CHARACTERIZING TRANSCIENDENCE IN COMBINATORICS

Marni Mishna
Simon Fraser University
Burnaby, Canada

RUTGERS EXPERIMIENTALMATHEMATICS SEMINAR

NOVEMBER 9,2023
I work with gratitude on the unceded Traditional Coast Salish Lands including the

SFU

Motivation

Classification

D-finite : Satisfies a linear DE with polynomial coefficients. AKA Holonomic
D-Algebraic: Satisfies a polynomial DE.
D-Transcendental : NOT differentially algebraic

Combinatorial classes

A combinatorial class is a set equipped with a size function. Ordinary Generating Functions (OGF) encode enumerative data as integer coefficients of formal power series.

TYPE OF CLASS TYPICAL EXAMPLES

Finite class	Polynomial	
Iterative grammar specification	Recognizable by a finite automaton Regular language, eg. Fibonacci	Rational function
Recursively grammar specification	Trees, Catalan classes, Maps	Algebraic function
$?$	Shuffles of Dyck Paths k-regular labelled graphs SYT of bounded height	D-finite
$?$	Families of decorated maps	D-algebraic

Regular
languages

Rational
$\frac{1}{1-t}=1+t+t^{2}+\ldots$

Fibonacci numbers

Walks in half plane
Excursions on Cayley graphs of free products of finite groups

Context free languages
Algebraic

132- avoiding permutations
numbers

Simple walks in quarter plane

Constrained

 regular languagesDifferentiably
Finite
$e^{t}=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+$
Baxter permutations

K-regular graphs

```
Simple walks in
"transcendental"
    region
Excursions on Sierpinski gasket
```


Differentially Algebraic

Complex

Consecutive 1432avoiding permutations**

Tree decorated Complete 2-3 maps

Bell
numbers (EGF)

Trees

Bell
numbers
(OGF)

Applications of classification

- Theoretical Computer Science

The following language is not unambiguously context free: $\mathscr{C}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a} \neq|w|_{b}\right.$ or $\left.|w|_{a} \neq|w|_{c}\right\}$ because its generating function $C(t)=\sum_{n} c_{n} t^{n}$ is not algebraic. (Flajolet 1g88)

- Group Theory

Let G be a finitely generated amenable group that is not nilpotent-by-finite and let S be a finite symmetric generating set for G. The OGF for walks starting and ending at the origin on the Cayley Graph $\mathrm{X}(\mathrm{G} ; \mathrm{S})$ is not D-finite. (Bell, M. 2021)
Gives a strategy to determine if Thompson's Group F is an amenable group. (Elvey-Price, Guttmann 2019)

Why the interest in D-finite series?

"Almost anything is non-holonomic unless it is holonomic by design."

- Flajolet, Gerhold \& Salvy, 2005
- Closure properties mirror combinatorial actions
- The differential equation is a useful data structure for both reasoning and computation
- Clear proof strategies
- Conjecture (Christol, 1990): If a series with non-negative integer coefficients and a positive, finite, radius of convergence is furthermore D-finite, then it can be written as the diagonal of a multivariate rational function.

D-algebraic series are much more difficult to manipulate and characterize.

"Classic" Strategies

To show a series is D-finite:
Build it from other D-finite series

Show the coefficients satisfy a linear recurrence

Write it as the constant term (with respect to auxiliary variables) of a multivariable D-finite series (essentially, a Cauchy integral)

To show a series is NOT D-finite

Show asymptotic growth of the coefficients is not of the correct form
Show that it comes from a function with an infinite number of singularities
It is sufficient to show it is D-Transcendendal

D-finite series in combinatorics

- Richard Stanley's ig8o article plants several seeds, many

Differentiably Finite Power Series which were considered by Gessel (1990):

- Baxter permutations
- Young Tableaux of bounded height
- k-regular graphs
- Cited by > 500
$>$ I2 ooo hits to $\{$ Holonomic | D-finite \}+combinatorics
- Most D-finite classes are in some bijection with a class of lattice walks

A formal power series $\sum f(n) x^{n}$ is said to be differentiably finite if it satisfies a linear differential equation with polynomial coefficients. Such power series arise in a wide variety of problems in equation with polynomial coefficients. Such power series arise in a wide variety of problems in
enumerative combinatorics. The basic properties of such series of significance to combinatorics are enumerative combinatorics. The basic properties of such series of significance to combinatorics are
surveyed. Some reciprocity theorems are proved which link two such series together. A number of surveyed. Some reciprocity theorems are proved which link
examples, applications and open problems are discussed.

1	3	5
2	4	8
6	9	10
7		

Lattice Paths

A walk is a sequence of steps

Consider (fixed) finite sets of possible steps (set of vectors). Enumerate the class of walks encoded by sequences of steps.
Strategy : Encode each walk with a monomial marking its endpoint.

NESW-walks in various regions

$W(t)=\sum w(n) t^{n}=\sum_{n \geq 0}(\#$ walks of length n that stay in the blue region $) t^{n}$

Rational

We can classify the nature of generating functions of NESW walks in some regions

Algebraic

D-finite

D-finite

(Gouyou-Beauchamps)

Nasty algebraic

 (Bostan \& Kauers...)

Slit plane model Algebraic
(Bousquet-Mélou \& Schaeffer)

D-finite

(Bousquet-Mélou...)

Classification via winding angle
(Excursions: Budd 2017; Elvey-Price)

Varied nature, including not D-finite
(Denisov-Wachtel, Bostan, Raschel \& Salvy)

Small step walks in the first quadrant

Fix set of steps (i.e. vectors) $\mathcal{S} \subseteq\{(i, j) \mid i, j \in\{0,1,-1\}\} \backslash\{(0,0)\}$.

$$
Q_{\delta}(t):=\sum_{n \geq 0} \sum_{(i, j) \in \mathbb{N}^{2}}{\# w^{2 l k s}}_{\mathcal{S}}(0,0) \xrightarrow{n}(i, j) t^{n}
$$

Theorem (M. + Rechnizer 2009)
There exist models with NON D-finite generating functions
Conjecture (M. 2007; Bousquet-Mélou + M. 2010)
Conditions for D-finiteness for the 79 nontrivial, distinct models.

Small step walks in the quarter plane

Conjecture (Bousquet-Mélou \& M. 2010)
$Q_{\delta}(x, y ; t)$ D-finite iff a certain group is finite.

$$
Q_{\delta}(x, y ; t) \equiv Q_{\delta}(x, y)=\sum_{n \geq 0} t^{n} \sum_{(i, j) \in \mathbb{N}^{2}}\left(\# \text { walks }_{\mathcal{S}}(0,0) \xrightarrow{n}(i, j)\right) x^{i} y^{j}
$$

A decade-long, international collaboration determined the classification of $Q_{\mathcal{\delta}}(x, y)$
Finite group cases

Differential
 Transcendence

A non-D-finite lattice model

Fig. 5. Stretching the walk to find a directed path in a strip.

- Theorem (M., Rechnizer, 2009)

The univariate OGF has an infinite number of singularities and is not D-finite.

- A possible combinatorial explanation: A sequence of directed paths in strips of increasing height
- Similar models proved in an ad hoc manner.

In fact.. D-transcendental
 Dreyfus + Hardouin + Roques + Singer 17 • Bostan 19

Combinatorial recurrence

Functional equation for $Q_{\delta}(x, y)$

Rewrite so LHS is $K_{\delta}(x, y) Q_{\delta}(x, y)$

Find rational parametrization for $E_{\mathcal{S}}$

Deduce an Ishizaki/Ogawara style equation for $\mathrm{R}(\mathrm{x}(\mathrm{s})$)

Conclude D-transcendance

A walk is either the empty walk, or it is a shorter walk with a step appended, but you must exclude those walks that then step out of the quarter plane

$$
Q(x, y)=1+z(x / y+y / x+x y) Q(x, y)-z(x / y) Q(x, 0)-z(y / x) Q(0, y)
$$

$$
K(x, y) Q(x, y)=x y-R(x)-R(y)
$$

$$
x(s)=\frac{v\left(1-v^{2}\right) s}{\left(s^{2}+1\right)}, y(s)=\frac{\left(1-v^{2}\right) s}{v^{2} s^{2}+1}, z=\frac{v}{v^{2}+1} \Longrightarrow 0=x(s) y(s)-R(x(s))-R(y(s))
$$

$$
f(q t)=a(t) f(t)+b(t)
$$

Solution dichotomy

Lemma (Ishizaki 1998; Ogawara 2015)
Given a Laurent series $f(t), a(t), b(t) \in \mathbb{C}(t)$, and q, a complex number that is not a root of unity such that

$$
f(q t)=a(t) f(t)+b(t)
$$

then $f(t)$ is EITHER rational or D-transcendental.

Strategy

Rough principle: (ref. Adamczewski, Dreyfus, Hardouin 2021)

A Laurent series solution $f(t)$ of a linear [shift | Mahler | q-shift] equation is EITHER rational, or D-transcendental

- q-shift: $f(t) \mapsto f(q t)$ (q not a root of unity) Example: Genus o quarter plane walks
- $f(t) \mapsto f\left(\frac{t}{1+t}\right)$
- Shift operator: $f(t) \mapsto f(t+h)$

Example: $\Gamma(t+1)=t \Gamma(t)$

- Mahler operator: $f(t) \mapsto f\left(t^{k}\right)$ Example:

Example: Bell numbers
$B(t)=\sum B_{n} t^{n} \Longrightarrow B\left(\frac{t}{t+1}\right)=t B(t)+1$
(Klazar 2003; Bostan, DiVizio, Raschel2020+)
$f(t)=\sum t^{2^{n}}$ satisfies $f(t)=t+f\left(t^{2}\right)$

Extending the strategy

Theorem I. (Di Vizio, Fernandes, M. 2023+)
If $f(t) \in \mathbb{C}[[t]]$ satisfies $f(R(t))=f(t)+b(t)$
with $R(t), b(t)$ rational, and furthermore $R(0)=0, R^{\prime}(0) \in\{0,1$,roots of unity $\}$ no iterate of R is the identity , then $f(t)$ is either rational or D-transcendental.

Theorem II. (Di Vizio, Fernandes, M. 2023+)
If $f(t) \in \mathbb{C}[[t]]$ satisfies $f(R(t))=a(t) f(t)$
with $R(t), a(t), b(t)$ rational, and furthermore $R(0)=0, R^{\prime}(0) \in\{0,1$, roots of unity $\}$ no iterate of R is the identity , then $f(t)$ is either algebraic or D- transcendental.

New Examples: $R(t)=t^{2}+t^{3}, R(t)=\frac{t}{1+t^{2}}$

Complete 2-3 Trees

$T(z)=z+z^{2}+z^{3}+z^{4}+2 z^{5}+2 z^{6}+O\left(z^{7}\right)$
$T(z)=z+T\left(z^{2}+z^{3}\right)$.

When $R(t)$ is a polynomial we have a stronger result that we can apply here.
Corollary 1.2. In the notation and under the assumptions of Theorem 1.1, we suppose moreover that $R \in t^{2} \mathbb{C}[t]$, and that $b \in t \mathbb{C}[t]$, with $b \neq 0$ and $\operatorname{deg}_{t} b \leq \operatorname{deg}_{t} R$. Then f is differentially transcendental over $\mathbb{C}(t)$.

Walks on self-similar graphs

The Green function of a graph is a probability generating function which describes the n-step displacement starting and returning to a certain origin vertex.
(Grabner + Woess) The Green function associated to the Sierpinski Graph satisfies:

The asymptotics of the coefficients (Teufl) are incompatible with algebraicity. By Theorem II:
$G\left(\frac{t^{2}}{4-3 t}\right)=\frac{(2+t)(4-3 t)}{(4+t)(2-t)} G(t)$.
$G(t)$ is D-transcendental

Theorem III. (Di Visio, Fernandes, M. 2023+)
If $f(t) \in \mathbb{C}[[t]]$ satisfies $f(R(t))=a(t) f(t)+b(t)$
with $R(t), a(t), b(t)$ algebraic, and furthermore $R(0)=0, R^{\prime}(0) \in\{0,1$,roots of unity $\}$, no iterate of R is the identity
then $f(t)$ is either D-finite or D- transcendental.

Permutations avoiding consecutive patterns

- A permutation σ of n avoids the pattern I423 if there is no $0 \leq i \leq n-4$ so that $\sigma(i+1)<\sigma(i+4)<\sigma(i+2)<\sigma(i+3)$.The EGF of I 423 -avoiding permutations can be written using $S(t)$ satisfying the following: (Elizalde and Noy 2012)

$$
S(t)=1+\frac{1}{1+t} S\left(\frac{1}{1+t^{2}}\right)
$$

- $S(t)$ has an infinite number of singularities. (Beaton, Conway and Guttmann 2018)
- Since $S(t)$ is not D-finite, by Theorem III, $S(t)$ is D-transcendental.
- Similar situation for $1 m 23 \ldots(m-1)$ avoiding permutations

Concluding remarks

Regular
languages

Rational
$\frac{1}{1-t}=1+t+t^{2}+\ldots$

Fibonacci numbers

Walks in half plane
Excursions on Cayley graphs of free products of finite groups

Context free languages
Algebraic

132- avoiding permutations
numbers

Simple walks in quarter plane

Constrained

 regular languagesDifferentiably
Finite
$e^{t}=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+$
Baxter permutations

K-regular graphs

```
Simple walks in
"transcendental"
    region
Excursions on Sierpinski gasket
```


Differentially Algebraic

Complex

Consecutive 1432avoiding permutations ***

Tree decorated Complete 2-3 maps

Bell
numbers
(EGF)

Trees

Bell
numbers (OGF)

Open questions \& future work

> Identify combinatorial contexts that result in such functional equations.
> Simplify proofs of non-D-finiteness by proving D-transcendence.
> Higher order equations.
> Automated "guessing" tools for other kinds of functional equations.

Thank you for your attention!

