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Finite Algebraic Rational 
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D-finite : Satisfies a linear DE with polynomial coefficients. AKA Holonomic   

D-Algebraic: Satisfies a polynomial DE.   

D-Transcendental : NOT differentially algebraic

Classification
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Combinatorial classes

TYPE OF CLASS TYPICAL EXAMPLES NATURE OF OGF

Finite class Polynomial

Iterative grammar 
specification

Recognizable by a finite automaton 
Regular language, eg. Fibonacci

Rational function

Recursively grammar 
specification

Trees, Catalan classes, 
Maps

Algebraic function

?
Shuffles of Dyck Paths 

k-regular labelled graphs 
SYT of bounded height 

Co-growth series of Amenable groups*

D-finite

? Families of decorated maps D-algebraic

 𝒞 ⟹ C(t) :=
∞

∑
n=0

𝒞n tnA combinatorial class is a set equipped with a size function. 
Ordinary Generating Functions (OGF) encode enumerative 
data as integer coefficients of formal power series. 
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Fibonacci 
numbers

Catalan 
numbers

2-3 Trees

Complete 2-3 
TreesK-regular 

graphs

Simple walks in 
quarter plane

Excursions on 
Sierpinski 
gasket

Excursions on 
Cayley graphs of 
free products of 
finite groupsRegular 

languages

Constrained 
regular 
languages

132- avoiding 
permutations

Consecutive 1432- 
avoiding permutations**

Baxter  
permutations

Bell 
numbers 
(OGF)

Bell 
numbers 
(EGF)

Walks in half planeUnconstrained 
simple walks

Context free languages

Tree decorated 
maps

Simple walks in  
“transcendental” 

region
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Applications of classification
• Theoretical Computer Science  

The following language is not unambiguously context free: 
 because its generating function  

 is not algebraic.  (Flajolet 1988) 

• Group Theory  
Let G be a finitely generated amenable group that is not nilpotent-by-finite and let S be a 
finite symmetric generating set for G. The OGF for walks starting and ending at the 
origin on the Cayley Graph X(G;S) is not D-finite.  (Bell, M. 2021)  
Gives a strategy to determine if  Thompson’s Group F is an amenable group. (Elvey-Price, 
Guttmann 2019) 

•

𝒞 = {w ∈ {a, b, c}* ∣ |w |a ≠ |w |b or |w |a ≠ |w |c }
C(t) = ∑

n

cntn
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Why the interest in D-finite series?

• Closure properties mirror combinatorial actions 

• The differential equation is a useful data structure for both reasoning and computation 

• Clear proof strategies  

• Conjecture (Christol, 1990): If a series with non-negative integer coefficients and a positive, finite, radius of 
convergence is furthermore D-finite, then it can be written as the diagonal of a multivariate rational function. 

D-algebraic series are much more difficult to manipulate and characterize. 

“Almost anything is non-holonomic unless it is holonomic by design.”  

                                                                                      - Flajolet, Gerhold & Salvy, 2005
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“Classic” Strategies
To show a series is D-finite:  

Build it from other D-finite series 

Show the coefficients satisfy a linear recurrence 

Write it as the constant term (with respect to auxiliary variables) of a multivariable D-finite series (essentially, a 
Cauchy integral) 

To show a series is NOT D-finite  

Show asymptotic growth of the coefficients is not of the correct form 
 
Show that it comes from a function with an infinite number of singularities 

It is sufficient to show it is D-Transcendendal
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D-finite series in combinatorics
• Richard Stanley’s 1980 article plants several seeds, many of 

which were considered by Gessel (1990): 

• Baxter permutations  

• Young Tableaux of bounded height  

• k-regular graphs 

• Cited by > 500 
> 12 000 hits to {Holonomic |D-finite }+combinatorics 

• Most D-finite classes are in some bijection with a class of 
lattice walks 

(3) the set of hesitating tableaux of length 2n, with height bounded by k, ending in a row of length m;
(4) the set of Wk-hesitating walks of length 2n ending at (m, 0, . . . , 0).

4. Young tableaux, involutions and open matchings

4.1. Bijections. We can now prove our first main result, namely Theorem 1. Our strategy is to use Propo-
sition 6, and prove the following result, from which Theorem 1 is a straightforward consequence.

Proposition 8. The set of standard Young tableaux of size n with height bounded by 2k and m odd columns
are in bijection with the set of open matching diagrams of length n, with m open arcs and with no (k + 1)-
crossing.

As far as we can tell, this theorem was first conjectured by Burrill [9]4. Our proof uses the Robinson-
Schensted-Knuth (RSK) correspondence, and the bijection of Chen et al..

A di↵erent proof was communicated to us by Christian Krattenthaler [24]. It relies on the RSK correspon-
dence like our proof, but also on jeu de taquin (an operation on Young tableaux invented by Schützenberger [25]).
We note that the two bijections di↵er: our bijection has the advantage of preserving – just like the Chen
et al. construction – the “opener/closer” sequence (in a formulation using diagrams on both sides of the
bijection; cf Lemma 11 for more details), a strong property which does not clearly appear in Krattenthaler’s
alternative. His proof passes through growth diagrams [23].

The following lemma presents a classic property of the RSK correspondence.

Lemma 9. (Robinson-Schensted-Knuth correspondence) The set of standard Young tableaux of size n with
height bounded by k and m odd columns is in bijection with involutions of size n with m fixed points and no
decreasing subsequence of length k + 1.

1 3 5

2 4 8

6 9 10

7 1 2 3 4 5 6 7 8 9 10

Figure 9. Left. A standard Young tableau Y of size 10. Right. The arc diagram represen-
tation of the involution (1 7)(3 9)(4 6)(5 10). This involution is the image of (Y, Y ) under
the RSK correspondence.

As a first step, Lemma 9 yields combinatorial objects that are close to open matchings. Indeed, involutions
have a very natural arc diagram representation: cycles (i j) are represented by an arc, and fixed points are
isolated dots. An example is shown in Figure 9. We can map involutions into the set of open matchings by
simply changing every isolated point into an open arc. Under this map, there is a simple correspondence
between decreasing sequences in an involution and nestings in the open diagram.

Lemma 10. Let k 2 Z�1. An involution has no decreasing subsequence of length 2k+1 if and only if there
is no enhanced k-nesting in its arc diagram representation.

Proof. Let ↵ be an involution. If its arc diagram has an enhanced k-nesting then ↵ contains k cycles
(i1 j1), . . . , (ik jk) that satisfy i1 < i2 < · · · < ik  jk < · · · < j1, which clearly induces a decreasing
subsequence of length 2k � 1.

Conversely, assume that there exist 2k�1 numbers i1 < i2 < · · · < i2k�1 such that ↵(i2k�1) < · · · < ↵(i1).
If ↵(ik) � ik � 0, then i1 < · · · < ik  ↵(ik) < · · · < ↵(i1): this means that (i1,↵(i1)), . . . , (ik,↵(ik)) form
an enhanced k-nesting. Otherwise, ↵(ik)� ik  0. Thus ↵(i2k�1) < · · · < ↵(ik)  ik < · · · < i2k�1: the arcs
(↵(i2k�1), i2k�1), . . . , (↵(ik), ik) form an enhanced k-nesting. ⇤

By the two preceding lemmas, the proof of Proposition 8 is reduced to the proof that involution diagrams
of length n with m fixed points and no enhanced (k+1)-nesting are in bijection with open matching diagrams
of length n with m open arcs and no (k + 1)-crossing. This is established by the following lemma.

4More precisely, this conjecture used open matchings with no (k + 1)-nesting.

8



Lattice Paths
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A walk is a sequence of steps
Consider (fixed) finite sets of possible steps (set of vectors). Enumerate the class of walks 
encoded by sequences of steps.  
Strategy : Encode each walk with a monomial marking its endpoint.

1
1 − t (x + 1/x + y + 1/y)

(x + 1/x + y + 1/y) × (x + 1/x + y + 1/y) = x2 + 1/x2 + y2 + 1/y2 + 4+2xy+2x/y + 2y/x + 2/xy

Multiplying monomials captures 
the action of steps in sequence. (1,1)

1
1 − 4t
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NESW-walks in various regions

Rational

1
1 − 4t

= ∑ 4ntn

W(t) = ∑ w(n)tn = ∑
n≥0

(#walks of length n that stay in the blue region) tn

We can classify the 
nature of 
generating 
functions of 
NESW walks in 
some regions

Algebraic

D-finite 
(Bousquet-Mélou… )

D-finite

D-finite

D-finite 
(Gouyou-Beauchamps)

Nasty algebraic 
(Bostan & Kauers…)

Slit plane model 
Algebraic  
(Bousquet-Mélou & Schaeffer)

✓
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Classification via winding angle  
(Excursions: Budd 2017; Elvey-Price)

Varied nature, including not 
D-finite  

(Denisov-Wachtel, Bostan, 
Raschel & Salvy)
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Small step walks in the first quadrant
Fix set of steps (i.e. vectors)  . 

 

 
Theorem (M. + Rechnitzer 2009) 
There exist models with NON D-finite generating functions  
 
Conjecture (M. 2007; Bousquet-Mélou + M. 2010) 
Conditions for D-finiteness for the 79 nontrivial, distinct models.

𝒮 ⊆ {(i, j) ∣ i, j ∈ {0,1, − 1}}∖{(0,0)}

Q𝒮(t) := ∑
n≥0

∑
(i,j)∈ℕ2

#walks𝒮 (0,0) n⟶ (i, j) tn
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Small step walks in the quarter plane
Conjecture (Bousquet-Mélou & M. 2010)   

 D-finite iff a certain group is finite. 
 

 

 
A decade-long, international collaboration determined the classification of 

Q𝒮(x, y; t)

Q𝒮(x, y; t) ≡ Q𝒮(x, y) = ∑
n≥0

tn ∑
(i,j)∈ℕ2

(#walks𝒮 (0,0) n⟶ (i, j)) xiyj

Q𝒮(x, y)

Algebraic

D-finite

D-Algebraic

D-Transcendental

Algebraic 4
Transcendental D-finite 19
Non-D-finite D-algebraic 9
Hyper transcendental 42

D-transcendental 5

Figure 2: The nature of the complete generating functions Q(x, y; t) for the 79 small step quarter plane lattice path
models

1.4 Diagonals

The diagonal of a rational function F (z1, . . . , zd) with power series expansion
P

i1,...,id�0 fi1,...,idz
i1
1 · · · zidd at the

origin is the power series (�F )(t) =
P

n�0 fn,...,nt
n..

Furstenburg showed in 1967 [?] algebraic functions can be expressed as a diagonal of a bivariate generating
function by providing the rational based on teh polynomial that the function satisfies. Lipshitz showed that D-finite
multi A longstanding question in this area is the following

Question 3 (Christol, 1990). Can any D-finite series with integer coefficients and a positive radius of convergence can
be expressed as a diagonal of a rational series.

Multiple binomial sums

2 Methods

2.1 Computer algebra approaches

Part of the appeal of lattice path models is the ease with which one can experiment using computer algebra tools. It
is relatively straightfoward to develop series expansion from the basic recurrence, and then form hypotheses about the
generating functions. Series manipulations have led to conjectures and directed researchers.

2.2 Guessing, and guessing hard

A tool that has existed in enumerative combinatorics for nearly 30 years has been software to guess the algebraic or
differential equation satisfied by a series. The method works by generating a high order truncation of the (possibly
multivariate) generating function, followed by a guessing stage which tries to fit this truncation into algebraic or
differential equations of various orders and degrees. In Maple, this is implemented in the gfun package, for example.

This has lead to many conjectures. In this field, the most famous is known as “Gessel’s walk”. In 2000 Gessel, via
personal communication, suggested that the excursions of the model defined by {SW,W,NE,E} should be D-finite.
This lead to a very vigourous discussion, as the other models with D-finite generating functions were easily guessed
to be, and this model resisted the approach.

The proof, published in 2009 [?] used cutting edge holonomic systems approach, and creative telescoping to
confirm Gessel’s conjecture. Still, it remained open to determine the nature of the complete generating function.

Around the same time, Bostan and Kauers [1] used an algorithmic approach based on Padé-Hermite approximants
to systematically guess algebraic and differential equations satisfied by the 79 non-isomorphic two dimensional models
in the quarter-plane. In addition to detailing several algebraic and arithmetic conditions which help one believe that a
guessed differential equation truely annihilates the multivariate generating function, the authors produced an influential
table of guessed asymptotics for the 23 models they predicted to have D-finite generating function.

It surprised many when Bostan and Kauers [?] proved not only the D-finiteness, but the algebraicity of the mul-
tivariate Gessel generating function Q(x, y; t). Their approach rigorously certified a guessed minimal polynomial of
Q(x, y; t) using algebraic elimination theory. Bostan et al. [?] later proved all guessed annihilating algebraic and dif-
ferential equations for the 23 D-finite models using the theory of Creative Telescoping, which allowed them to write

5

• Histogram: Quarter plane lattice models sorted by the nature of Q𝒮(x, y)

Finite group cases



 
Differential  

Transcendence



Marni Mishna 2023

A non-D-finite lattice model

• Theorem (M., Rechnitzer, 2009) 
The univariate OGF has an infinite number of singularities  and is not D-finite.   

• A possible combinatorial explanation: A sequence of directed paths in strips of increasing height 

• Similar models proved in an ad hoc manner.  

M. Mishna, A. Rechnitzer / Theoretical Computer Science 410 (2009) 3616–3630 3629

pull!

pull!

i

j

i

j

Fig. 5. Stretching the walk to find a directed path in a strip.

If we then make the substitution t 7! q
1+q2 , the expression simplifies remarkably into the following recurrence for

Dk(y) = Dk(y, q
1+q2 ):

Dk(y) = q3Dk�2(q)(yk+2 + 1) � qy2Dk�2(y)(qk+2 + 1)
(qk+2 + 1)(yq � 1)(y � q)

. (45)

In fact, for our purposes it suffices to consider:

Dk(1) = q(qk+2 + 1)Dk�2(1) � 2q3Dk�2(q)
(qk+2 + 1)(q � 1)2

. (46)

From this formula, and from computations for various values of k, Dk(1) is a rational function in q, and it seems clear that
the set (taken over all k) of poles of Dk(1) is dense in the unit circle. Were this so, we would apply the following theorem
(from [2]) to the generating function QS(s, s; q

1+q2 ) = P
Dk(1; q

1+q2 )s
k, and thus conclude the non-holonomy of QS(x, y; t).

Theorem 17. Let f (x; t) = P
n cn(x)t

n be a holonomic power series in C(x)[[t]]. with rational coefficients in x. For n � 0 let Sn
be the set of poles of cn(y), and let S = S

Sn. Then S has only a finite number of accumulation points.

Again, the principal difficulty is showing that the singularities do not cancel; that solutions to qk+2 + 1 are indeed poles of
Dk.

This approach was pioneered by Guttmann and Enting [10], and has been fruitful for several different models [9,16].
Unfortunately it is not clear how to apply their arguments successfully to this problem.

4.3. Related walks

We expect walks with steps from the following sets to also have non-holonomic generating functions because the groups
of their kernel iterates are infinite. It is seems likely this can be proved in a manner similar to Theorems 1 and 2.

A second family that appears to be non-holonomic is the set of walks restricted to the interior of the wedge in the left
half plane bounded by y = ±mx, for rational m, with steps from {N, E,S}. Remark that when m = 1, these are in bijection
with the walks in our first case, using Step set S. These satisfy a parametrized recurrence similar to Eq. (45) (see [12]).
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Fig. 1. Sample walks with steps from S = {NW,NE,SE} (left) and T = {NW,N,SE} (right).

1.1. Walks and their generating functions

The objects under consideration are walks in N ⇥ N, the first quadrant of the integer lattice, with steps taken from
S = {(�1, 1), (1, 1), (1, �1)} in the first case, and T = {(�1, 1), (0, 1), (1, �1)} in the second case. We also label these
steps using compass directions: S = {NW,NE,SE} and T = {NW,N,SE}. Two sample walks are given in Fig. 1.

To each step set we associate two formal power series:W (t) a (univariate) counting generating function and Q (x, y; t), a
(multivariate) generating function which refinesW (t). The series,W (t), is the ordinary generating function for the number
ofwalks, that is, the coefficient of tn is the number ofwalks of length n. The complete generating function,Q (x, y; t), encodes
more information. The coefficient of xiyjtn in Q (x, y; t) is the number of walks of length n ending at the point (i, j). Note that
the specialisation x = y = 1 in the complete generating function is precisely the counting series, i.e. Q (1, 1; t) = W (t). If
the choice of step set is not clear by context, we add a subscript.

In part, our interest in the complete generating function stems from the fact it satisfies a very useful functional equation
which we derive using the recursive definition of a walk: a walk of length n is a walk of length n� 1 plus a step. The quarter
plane condition asserts itself by restricting our choice of step should thewalk of length n�1 end on a boundary (i.e. an axis).

The step set S leads to the following equation:

Q (x, y; t) = 1 + t
✓
xy + x

y
+ y

x

◆
Q (x, y; t) � t

x
y
Q (x, 0; t) � t

y
x
Q (0, y; t), (1)

and set T defines a comparable equation:

Q (x, y; t) = 1 + t
✓
y + x

y
+ y

x

◆
Q (x, y; t) � t

x
y
Q (x, 0; t) � t

y
x
Q (0, y; t). (2)

These two equations are very similar with the only difference arising from the coefficient of Q (x, y; t). Also note that the
first equation is x $ y symmetric, while the second is not.

In the text that follows we will frequently use a bar over a variable or function to denote its reciprocal, for example:
x ⌘ 1

x .

1.2. Properties of holonomic functions

We are interested in understanding the analytic nature of the generating functions. This gives a basic first classification of
structures and also some general properties, for example, about the asymptotic growth of the coefficients. See, for example,
Bousquet-Mélou’s recent summary classifying combinatorial families with rational and algebraic generating functions [4].
We are interested in generating functions which are holonomic, also known as D-finite. Let x = x1, x2, . . . , xn.

A multivariate function G(x) is holonomic if the vector space generated by the partial derivatives of G (and their iterates),
over rational functions of x is finite dimensional. This is equivalent to the existence of n partial differential equations of the
form

p0,if (x) + p1,i
@ f (x)
@xi

+ · · · + pdi,i
@di f (x)
(@xi)di

= 0,

where 1  i  n and the pj,i are all polynomials in x.
In the univariate case, this implies that there is at most a finite number of singularities, which can be recovered as zeros

of the leading coefficient, pd,1(x).
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In fact.. D-transcendental
Dreyfus+Hardouin+Roques+Singer 17  • Bostan 19 

f(qt) = a(t)f(t) + b(t)

Combinatorial recurrence 

Functional equation for Q𝒮(x, y)

Rewrite so LHS is  K𝒮(x, y)Q𝒮(x, y)

Find rational parametrization for  E𝒮

Deduce an Ishizaki/Ogawara style equation 
for R(x(s))

Conclude D-transcendance

Q(x, y) = 1 + z(x/y + y/x + xy)Q(x, y)−z(x/y)Q(x,0) − z(y/x)Q(0,y)

K(x, y)Q(x, y) = xy−R(x) − R(y)

x(s) =
v(1 − v2)s
(s2 + 1)

, y(s) =
(1 − v2)s
v2s2 + 1

, z =
v

v2 + 1 ⟹ 0 = x(s)y(s)−R(x(s)) − R(y(s))

A walk is either the empty walk, or it is a shorter walk with a step appended, but you must 
exclude those walks that then step out of the quarter plane 

M. Mishna, A. Rechnitzer / Theoretical Computer Science 410 (2009) 3616–3630 3617

Fig. 1. Sample walks with steps from S = {NW,NE,SE} (left) and T = {NW,N,SE} (right).

1.1. Walks and their generating functions

The objects under consideration are walks in N ⇥ N, the first quadrant of the integer lattice, with steps taken from
S = {(�1, 1), (1, 1), (1, �1)} in the first case, and T = {(�1, 1), (0, 1), (1, �1)} in the second case. We also label these
steps using compass directions: S = {NW,NE,SE} and T = {NW,N,SE}. Two sample walks are given in Fig. 1.

To each step set we associate two formal power series:W (t) a (univariate) counting generating function and Q (x, y; t), a
(multivariate) generating function which refinesW (t). The series,W (t), is the ordinary generating function for the number
ofwalks, that is, the coefficient of tn is the number ofwalks of length n. The complete generating function,Q (x, y; t), encodes
more information. The coefficient of xiyjtn in Q (x, y; t) is the number of walks of length n ending at the point (i, j). Note that
the specialisation x = y = 1 in the complete generating function is precisely the counting series, i.e. Q (1, 1; t) = W (t). If
the choice of step set is not clear by context, we add a subscript.

In part, our interest in the complete generating function stems from the fact it satisfies a very useful functional equation
which we derive using the recursive definition of a walk: a walk of length n is a walk of length n� 1 plus a step. The quarter
plane condition asserts itself by restricting our choice of step should thewalk of length n�1 end on a boundary (i.e. an axis).

The step set S leads to the following equation:

Q (x, y; t) = 1 + t
✓
xy + x

y
+ y

x

◆
Q (x, y; t) � t

x
y
Q (x, 0; t) � t

y
x
Q (0, y; t), (1)

and set T defines a comparable equation:

Q (x, y; t) = 1 + t
✓
y + x

y
+ y

x

◆
Q (x, y; t) � t

x
y
Q (x, 0; t) � t

y
x
Q (0, y; t). (2)

These two equations are very similar with the only difference arising from the coefficient of Q (x, y; t). Also note that the
first equation is x $ y symmetric, while the second is not.

In the text that follows we will frequently use a bar over a variable or function to denote its reciprocal, for example:
x ⌘ 1

x .

1.2. Properties of holonomic functions

We are interested in understanding the analytic nature of the generating functions. This gives a basic first classification of
structures and also some general properties, for example, about the asymptotic growth of the coefficients. See, for example,
Bousquet-Mélou’s recent summary classifying combinatorial families with rational and algebraic generating functions [4].
We are interested in generating functions which are holonomic, also known as D-finite. Let x = x1, x2, . . . , xn.

A multivariate function G(x) is holonomic if the vector space generated by the partial derivatives of G (and their iterates),
over rational functions of x is finite dimensional. This is equivalent to the existence of n partial differential equations of the
form

p0,if (x) + p1,i
@ f (x)
@xi

+ · · · + pdi,i
@di f (x)
(@xi)di

= 0,

where 1  i  n and the pj,i are all polynomials in x.
In the univariate case, this implies that there is at most a finite number of singularities, which can be recovered as zeros

of the leading coefficient, pd,1(x).
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Lemma (Ishizaki 1998; Ogawara 2015)  

Given a Laurent series , , and , a complex number that is not a root of 
unity such that 

    

then   is EITHER rational or D-transcendental.

f(t) a(t), b(t) ∈ ℂ(t) q

f(qt) = a(t)f(t) + b(t)

f(t)

Solution dichotomy
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Strategy

•   

Example:  Bell numbers

 

(Klazar 2003; Bostan, DiVizio, Raschel 2020+)

f(t) ↦ f ( t
1 + t )

B(t) = ∑ Bntn ⟹ B ( t
t + 1 ) = tB(t) + 1

Rough principle: (ref. Adamczewski, Dreyfus, Hardouin 2021) 
  

A Laurent series solution f(t) of a linear [shift|Mahler|q-shift] equation is  
EITHER rational, or D-transcendental

• q-shift:  (q not a root of unity) 
Example: Genus 0 quarter plane walks 

• Shift operator:      
Example:    

• Mahler operator:   
Example:  

 

f(t) ↦ f(qt)

f(t) ↦ f(t + h)
Γ(t + 1) = tΓ(t)

f(t) ↦ f(tk)

f(t) = ∑ t2n
 satisfies f(t) = t + f(t2) …not rational, hence it must be D-transcendental.
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Extending the strategy

 New Examples:  R(t) = t2 + t3, R(t) =
t

1 + t2

Theorem 1. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational, and furthermore  

no iterate of R is the identity , then   is either rational or D-transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = f(t)+b(t)
R(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)

NEW!

Theorem 11. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  rational, and furthermore  

no iterate of R is the identity ,then   is either algebraic or D- transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = a(t)f(t)
R(t), a(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)
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Complete 2-3 Trees

denote this operation here using square brackets, and by indicating the substitution. This operation is
encoded at the level of generating functions by a variable substitution.

Let T be the class of complete S-trees. Given a tree in T , we create a set of larger trees by replacing
all leaves with subtrees of height 1 with k leaves for some k 2 S in all possible ways. Consider the
example S = {2, 3}. We can specify the class T as follows:

eq:23treecombeq:23treecomb (2.2) T ⌘ •+ T
"
• 7!

�
+

� #
.

We can generate the trees up to size 6:

(2.3) •
� �

�
� �

,

�
� �

,

�
� �

,

�
� �

,

�
� � �

. . .

Every tree has a unique derivation from the functional equation Eq. (2.2) , determined by iteratively
deleting all the leaves in the tree. Thus, the generating function for the counting sequence (tn) of trees
of length n, denoted T (z) has initial Taylor series expansion

T (z) = z + z
2 + z

3 + z
4 + 2z5 + 2z6 +O(z7)

and satisfies the functional equation

eq:23treeeqneq:23treeeqn (2.4) T (z) = z + T (z2 + z
3).

We use Corollary 1.2 to deduce that as T (z) satisfies Eq. (2.4), it is di↵erentially transcendental1.

thm:tree-main Corollary 2.1. The ordinary generating function for (unlabelled) complete rooted plane 2-3 trees is dif-

ferentially transcendental.

Indeed, any time the descendent generating function R(t) satisfies the hypotheses of theorem X, the
generating function is di↵erentially transcendental. The key hypothesis for this construction to work is
that S does not contain 1, otherwise the class is not well defined. For example, B-trees of order m bodini

paper?[?] and any finite set of descendants. If R(t) is not polynomial but is rational, but satisfies the (weaker)
hypotheses of Theorem XX, then one has to additionally show that the generating function is irrational,
but this is generally straightforward. To do this, one can appeal, in some cases, to the asymptotics
analysis of Odlyzko [Odl82] and de Bruijn [dB79].

2.3 Random walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. In the case of a self-similar graph, the Green function
often satisfies an equation of the form

G(R(t)) = a(t)G(t)

for rational R and a. Roughly, the substitution t 7! R(t) has a combinatorial interpretation reflecting
the self-similarity of the graph [KT04].

Grabner and Woess [GW97, Proposition 1] considered the infinite Sierpiński graph and demonstrated,
via straight-forward combinatorial construction, that the Green function G(t) for walks that return to
their origin satisfies the functional equation

G

✓
t
2

4� 3t

◆
=

(2 + t)(4� 3t)

(4 + t)(2� t)
G(t).

1An aside: note the generating function U(t) for all S-trees and the generating function T (t) for complete S-trees satisfy
equations that bear a superficial similarity: U(z) = z+S(U(z)) vs. T (z) = z+T (S(z)). However, the first is algebraic and
the second di↵erentially transcendental!
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Indeed, any time the descendent generating function R(t) satisfies the hypotheses of theorem X, the
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paper?[?] and any finite set of descendants. If R(t) is not polynomial but is rational, but satisfies the (weaker)
hypotheses of Theorem XX, then one has to additionally show that the generating function is irrational,
but this is generally straightforward. To do this, one can appeal, in some cases, to the asymptotics
analysis of Odlyzko [Odl82] and de Bruijn [dB79].

2.3 Random walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement
starting and returning to a certain origin vertex. In the case of a self-similar graph, the Green function
often satisfies an equation of the form

G(R(t)) = a(t)G(t)

for rational R and a. Roughly, the substitution t 7! R(t) has a combinatorial interpretation reflecting
the self-similarity of the graph [KT04].

Grabner and Woess [GW97, Proposition 1] considered the infinite Sierpiński graph and demonstrated,
via straight-forward combinatorial construction, that the Green function G(t) for walks that return to
their origin satisfies the functional equation

G

✓
t
2

4� 3t
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=
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1An aside: note the generating function U(t) for all S-trees and the generating function T (t) for complete S-trees satisfy
equations that bear a superficial similarity: U(z) = z+S(U(z)) vs. T (z) = z+T (S(z)). However, the first is algebraic and
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5

X

n

fnt
n 7! f(R(t)) :=

X

n

fnR(t)n .

This is well defined since R has no constant term.
Throughout we identify C(t) with a sub-field of C((t)), by identifying rational functions with their

Taylor expansion. Iterative equations of the form

f(R(t)) = a(t)f(t) + b(t)

are well studied from a variety of perspectives, particularly especially for polynomial, or even rational
R, and rational a and b. They appear naturally in the analysis of branching processes, number theoretic Judicious

choice
of refer-
ences

phenomena and combinatorial generating functions. Teufl [Teu07] collects examples from diverse areas,
including the Thue-Morse word, 2-3 trees and random walks on the Sierpiński graph.

The main results here examine the nature of solutions to these equations: When are the series dif-
ferentially algebraic? The following theorem is a slightly less general statement than one of our main
results, but captures the central dichotomy.

thmINTRO:rational-a=1 Theorem 1.1. Let R 2 C(t) be such that R(0) = 0 and R
0(0) 2 {0, 1, roots of unity}. We suppose that

there exists b 2 C(t) and f 2 C((t)) such that f(R(t)) = f(t) + b(t). Then either f 2 C(t) or f is

di↵erentially transcendental over C(t), i.e. f does not satisfy an algebraic di↵erential equation over C(t).

Under additional conditions, we can deduce transcendence directly. This has a quite useful corollary
that we will apply of the generating series associated with complete trees:

corINTRO:trees-chainsaw Corollary 1.2. In the notation and under the assumptions of Theorem 1.1, we suppose moreover that

R 2 t
2C[t], and that b 2 tC[t], with b 6= 0 and degt b  degt R. Then f is di↵erentially transcendental

over C(t).

A second result in the paper can be restated in the following way:

thmINTRO:MainForApplications Theorem 1.3. Let R 2 C(t) be such that R(0) = 0 and R
0(0) 2 {0, 1, roots of unity}. We suppose that

there exist f 2 C((t)) and a, b 2 C(t), with a 6= 0, such that f(R(t)) = a(t)f(t) + b(t). Then either f is

algebraic over C(t) or f is di↵erentially transcendental over C(t).

Remark 1.4. The statements unify a collection of results in the literature. The case R(t) = qt, with
q 2 C, q 6= 0, 1 of Theorem 1.3 is proved in [Ish98, Theorem 1.2] and [Oga14, Theorem 2]. If R(t) = t+1
then the result is proved in [Nis84, Theorem 2]. In the case R(t) = t

d, with d � 2, it is proved [Nis84,
Theorem 3], [Ran92, page 22] and in [Ngu11]. The first Galoisian approach to these problem is developed
in [Har08]. which has inspired di↵erent parameterized Galois theories leading to similar statements in
di↵erent setting. See [HS08, §3.1],[DVHW17, §3],The main result of [ADH21] is an analogous statement
for functional equation of any order, while in [BDVR20] the authors deal with first order inhomogeneous
equations associated with R(t) = t

1+t and consider the di↵erential transcendence of solutions over the
germs of meromorphic functions at zero, inspired by the example of the generating series of Bell numbers
in [Kla03].

Notice that we do not cover the case of a general non-zero R
0(0), which is most likely true. Maybe

we

should

write a

small ap-

pendix

on this

for com-

pleteness

1.2 Classifying combinatorial structures by the nature of their generating

function

These results are useful in the combinatorics context for classification of objects by the nature of their
generating function. A combinatorial class is a set of discrete objects, each with a size subject to the
condition that the number of objects of a given size is finite. Given a class, enumerative data can be
encoded in a formal power series in t such that the coe�cient of tn is the number of objects of size n. This
is the (ordinary) generating function associated to the class. Classically, knowing the functional equations
a generating functions satisfies can inform on the type of the recurrences and shape of asymptotic formulas
for the counting sequence. More remarkable is that such information can provide combinatorial insight,
for example, it can immediately establish that a class cannot be described with an unambiguous context

2

T(t) is D-transcendental (Indeed, most complete tree classes are similar)

When R(t) is a polynomial we have a stronger result that we can apply here. 
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Walks on self-similar graphs
The Green function of a graph is a probability 
generating function which describes the n-step 
displacement starting and returning to a certain 
origin vertex. 

(Grabner + Woess) The Green function associated 
to the Sierpinski Graph satisfies:  
 

G ( t2

4 − 3t ) =
(2 + t)(4 − 3t)
(4 + t)(2 − t)

G(t) .

Wikipedia

The asymptotics of the coefficients (Teufl) 
are incompatible with algebraicity. By 
Theorem II: 
 
G(t) is D-transcendental
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Extending the strategyNEW!

Theorem 111. (Di Vizio, Fernandes, M. 2023+) 

If   satisfies     
with  algebraic, and furthermore ,  

no iterate of R is the identity 
then   is either D-finite or D- transcendental.  

f(t) ∈ ℂ[[t]] f(R(t)) = a(t)f(t)+b(t)
R(t), a(t), b(t) R(0) = 0, R′ (0) ∈ {0,1,roots of unity}

f(t)
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Permutations avoiding consecutive patterns
• A permutation  of n avoids the pattern 1423 if there is no   so that 

.The EGF of 1423-avoiding permutations can 
be written using S(t) satisfying the following:  (Elizalde and Noy 2012) 

 

• S(t) has an infinite number of singularities. (Beaton, Conway and Guttmann 2018) 

• Since S(t) is not D-finite, by Theorem III, S(t) is D-transcendental. 

• Similar situation for  avoiding permutations

σ 0 ≤ i ≤ n − 4
σ(i + 1) < σ(i + 4) < σ(i + 2) < σ(i + 3)

S(t) = 1 +
1

1 + t
S ( 1

1 + t2 )

1m23…(m − 1)



Concluding remarks
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Complex Differentially 
Algebraic  

Differentiably 
Finite Algebraic Rational 

−1 + 1 − 4t2

2t
= 1 + t + 2t2 + …

1
1 − t

= 1 + t + t2 + …
et = 1 + t +

t2

2!
+

t3

3!
+ …

Fibonacci 
numbers

Catalan 
numbers

2-3 Trees

Complete 2-3 
TreesK-regular 

graphs

Simple walks in 
quarter plane

Excursions on 
Sierpinski 
gasket

Excursions on 
Cayley graphs of 
free products of 
finite groupsRegular 

languages

Constrained 
regular 
languages

132- avoiding 
permutations

Consecutive 1432- 
avoiding permutations ***

Baxter  
permutations

Bell 
numbers 
(OGF)

Bell 
numbers 
(EGF)

Walks in half planeUnconstrained 
simple walks

Context free languages

Tree decorated 
maps

Simple walks in  
“transcendental” 

region
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Open questions & future work

➤ Identify combinatorial contexts that result in such functional equations. 

➤ Simplify proofs of non-D-finiteness by proving D-transcendence.  

➤ Higher order equations. 

➤ Automated “guessing” tools for other kinds of functional equations.



Thank you for 
 your attention! 


