Sphere packings, singularities, and statistical mechanics
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Physics is much richer in 3D —> because of geometrical frustration

D. Nelson, F. Spaepen, Solid State Phys. 42, 1 (1989)
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Geometric frustration: locally preferred order = globally preferred order



Behaviour of small groups of particles can help understand
thermodynamic or dynamic phenomena

nucleation, phase transitions, glass transition, gel formation, jamming, etc

Observation of five-fold local _
The theoretical argument is misleading also. Consider the question: ‘In_how symmetry in qulIid lead @Q “
T O

many different ways can one put twelve billiard balls in simultaneous contact Wlth

H. Reichert*, 0. Klein*t, H. Dosch*, M. Denk*, V. Honkimaki,
T. Lippmanns$ & G. Reiter||

| contng as different the rangents which cannot be transformed into
each other without breaking contact with the centre ball?’ The answer is three. Two
which come to the mind of any crystallographer occur in the face-centred cubic
and hexagonal close-packed lattices. The third comes to the mind of any good

Relchert et al, Nature (2000)

PHYSICAL REVIEW LETTERS 122, 068004 (2019)

schoolboy, and is to put one at the centre of each face of a regular dodecahedron. -

That body has five-fold axes, which are abhorrent to crystal symmetry: unlike Morphometric Approach to Many-Body Correlations in Hard Spheres
the other two packings, this one cannot be continuously extended in three T it s B8y 1T Lo o
dimensions. You will find that the outer twelve in this packing do not touch each .Sc,m,";,;"g‘,; T B e rial 5SS, 15 Ut Kongdom

Centre for Nanoscience and Quantum Information, Bristol BS8 1FD, United Kingdom

other. If we have mutually attracting deformable spheres, like atoms, they will
be a little closer to the centre in this third type of packing; and if one assumes they

M| (Received 13 September 2018; published 14 February 2019)

We model the thermodynamics of local structures within the hard sphere liquid at arbitrary volume

are argon atoms (interacting in pairs with attractive and repulsive energy terms Tt gt e mrplonts ol o body coritons, Voo o o i
: —6 —12 : : the liquid and supercooled liquid regimes. We find a bimodality in the density library of states where
proportlonal tO r and r ) one may ca’lcu]'a'te that the blndlng energy Of the fivefold symmetric structures appear lower in free energy than fourfold symmetric structures and from

a single reaction path predict a dynamical barrier which scales linearly in the compressibility factor.
The method provides a new route to assess changes in the free energy landscape at volume fractions
dynamically inaccessible to conventional techniques.

group of thirteen is 8-4 %, greater than for the other two packings. This is 409, of
the lattice energy per atom in the crystal. I infer that this will be a very common
grouping in liquids, that most of the groups fwolve atoms around one will be m DOYye & Wales,

this form, that freezing inv ; 1 ; : and not v an »Faraday Trnne (199
extension of the dmé kmd of order fromshort dlstaces olon ones: a rearrange-
ment which is qulte costly of nerg in small localities, and bnly becomes
economical when extended over a considerable volume, because unlike the other, = |
packing it can be so extended without discontinuities.
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Phys. Sci. 215, 43 (1952) creation of local * global minima”

leads to gel formation

C. Patrick Royall, S. R. Williams, T. Ohtsuka,
H. Tanaka, Nat. Mater. 7, 556 (2008)




Colloidal particles (colloids)

+ Colloidal particles: diameters ~ 10-8-10-¢ m. (> atoms, « scales of humans)

+ Potential to make new materials (- size ~ wavelength of light)

+ Range of interaction « diameter of particles (unlike atoms)
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What about frustration in colloids?
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What about frustration in colloids?
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Symmetry number

”I‘igid” graphs eXp|a|nS the huge
discrepancy!

G. Meng, N. Arkus, M. P. Brenner, V. N. Manoharan, Science 327 (2010)



Data for N=6-8
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All observed clusters
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Rigid clusters are local minima of the system’s energy

Energy(x) = Z bl =), x; € R’ = sphere centre
pairs i,

pair potential
@ Spheres are either touching, or not
¢ Energy of cluster of N spheres « # of contacts

¢ Lowest-energy clusters = those with maximal number of contacts

® These are (typically) rigid: they cannot be continuously deformed without
breaking a contact (=crossing an energy barrier.)

® More generally: energetic local minima have a locally maximal number of
contacts, so are (typically) rigid.



Data for N=9

A non-rigid, N=9

G. Meng, N. Arkus, M. P. Brenner, V. N.
Manoharan, Science 327 (2010)

¢ One cluster dominated — probability = 11%! (out of 52 clusters total)
¢ It has a fair amount of symmetry —> symmetry cannot be that important...
¢ Seems to be “floppy” — has an infinitesimal zero mode.

o Important property — it’s not actually floppy — it’s rigid!



What is rigid?

g
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¢ Each adjacency matrix corresponds to a system of quadratic equations and inequalities

(Xi €R3):
L .Cl?j

i‘i—ﬂ?j

¢ A cluster (x,A) with x = (x1, x, ..., xn) is rigid if it is an isolated solution to this system of
equations (modulo translations, rotations)
— There is no finite continuous deformation of the cluster that preserves all edge lengths.
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Generically, expect 3N-6 contacts: from 3N variables, 6 dof in SE(3).

o Itis first order rigid if it is rigid and the equations above are linearly independent — rigid

and there are no infinitesimal zero-modes in the above equations



Quiz!

floppy (in R2,R3) first-order rigid (in R2) rigid (R2)
floppy (in R3) not first-order rigid (R?)

rigid (R3)

first-order rigid (in R3) first-order rigid (in R3) not first-order rigid (R®)

Singular: rigid but NOT first-order rigid
Regular: rigid AND first-order rigid



N=10

Singular clusters: Hyperstatic (>3N-6 edges) clusters:

B non-rigid, N=10 P=21% C 25bond, N=10 P=12%

Singular 21%, Hyperstatic 12%, > 250 total rigid clusters!



Question:

[s there a competition between singular & hyperstatic
clusters as N increases?
What can we say about this competition mathematically?

Strategy

e Enumerate all rigid clusters of N sticky spheres

e Evaluate their probabilities (equilibrium)

Free energy

Sticky: interacting with
infinitestimally short-ranged

(&deep) pair potential

1.e. U

range —> (0 r
depth—> o :



What are all the rigid clusters of N identical spheres?

H.-C. (2016) SIAM Review



Previous approaches

(1) List all adjacency matrices with 3N-6 contacts

(2) For each adjacency matrix, solve for the positions of the particles, or argue
that no solution exists.

Analytical (to N=10)

e N. Arkus, V. N. Manoharan, M. P. Brenner. Phys. Rev. Lett., 103 (2009)
e N. Arkus, V. N. Manoharan, M. P. Brenner. SIAM ]. Disc. Math., 25 (2011)

Numerical (to N=13, though many were missed)

e R.S. Hoy, J]. Harwayne-Gindansky, C. O’'Hern, Phys. Rev. E, 85 (2012)
e R.S. Hoy, Phys. Rev. E, 91 (2015)

Problems:

¢ LOTS of adjacency matrices: = 2nn-1)/2

¢ How to solve equations?
+ analytical — really hard
+ computer — can’t guarantee found solutions
+ Degree of equations is VERY high (= 23N-61)



A different algorithm H.-C. (2016) SIAM Review

Move from cluster to cluster dynamically
















Total number of clusters computed

H.-C. (2016) SIAM Review

n number of contacts
3In—9 3n—8 3n-—-7 3n — 6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
6 2 2
7 5 5
8 13 13
9 5 52
10 I 259 ‘ 263
11 2 18 1618 b N 1659
12 11 148 11,638 il e 11,980
13 87 1291 95,810 1307 98,529
14 1 707 10,537 872,992 10,280 878 o 895,478
gn-4 Sn—95 3In—-2 3n-—| 3n syl st o
s | 7675 782 55 R e (9 x 10° est.)
16 7895 664 O, B e, (1 x 108 est.)
17 7796 789 . e e, (1.2 x 10° est.)
18 9629 (Ol e, SO0 G B SO (1.6 x 1010 est.)
19 13,472 @ 1458 @ "ale, . T (22 <101 o i

(N=20,21 also; data not shown)
hyperstatic






H.-C. (2016) SIAM Review
Total number of clusters computed

n number of contacts
3In—9 3n—8 3n-—-7 3n — 6 3In—5 3n—4 3In—3 3n-—2 Total
5 1 1
6 2
7 5
8 13
9 51
10 3 263
11 ) ! 20 1 1659
12¢ 11 174 8 1 11,980
13 % 87 1307 96 8 98,529
1145, 707 10,280 878 79 4 895,478
a3 — 3 3 ' 3n 3n+1 3n+2
15 - (9 x 10° est.)
16 7895 664 62 8 (1 x 108 est.)
17 7796 789 85 6 (1.2 % 102 est )
18 9629 1085 91 5 (16 < 10" st
19 13472 1458 95 7 (2.2 x 100 estt)

(N=20,21 also; data not shown)
hypostatic



A cluster “missing” one contact, N=10




clusters missing two contacts,
N=11

&
& &

cluster missing three
contacts, N=14




cluster missing arbitrarily many contacts

# of contacts ~ 2N when N large



Clusters with the same adjacency matrix

N=11

N=12



4 clusters with the same adjacency matrix (N=14)




Circular transition paths

=

> 18,000 circular paths when N=13!

<_r

—> are there floppy local minima too? If so, how would we find them?



Does the algorithm find everything?

N=11
hypostatic
3N-7 contacts
hcp fragment

No... . here’s an example:

Cluster landscape looks like:
Question:

Is the landscape ever
connected (by 1 dof
motions), under additional
assumptions?

e.g. clusters are regular,
Isostatic, have random
diameters, ....




Statistical Mechanics

What is the probability of a cluster x € R>" in the sticky-sphere (short-
ranged interaction) limit?

M. H.-C., S. Gortler, M.P.Brenner, PNAS (2013)
Y. Kallus, M. H.-C., Phys. Rev. E (2017)



Probability(cluster x) « Partition function Zx

Ly — / e~ BV (@) gt
Nite)

¢ V(x) = energy of configuration x, V(x) :Z Ulle, 2.
¢ [3=1/ksT = inverse temperature =

energy of a pair = U(|xi-xj|)
xi=center of ith sphere,

X=(X1,X2,...,XN)

¢ N(x) = neighbourhood of x, including
translations, rotations, permutations,
and bonds with lengths e (d - ¢, d + ¢)

u(r)
Sticky-sphere limit:

© Range e « d
¢ Depth U(d) » 1

M. H.-C., S. Gortler, M.P. Brenner, PNAS (2013)
Y. Kallus, M. H.-C., Phys. Rev. E (2017)



“Geometry” of the calculation

B = # of bonds
Asymptotically as e —> 0:

L. o s / dx

{—eﬁyk(i’?)ﬁe}szl

constraints "~ fattened” by €

Yr(z) = |zi, — x| —1 = excess bond distance between spheres iy, ji

{2z : yx(x) = 0}  is hypersurface where sphere i touches sphere jx

Zx = Exp(U(d)*# of contacts) * Volume(constraint intersection region)
—> 0 — ()

“energy” “entropy”



Example (regular)

xeR?
y'1(X) = VX

Y2(X) = Vo'X

Vol = 41 vi X vz |]e}

“Regular” constraints should have volumes that scale as

dimension of intersection set
&



Example (singular)

blows up as (Y1,Y2)—>(0,0), but in
an integrable way



Vol(Example 2) 1
_ _ ~ — — 0
Vol(Example 1)  €l/2 g 0t

—> Equilibrium probability of singular clusters should dominate that of regular
clusters (with the same number of contacts), in the sticky-sphere limit.

Physically, they have more entropy.



Example (hyperstatic)

XeR2

Y1(X) = VX

Y2(X) = Vo'X

Y3(X) = V31X

Vol « g2

Z . (hyperstatic example
(hyp pPle) —su()

Z.(regular example)

—> Free energy of hyperstatic clusters should dominate that of regular clusters,
in the sticky-sphere limit.
Physically, they have lower energy.

Who wins: singular clusters or hyperstatic clusters?



General case

How does the free energy of singular clusters scale with &?

Algebraic geometry:
Volweq(loge)k, geQ, keZ

qk related to the algebraic nature of the singularity, i.e. what it looks like
once it is “resolved”

IGUSA INTEGRALS AND VOLUME ASYMPTOTICS
IN ANALYTIC AND ADELIC GEOMETRY

ANTOINE CHAMBERT-LOIR

Unwversité de Rennes 1 and Institut universitaire de France,
IRMAR-UMR 6625 du CNRS, Campus de Beaulieu,
85042 Rennes Cedex, France
antoine.chambert-loirQuniv-rennesl.fr

YURI TSCHINKEL

Courant Institute, NYU, 251 Mercer St.
New York, NY 10012, USA

tschinkel@cims.nyu.edu

Received 24 December 2009
Revised 11 October 2010

We establish asymptotic formulas for volumes of height balls in analytic varieties over
local fields and in adelic points of algebraic varieties over number fields, relating the
Mellin transforms of height functions to Igusa integrals and to global geometric invariants
of the underlying variety. In the adelic setting, this involves the construction of general
Tamagawa measures.

Keywords: Heights; Poisson formula; Manin’s conjecture; Tamagawa measure.
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Our approach

7. — e~ BV (@) gt
N (x)

¢ Taylor-expand the potential V(x) = g Uile, 2 )
17
8162(93‘/ = Z U6//(81T82T83T) = Ué/(algragfl“ SE (9237“817’ 2 8127“837“)
(4,5)
0102030,V = Y U{" (01705r0510,7)

(2,3)

+ U (0147027037 + 0137027047 + O127031041 + OogrO1 7031 + Oo3rO1m04T + 0347017017
+ Ué’(alggﬂ“aﬂ“ o 61247“827“ =1 82347“817“ o5 8127°6347° - 8137“8247° o (9147“8247°)

¢ Evaluate integral using Laplace asymptotics

¢ Asymptotically the same scaling as square-well potential:
log(Zsquare) ~ 10g(Zx) as e—=0, U(d)—c0 (Kallus & H.-C., Phys Rev E (2017))



Partition function for second-order rigid cluster

where the geometrical part is

. — lconst) - IU(ZE) H )\il/Z(w)/Xe_Q(i)di

A 70
parameters are geometry-dependent variables are
_  —BU) AB = B— (3N -6)
L = £ of bonds beyond isostatic
~ exp(depth) dx # of singular directions
el (U// ( d) 3 d2)1/ 4 I(r) determinant of moment of inertia tensor
: i o symmetry number
~ width Nl eigenvalues of Hessian VVV = R(z)R* (x)
Q(x) = quartic function on subspace of

Only TWO parameters needed!

singular directions

Y. Kallus and M. H.-C., Phys. Rev. E (2017).



Comparing hyperstatic & singular clusters
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.. back to frustration ....

+ Symmetry (or lack thereof) doesn’t seem to be particularly important
+ Competition is between

energy (of extra bonds), and “singular” entropy (of O-frequency modes):

eneri ?tropy

7., (const) 4 o' 2

and combinatorial entropy (total number of states)
(also global entropy term — neglected here)

+ For identical spheres, energy beats “singular entropy”:
Max-bond, crystalline states win for N > 10, strong enough bonds
—> Sticky spheres do not appear to be frustrated!

+ Question: Are there systems where “singular entropy” dominates?
(non-identical spheres, ellipsoids, ...?)

Thanks to: Steven Gortler, Yoav Kallus, John Ryan, Louis Theran, US DOE, NSF-FRG, Sloan
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Two-dimensional rigid clusters
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