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D-finite : Satsfies a linear DE with polynomial coefficients. AKA Holonomic

D-Algebraic: Satisties a polynomial DE.

D-Transcendental : NO'T differentially algebraic
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Combinatorial classes

A combinatorial class is a set equipped with a size function. -~
Ordinary Generating Functions (OGF) encode enumerative ¢ — ((1) := Z | G,
n=0

data as integer coellicients of formal power series.

tn

TYPE OF CLASS TYPICAL EXAMPLES NATURE OF OGF
Finite class Polynomial
Iteratwe grammar Recognizable by a finite automaton Rational function

specification Regular language, eg. Fibonacci

Recurswdy gammar Trees, Catalan classes., Algebraic function
specification Maps

Shuffles of Dyck Paths
? k-regular labelled graphs D-finite

SY'T of bounded height

Families of decorated maps D-algebraic
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Applications of classification

Theoretcal Computer Science

The following language is not unambiguously context free:

6 ={we€lab,c}*||w| #|w]| or|w| F |w] } becauseitsgenerating function
C(t) = Z c, t" 1s not algebraic. (Flajolet1958)

n

Group Theory
Let G be a finitely generated amenable group that is not nilpotent-by-finite and let S be a

finite symmetric generating set for G. The OGF for walks starting and ending at the
origin on the Cayley Graph X(G:S) is not D-finite. (Bell, M. 202 '
Gives a strategy to determine if Thompson’s Group F is ar




Why the mterest in D-finite series?

“Almost anything is non-holonomic unless it is holonomic by design.”

- Flajolet, Gerhold & Salvy, 2005
e (losure properties mirror combinatorial actions

® The differential equation is a useful data structure for both reasoning and computation

® (lear proof strategies

° COIIJ ecture (Chiristol, 1990): 1f a series with non-negative integer coefficients ar
onvergence 1 hermore D-finite, then it can be written as the diago




“Classic™ Strategies

To show a series 1s D-finite:
Build 1t from other D-finite series
Show the coefficients satisty a linear recurrence

Write it as the constant term (with respect to auxiliary variables) of a multivariable D-finite series (essentially, a
Cauchy integral)

To show a series 1s NO'T D-finite

now asymptotic growth of the coefficients is not of the correct form



D-finite series in combinatorics

Differentiably Finite Power Series

® Richard Stanley’s 1980 article plants several seeds, many
which were considered by Gessel (1990):

R. P. STANLEY®

A formal power series Y f(n)x" is said to be differentiably finite if it satisfies a linear differential
equation with polynomial coefficients. Such power series arise in a wide variety of problems in
enumerative combinatorics. The basic properties of such series of significance to combinatorics are
surveyed. Some reciprocity theorems are proved which link two such series together. A number of

O B axter p ermutatl ()IlS examples, applications and open problems are discussed.
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* Young Tableaux of bounded height 4 1|3

® /-regular graphs ~ 7 (23 : 180
e (ited by > 500 (l / N\ B

> 12 000 hits to {Holonomic | D-finite }+combinatorics .

ost D-finite classes are in some bijection with a class of




|attice Paths




A walk 1s a sequence of steps

Consider (fixed) finite sets of possible steps (set of vectors). Enumerate the class of walks
encoded by sequences of steps.
Strategy : Encode each walk with a monomial marking its endpoint.

Multiplying monomuals captures
the action of steps in sequence.
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We can classify the

nature of

generating
functions of
NESW walks in

some regions

1 —4¢

Rational

D-finite
(Gouyou-Beauchamps)

P
<

NESW—walks IN Various regions

W(t) = 2 w(n)t" = Z (#walks of length » that stay In the blue region) 1"

n>0

‘ Algebraic Slit plane model
: Algebraic

(Bousquet-Mélou & Schaeffer)

D-finite
D-finite
(Bousquet-Mélou... )

D-finite

Classification via winding angle
(Excursions: Budd 2017; Elvey-Price)

Nasty algebraic
(Bostan & Kauers...)



Small step walks in the first quadrant

Fix set of steps (i.e. vectors) & C {(i,j) | 7,7 € {0,1, — 1}}\{(0,0)}. .

Os() =) ), #walksg(0,0) = (i,j)1"

n>0 (i,j)eN?

Theorem (M. + Rechnitzer 2009)
nere exist models with NON D-finite generating functions

. - N5/, 1 N o



Small step walks in the quarter plane

Conjecture (Bousquer-Mélou & M. 2010)
O o(x, y; ) D-finite iff a certain group 1s finite.

e 0s(x,yi) = Q56 ) = 21" D (#walks s (0.0) = (i.) ) ¥

n>0 (i,j)eN?

A decade-long, international collaboration determined the classification of Q ¢(x, y)
Finite group cases



Differental
Transcendence




A non-D-finite lattice model

Q~ [
* pull!
I :/ >
J " pull!

Fig. 5. Stretching the walk to find a directed path in a strip.

® Theorem (M., Rechnitzer, 2009) |
The univariate OGF has an ifinite number of singularities and is not D-finite. 4

inatorial explanation: A sequence of directed




% In tact.. D-transcendental

Dreyfus+Hardouin+Roques+Singer 17 * Bostan 19

Combinatorial recurrence A walk is etther the empty walk, or it is a shorter walk with a step appended, buz you must

_ exclude ti0se walks that then step out of the quarter plane

Functional equation for Q ¢(x, y) Ox,y) = 1+ z2(x/y + y/x +xy)Q(x, y)—2(x/y)Q(x,0) — 2(y/x)Q(0,y)

Rewrite so LHS is K o(x, y)O ¢(x, ) K(x, y)O(x,y) = xy—R(x) — R(y)

: : : : v - V2)s - v2)s v i y SO
Find rational parametrization for E ¢ 0=~ = =y — U= x(8)y(s) .w*"

Ded [shizaki/O tyl { -
cduce an 1s 1zafor R(}g(?z\)f?ras € equation f( qt) = Cl(t)f(t F

Conclude D-transcendance



Solution dichotomy

Lemma (/shuzaki 1998; Ogawara 2015)

Given a Laurent series f(7), a(?), b(t) € C(¢), and g, a complex number that is not a root of
unity such that

Jqt) = a(O)f(t) + b(1)
en f(7) is EITHER rational or D-transcendental.



Strategy

Rough principle: (ref. Adamczewski, Dreyfus, Hardouin 2021)

A Laurent series solution f(z) of a linear [shift | Mahler | g-shift] equation is
EITHER razional, or D-transcendental

g-shift: f(z) — f(qgt) (qnot aroot of unity)
: [
Example: Genus o quarter plane walks e f ( : )

Shift operator: f(¢) — f(t + h) Example: Bell numbers
Example: I'(t+ 1) = tI'(¢)

[
B(1) = ZB,J” — B - ) =B + 1
Mahler operator: f(t) — f(t*) (Klazar 2009: B

...not rational, hence it must be D-transcendental.




= Kxtending the strategy

Theorem 1. (Di Vizio, Fernandes, M. 2029+)

J(R(@)) = f()+

Theorem 11. (Di Vizio, Fernandes, M. 2029+)
J(R()) = f(¥)




Complete 2—3 Trees

0

/ \
IR A A Jl\. A A /l\ A A A ..

T(z) =z+2"4+ 20 +2"+22°+22° + O(2° I i
(2) = 2+ 22 4+ 2% + 24 + 225 + 225 + O(27) TE.+T[~—>A+A\-]

T(z) =z +T(z" + 2°).

When R(z) is a polynomial we have a stronger result that we can apply here.

| orollary 1.2. In the notation and under the assumptions of Theorem 1

h € tClt], with b # 0 and deg, b < deg, R. The



Walks on self-similar graphs
The (}réen func?ion of a graph i.s a probability /\ /< ) /‘é\ ﬁﬁ

generating function which describes the 7-step \ /_)\ v

displacement starting and returning to a certain wikigedia
Origin Vertex.

(Grabner + Woess) The Green function associated The asymptotics of the coefficients

to the Sierpinski Graph satisfies: are incompatible with algebr Cl
Theorem 1I: |

(2+ 104 - 31)

ﬂ

G(1) . G




= Kxtending the strategy

Theorem 111. (Di Vizio, Fernandes, M. 2029+)
J(R()) = f(H+




Permutations avoiding consecutive patterns

® A permutation o of 7 avoids the pattern 1423 if there isno 0 < i < n — 4 so that
o(i+1)<o(i+4) <o(i+2) <o(i+ 3). The EGF of 1423-avoiding permutations can
be written using 5(z) satisfying the following: (£lizalde and Noy 2012)

1 1
S =1+ S
" 141 (1+t2>

® 5(2) has an infinite number of singularities. (Beaton, Conway and Cul[ma d

Ince S(z) 1s not D-finite, by Theorem 11, $(2) 1s D-transcenc



Concluding remarks
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Open questions & future work

» |ldentify combinatorial contexts that result in such functional equations.

» Simplify proofs of non-D-finiteness by proving D-transcendence.

» Higher order equations.

omated “guessing” tools for other kinds of functional equati



Thank you fo

your attention!




