
yields

3E(ψG) =
3

2R2 −
√

2√
πR
≥ −1

π
≈ −0.31831 ≥ E1

Michael K.-H. Kiessling (Rutgers) MAPLE-assisted study of a Schrödinger-Newton, a.k.a. Schrödinger-Poisson, a.k.a. Choquard, a.k.a. Pekar, a.k.a. ... equation
“Experimental Mathematics Seminar” Rutgers, March 11, 2021 20

/ 34



Numerical results obtained with MAPLE

Prologue

Although numerical studies of the Schrödinger–Newton equation have
been carried out by I. Moroz, R. Penrose, and Tod (1998); by R.
Harrison (2001); by Greiner and Wunner (2006); and by a few other
authors cited in those papers, we are unaware of any which has
addressed itself to the power of the radial monomial correction factor
to the exponential function.
Yet information about ‖u‖22 can be extracted from numerical data in the
paper of Greiner and Wunner (2006), by rescaling, revealing that
‖u‖22 ≈ 14.04π.
We have carried out our own numerical study and directly computed
that ‖u‖22 ≈ 14.03π, compatible with the result extracted from the
paper of Greiner and Wunner (2006) by rescaling.
Thus the monomial prefactor of e−r is ∝ rβ with β ≈ 0.754, i.e.
increasing and strictly concave.
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Numerical results obtained with MAPLE

COMMENTS

We converted the Schrödinger-Newton eq. into a 4th order ODE

1
r2

d
dr

(
r2 d

dr

(
1

u(r)

1
r2

(
d
dr

(
r2 d

dr
u(r)

))))
= u2(r).

Data: u′(0) = 0 = u′′′(0); while u(0) > 0 and u′′(0) < 0 to be found!
Our numerical computations were carried out with MAPLE’s
Cash–Karp fourth-fifth order Runge–Kutta method with degree four
interpolant (ck45), which proved more suitable than MAPLE’s default
Runge–Kutta–Fehlberg routine rkf45. To overcome the enormous
variations over the range of u(r) we solved the ODE for ln u(r) and
asked for 70 digits precision during the computation. The interval
halving iterations to determine the correct initial data u(0) and u′′(0) to
yield energy E = −1 were terminated after a precision of three
significant digits had been achieved, though.
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Numerical results obtained with MAPLE

Fig. 1: Sequence of approximates to u∞ versus r .

Figure: 1. Shown are successive approximations to the gound state solution
u(r) of (2),(3). The ground state is the lower envelope to the red curves, and
the upper envelope to the green curves.
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Numerical results obtained with MAPLE

Fig. 2: The ground state u(r)

Figure: 2. Numerical approximation to the gound state solution u(r) of (2),(3).
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Numerical results obtained with MAPLE

Fig. 3: The mass function M(r) := 4π
∫ r

0 |u(s)|
2s2ds.

Figure: 3. Shown is M(r) := 4π
∫ r

0 |u(s)|2s2ds for the gound state solution
u(r) of (2),(3); the horizontal asymptote is at 14.03π ≈ ‖u‖2

2 = limr→∞ M(r).
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Numerical results obtained with MAPLE

Fig. 4: The natural logarithm of u(r).

Figure: 4. Shown is the natural logarithm of the gound state solution u(r) of
(2),(3), together with a straight line of slope −1. Apparently the figure
suggests a purely exponential decay of the ground state u(r), but
appearances are misleading, as visualized in Fig. 5.
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Numerical results obtained with MAPLE

Fig. 5: Zooming in: Id(r) + ln u(r).

Figure: 5. Shown is r + ln u(r) versus r for the gound state solution u(r) of
(2),(3). Fig. 5 reveals that the map r 7→ r + ln u(r) is not asymptotic, for large
r , to a constant function, which it would be if u(r) ∼ A exp(−r).
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Numerical results obtained with MAPLE

Fig. 6: Natural logarithm of u∞/u versus r .

Figure: 6. Shown is the negative natural logarithm of the ratio of the gound
state solution u(r) of (2),(3) over its asymptotic limit u∞(r) = Arβ exp(−r)
with β ≈ 0.754 and A ≈ 3.37.
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Numerical results obtained with MAPLE

TEST

As a test for our results we rescaled the ground state energy E = E1
for (7), computed numerically in Greiner-Wunner (2006) to be
E1 = −0.325(74), into our units in which the ground state energy
E = −1. This yields ‖u‖22 = 8π/

√
|E1| ≈ 44.09, in good agreement

with our result 14.03π ≈ 44.08.
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Asymptotics beyond the leading order term (as per MAPLE)

Andrey Yudin’s observation (personal communication)

Recall: The hydrogenic Schrödinger equation (4) is the asymptotic
form of the SN equation (1).
Rescaling (4) into the variables of the system (2), (3) yields

−∆u(s)− ‖u‖
2

4π
1
|s|

u(s) = −u(s). (19)

Knowing the leading order asymptotics, with ‖u‖2 treated as a positive
parameter, MAPLE tells you that (19) is solved by

u(s) = A× U(1− ‖u‖2/8π,2,2r)× exp(−r), (20)

where A > 0 is an amplitude to be determined from the numerical
solution, as is ‖u‖2, while U(a,b, z) is Kummer’s U-function; the
unique solution to the confluent hypergeometric equation having
asymptotics u(z) ∼ z−a for < z > 0 (and arg(z) near zero).
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Asymptotics beyond the leading order term (as per MAPLE)

Yudin’s proposal may hit the nail on the head!

Figure: 7. The numerically computed gound state solution u(r) of (2),(3)
together with its asymptotic limit u∞(r) = Arβ exp(−r) with β ≈ 0.754 and
A ≈ 3.37, and with Yudin’s extended asymptotic function.
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Asymptotics beyond the leading order term (as per MAPLE)

Open Questions concerning the Ground State!

Can one prove that the Kummer function U captures all asymptotic
expansion factors of exp(−r) which are of power-law type? Does
it miss only those which are themselves “small beyond all orders”?
There surely will be correction terms to the (negative) power
series expansion of the prefactor of exp(−r) showing up if one
expands beyond all orders. What are these “transseries”?

−→ Joint projects with Andrey Yudin and Ovidiu Costin.
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Excited states (suggesting an EXCITING open problem!)

Radially symmetric excited states

P.-L. Lions (1980) proved that there are infinitely many oscillatory radial
solutions to (1), associated with discrete eigenvalues En, n ∈ N.
Various authors computed them numerically; in particular Greiner &
Wunner (2006), who give a plausible vindication of applying the
semi-classical Einstein-Brillouin-Keller quantization, which predicts

En = − 1
(n − µn)2 (21)

where the µn are so-called quantum defects. Greiner-Wunner extract
from their numerical computations the empirical rule

µn ≈ −1.729− 1.291n. (22)

Inserted into the EBK formula this gives the empirical spectral rule:

En ≈ −0.191
1

(n + 0.754)2 . (23)

Can one prove this? Note that u(r) ∼ A r0.754 e−r — coincidence?
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FIN!

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGEMENTS: Thanks go to Parker Hund, Eric Ling,
Andrey Yudin, Jean van Schaftingen, and Ovidiu Costin for very
interesting communications.

Slightly weaker results than reported here appeared in:

M.K.-H. Kiessling,
“On the asymptotic decay of the Schrödinger-Newton ground state,”
Phys. Lett. A. 395:127209 (2021); “errata” in preparation.
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