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Problem of the Week # 1321

In April 2021, Dan Ullman and Stan Wagon published Problem # 1321 in
the Macalester College Problem of the Week series, where they
introduced:

a function f (A) of a finite set A of integers equal the number of
2-element subsets of A that sum to a power of 2.
For example, f

(
{−1, 3, 5}

)
= 3 since −1 + 3 = 21, −1 + 5 = 22, and

3 + 5 = 23.

a function g(n) as
g(n) := max

A:|A|=n
f (A).

The Ullman and Wagon problem asked for a proof that g(10) ≥ 14, which
was quickly improved to g(10) ≥ 15 by the readers.

It further inspired a harder question of determining the exact value of g(n)
for a given n.
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Numberphile Video

In September 2022, the problem of determining values of g(n) received
much attention after Neil Sloane presented it on the popular Numberphile
Youtube channel:
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Computing g(n) via Labeled Graphs

It was quickly noticed by many people that computing g(n) has a natural
interpretation as finding a maximum graph of order n, where

the vertices are labeled with pairwise distinct integers; and

the sum of the endpoint labels for each edge is a power of 2.

Example of a maximum graph of order n = 10 having size g(10) = 15:
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Squarefree Graphs

In March 2022, M. S. Smith proved that such a graph cannot contain a
cycle C4, limiting the candidate graphs to well-studied squarefree graphs.

It led to establishing the values of g(n) for all n ≤ 9, and creation of the
sequence A352178 in the Online Encyclopedia of Integer Sequences:

Value g(10) = 15 was independently obtained by R. Pratt, M. Bolan, and
F. Melaih, who also established that g(11) = 17. Computing g(n) for
12 ≤ n ≤ 21 is the subject of the present work.
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Lower Bounds

At the same time, two computationally “easy” methods were proposed for
obtaining lower bounds for g(n):

The two bounds coincide in the range of interest n ∈ [12, 21], and let ℓ(n)
denote the corresponding lower bound.
In fact, we have proved that g(n) = ℓ(n) for all n ∈ [12, 21].
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Admissible Graphs

An unlabeled graph is admissible if its vertices can be labeled with pairwise
distinct integers such that the sum of the endpoint labels for each edge is
a power of 2.

We developed an algorithm for testing graph admissibility, which then was
used to

find all minimal forbidden subgraphs (like C4) of orders ≤ 11;

establish values g(n) for 12 ≤ n ≤ 21; and

find all maximum admissible graphs for n ≤ 20.
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A Bit of Linear Algebra

Given a matrix M:

Right kernel Kr :
M · Kr = 0; and for any vector v with M · vT = 0 we have
vT = Kr · uT for some vector u.

Left kernel Kl :
Kl ·M = 0; and for any vector v with v ·M = 0 we have v = u · Kl

for some vector u.

Rouche–Frobenius–Capelli theorem:
given a vector w , solution v to M · vT = wT exists if and only if
Kl · wT = 0T .

All solutions to M · vT = wT are given by

v = v0 + Kr · uT

for any particular solution v0 (i.e. M · vT0 = wT ) and any vector u (of
suitable size).

Max Alekseyev Testing graph admissibility



Matrix Equation

A given graph G on n vertices with m edges is admissible if and only if the
following matrix equation is soluble:

M · LT = XT . (1)

such that

M is the m × n incidence matrix of G with rows and columns indexed
by the edges and vertices of G , and so M is a {0, 1}-matrix with each
row containing exactly two 1’s;

L = (l1, l2, . . . , ln) is a vector of pairwise distinct integer vertex labels;

X = (x1, x2, . . . , xm) is a vector formed by powers of 2 (possibly
equal) representing the sums of edges’ endpoint labels.

Both L and X are unknown and have to be determined.
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Matrix Equation

A given graph G on n vertices with m edges is admissible if and only if the
following matrix equation is soluble:

M · LT = XT . (1)

We start with solving (1) for L in terms of X , that is, we compute a
particular solution L0 = (p1, . . . , pn), where pi = pi (x1, . . . , xm) are linear
polynomials with rational coefficients.

By Rouche–Frobenius–Capelli theorem, such a solution exists if and only if
Kl · X = 0. Let E be the set of elements of Kl · X , which are linear
homogeneous polynomials with integer coefficients representing linear
equations in x1, . . . , xm.

For practical efficiency, Kl should be sparse, which (to some extent) can
be achieved by LLL reduction.
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Matrix Equation

A given graph G on n vertices with m edges is admissible if and only if the
following matrix equation is soluble:

M · LT = XT . (1)

All solutions L for a fixed X can be obtained as

LT = LT0 + Kru
T

for any vector u (of suitable size, of course).

However, we additionally require that L has pairwise distict elements.

The following theorem shows that with an appropriate choice of u,
pairwise distinct rows in Kr can make the corresponding elements of L also
pairwise distinct.
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Pair of Distinct Rows in Kr

Theorem 1

Let v be an integer vector of size k ≥ 0, and A be a k × s integer matrix
with pairwise distinct rows. Then there exists an integer linear
combination of the columns of A such that adding it to v results in a
vector with pairwise distinct elements.

Proof.
If s = 0, then with necessity we have k = 1, and thus v already has pairwise distinct
elements.
Let us prove the statement for s = 1. In this case, A represents a column-vector with
pairwise distinct elements. Let t be the difference between the largest and the smallest
elements of v . It is easy to see that vector v +AT · (t+1) has pairwise distinct elements.
In the case of s > 1, let d be the difference between the largest and the smallest
elements of A. Then the k × 1 matrix A′ := A · (1, (d + 1), (d + 1)2, . . . , (d + 1)s−1)T

has pairwise distinct elements, thus reducing the problem to the case s = 1 considered
above.
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Pairs of Equal Rows in Kr

Theorem 1 implies that we need to enforce non-equality only for the pairs
of elements of L = (l1, . . . , ln) that correspond to the equal rows of Kr .

For each pair of equal rows in Kr with indices i < j , we compute

qij(x1, . . . , xm) := (pi (x1, . . . , xm)− pj(x1, . . . , xm))c ,

where c is a positive integer factor making all coefficients of q integer.

If qij is zero polynomial, then the condition li ̸= lj is unattainable, and
thus the graph G is inadmissible.

If qij consists of just a single term with a nonzero coefficient, then the
condition li ̸= lj always holds, and we ignore such qij .

If qij contains two or more terms with nonzero coefficient, we add qij
to the set N.

The resulting set N consists of polynomials in x1, . . . , xm that have to take
nonzero values on a solution X to (1). We will refer to such polynomials
as inequations.
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System of Equations and Inequations

For given finite sets E and N of nonzero linear polynomials in
x1, x2, . . . , xm, we need to find all tuples of nonnegative integers
(y1, y2, . . . , ym) such that

∀p ∈ E : p(2y1 , 2y2 , . . . , 2ym) = 0,

∀p ∈ N : p(2y1 , 2y2 , . . . , 2ym) ̸= 0.

Technically it is convenient to represent each parametric family of solutions
as a map s from the set of variables Y := {y1, y2, . . . , ym} to linear
polynomials in these variables. Namely, s sends every variable from Y to

either itself when it is a free variable; or

to a linear polynomial in the free variables.

For example, the map {y1 7→ y4 + 1, y2 7→ y2, y3 7→ y2 + y4 + 3, y4 7→ y4}
corresponds to the solution (x1, x2, x3, x4) = (2y4+1, 2y2 , 2y2+y4+3, 2y4),
where y2 and y4 are free variables (taking nonnegative integer values).
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GraphSolve Algorithm
1: function GraphSolve(G)

2: Set E := ∅ and N := ∅
3: Construct the incidence matrix M of G with rows and columns indexed by edges and vertices of G

4: Compute a LLL-reduced basis Kl of the left kernel of M. ▷ We have Kl · M = 0.

5: for each row r in Kl do

6: Add polynomial r · X to E

7: end for
8: Solve MLT = XT for L in terms of X = (x1, . . . , xm), let (p1, . . . , pn) be any particular solution.

9: Compute Kr whose columns form a basis of the right kernel of M. ▷ We have M · Kr = 0.

10: for each {i, j} ⊂ {1, 2, . . . , n} do

11: if ith and jth rows of Kr are not equal then

12: continue to next subset {i, j} ▷ Per Theorem 1.

13: end if
14: Set q equal to a multiple of pi − pj with integer coefficients

15: if q = 0 then

16: return ∅ ▷ No solutions with li ̸= lj .

17: end if
18: if q contains two or more terms then

19: Add q to N.

20: end if
21: end for
22: S := ∅
23: for each s in SolveInPowers(E , N) do ▷ s is a map from Y to linear polynomials in Y

24: Set xi := 2s[yi ] for each component xi in X

25: Solve MLT = (x1, . . . , xm)T for L composed of pairwise distinct integers, and add the solution to S .

26: end for ▷ Invoke Theorem 1 as needed.
27: return S
28: end function
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System of Equations and Inequations

Given: a system (E ,N) with finite sets E and N of nonzero linear
polynomials in x1, x2, . . . , xm.

Find: all tuples of nonnegative integers (y1, y2, . . . , ym) such that

∀p ∈ E : p(2y1 , 2y2 , . . . , 2ym) = 0,

∀p ∈ N : p(2y1 , 2y2 , . . . , 2ym) ̸= 0.

Max Alekseyev Solving a system of (in)equations in powers of 2



Foundational Theorem

As simple as it sounds, the following theorem provides a foundation for our
algorithm.

Theorem 2

In any nonempty multiset of nonzero integers summing to 0, there exist
two elements with equal 2-adic valuations.

Proof.
Let

S be a nonempty multiset of nonzero integers summing to 0, and

k be an element of S with the smallest 2-adic valuation, say q := ν2(k) < ∞.

If every other element of S has valuation greater than q, then the sum of all elements
(which is 0) has valuation q, which is impossible. Hence, there exist at least two
elements in S having 2-adic valuation equal q.
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Recursive Solution via Indeterminates Reduction

Applying Theorem 2 to an equation c1x1 + · · ·+ cmxm ∈ E , we conclude
that

if only one of the coefficients c1, c2, . . . , cm is nonzero, then the
system (E ,N) is inadmissible.
otherwise, if there are two or more nonzero coefficients among
c1, c2, . . . , cm, then there exists a pair of indices i < j such that
ci ̸= 0, cj ̸= 0, and ν2(cixi ) = ν2(cjxj).

In the latter case, we make a substitution xi ← 2ν2(cj )−ν2(ci )xj or
xj ← 2ν2(ci )−ν2(cj )xi (we pick one with integer coefficients) in both E and
N, thus reducing the number of indeterminates. Then, if it does not make
any elements of N evaluate to zero, we proceed with solving the reduced
system recursively.

After the pair (i , j) is explored, we add a new inequation
2ν2(ci )xi − 2ν2(cj )xj to N (preventing getting the same solutions again in
future), and proceed to a next pair of indices.
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SolveInPowers Algorithm
1: function SolveInPowers(E , N)
2: if E = ∅ then
3: return {the identity map: yi 7→ yi} ▷ Every variable in Y is free.
4: end if
5: Pick c1x1 + · · ·+ cmxm ∈ E with the smallest number of nonzero coefficients.
6: Let I := {i | 1 ≤ i ≤ m, ci ̸= 0} be the set of indices of nonzero coefficients.
7: if |I | = 1 then
8: return ∅ ▷ Such equation has no solutions.
9: end if
10: Set S := ∅ ▷ We accumulate solutions in S .
11: for each {i , j} ⊆ I do ▷ We iterate over all 2-element subsets of I .
12: Possibly exchanging the values of i and j , ensure that d := ν2(ci )− ν2(cj ) ≥ 0.

13: Compute N′ from N by substituting xj ← 2dxi and excluding nonzero constants.
14: if 0 ∈ N′ then
15: continue to the next pair {i , j}.
16: end if
17: Add xj − 2dxi to N. ▷ For future we disallow the equality cjxj = cixi .

18: Compute E ′ from E by substituting xj ← 2dxi and excluding zero polynomials.
19: for each s in SolveInPowers(E ′, N′) do
20: Redefine s[yj ] := s[yi ] + d .
21: Add s to set S .
22: end for
23: end for
24: return S
25: end function
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Minimal forbidden graphs

We used our algorithms to find minimal forbidden subgraphs (MFS) of
small order, i.e., inadmissible graphs in which every proper subgraphs is
admissible.

It is easy to see that each MFS must be connected. It is further almost
trivial task to verify that C4 is the smallest MFS, and it is the only one on
4 vertices. Therefore, for n > 4 we can restrict our attention to connected
squarefree graphs as candidates.

To generate them we employed SageMath software (sagemath.org) with
the function nauty geng() based on the nauty tool supporting generation
of both connected (option -c) and squarefree (option -f) graphs.
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FindMFS Algorithm

An algorithm for iterative computing minimal forbidden subgraphs, other
than C4, of order up to u:

1: function FindMFS(u)
2: S := ∅
3: for n = 5, . . . , u do
4: for each connected squarefree graph G of order n do
5: if G contains any graph H from S as a subgraph then
6: continue to next G
7: end if
8: if GraphSolve(G) is empty then
9: Add G to the set S .

10: end if
11: end for
12: end for
13: return S

14: end function
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Computed MFSs

We confirmed that the smallest MFS is the cycle C4 as it was originally
proved by Smith, and the next two MFSs have order 7:

In fact, the former graph was previously proved inadmissible by Bolan
while showing that g(10) = 15.

There are no MFSs of order 8 or 9, but there are 15 MFSs of order 10,
and there are 77 MFSs of order 11.

We use MFSs of order ≤ 10 for quick filtering of some inadmissible graphs.
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Computing values of g(n)

We use the proposed algorithms for computing values of g(n) for n in
[12, 21], relying on the known values g(n) for n ≤ 11 and the lower bound
ℓ(n) for n ≥ 12:

n 1 2 3 4 5 6 7 8 9 10 11

g(n) 0 1 3 4 6 7 9 11 13 15 17

n 12 13 14 15 16 17 18 19 20 21

ℓ(n) 19 21 24 26 29 31 34 36 39 41

Theorem 3

For each integer n ∈ [12, 21], we have g(n) = ℓ(n).

Our goal is to show that for each n ∈ [12, 21] we have g(n) ≤ ℓ(n), which
is equivalent to showing that every graph of order n and size ℓ(n) + 1 is
inadmissible.
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Useful Theorem

Theorem 4

For any integer n > 2:

(I) if an admissible graph G of order n and size e exists, then its minimum degree
≥ e − g(n − 1);

(II)

g(n) ≤
⌊
n · g(n − 1)

n − 2

⌋
;

(III) if
g(n − 1)

n − 1
= max

k∈{1,2,...,n−1}

g(k)

k
,

then any admissible graph of order n and size e > n
n−1

g(n − 1) is connected.

Proof of (I). Let G be an admissible graph of order n with e edges. If G
has a vertex of degree < e − g(n − 1), then removing it from G results in
an admissible graph of order n − 1 and size > g(n − 1), a
contradiction.
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Useful Theorem

Theorem 4

For any integer n > 2:

(I) if an admissible graph G of order n and size e exists, then its minimum degree
≥ e − g(n − 1);

(II)

g(n) ≤
⌊
n · g(n − 1)

n − 2

⌋
;

(III) if
g(n − 1)

n − 1
= max

k∈{1,2,...,n−1}

g(k)

k
,

then any admissible graph of order n and size e > n
n−1

g(n − 1) is connected.

Proof of (II). Since minimum degree ≥ e − g(n− 1), we have that size of

G is at least n(e−g(n−1))
2 , that is, e ≥ n(e−g(n−1))

2 , implying that

e ≤
⌊n·g(n−1)

n−2
⌋
. For an admissible graph of order n and size e = g(n), it

implies g(n) ≤
⌊n·g(n−1)

n−2
⌋
.
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Useful Theorem

Theorem 4

For any integer n > 2:

(III) if
g(n − 1)

n − 1
= max

k∈{1,2,...,n−1}

g(k)

k
,

then any admissible graph of order n and size e > n
n−1

g(n − 1) is connected.

Proof of (III). Suppose that we have an admissible graph G of order n and size
e > n

n−1
g(n− 1). Let s1 ≤ · · · ≤ st be the orders of its connected components. If t ≥ 2,

then st ≤ n− 1. Clearly, we have s1 + · · ·+ st = n and e ≤ g(s1) + · · ·+ g(st) and thus

g(s1) + · · ·+ g(st)

s1 + · · ·+ st
≥ e

n
>
g(n − 1)

n − 1
.

On the other hand, since g(s1)+···+g(st )
s1+···+st

is the mediant fraction of g(s1)
s1

, . . . , g(st )
st

, we have
a contradiction:

g(s1) + · · ·+ g(st)

s1 + · · ·+ st
≤ max

1≤i≤t

g(si )

si
≤ max

k∈{1,2,...,n−1}

g(k)

k
=

g(n − 1)

n − 1
.
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Useful Theorem

Theorem 4

For any integer n > 2:

(I) if an admissible graph G of order n and size e exists, then its minimum degree
≥ e − g(n − 1);

(II)

g(n) ≤
⌊
n · g(n − 1)

n − 2

⌋
;

(III) if
g(n − 1)

n − 1
= max

k∈{1,2,...,n−1}

g(k)

k
,

then any admissible graph of order n and size e > n
n−1

g(n − 1) is connected.

Iteratively for each n ∈ [12, 21], Theorem 4(III) implies that any admissible
graph of order n and size ≥ ℓ(n) is connected.

That is, in the venue of proving Theorem 3 we can focus on the connected
squarefree graphs only, which we refer to as candidate graphs.
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Computing g(n) for n ∈ [12, 16]
To prove Theorem 3 for n = 12, we generate all candidate graphs of order
12, size ℓ(12) + 1 = 20, and minimum degree ≥ 20− g(11) = 3, which we
then test for admissibility. There are 18 candidate graphs and none are
admissible, which proves g(12) = 19.

Similarly, for n = 13, we generate all candidate graphs of order 13, size
ℓ(13) + 1 = 22, and minimum degree ≥ 22− g(12) = 3. There are 173
such candidate graphs, none of which are admissible. Thus, g(13) = 21.

From g(13) = 21, Theorem 4(II) implies that g(14) ≤ 24, which matches
the lower bound. Therefore, we obtain g(14) = 24 without any
computation.

For order n = 15, we test if there is any admissible graph of size
ℓ(15) + 1 = 27. By Theorem 4(I) such a graph should have minimum
degree ≥ 3. We generate 8, 280 such candidate graphs, but our check
shows that all of them are inadmissible. Hence, g(15) = 26.

For order n = 16, Theorem 4(II) implies g(16) ≤ 29 = ℓ(16), and thus
g(16) = 29.
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Computing g(n) for n ∈ [17, 18]

For order n = 17, Theorem 4(I) implies that any admissible graph of size
ℓ(17) + 1 = 32 should have minimum degree ≥ 3. In fact, minimum
degree should be exactly 3, since otherwise the size would be at least
17 · 4/2 = 34. There are 1, 023, 100 such candidate graphs, which, in
principle, are possible to inspect directly, although it would be quite time
consuming.

Instead, we approached this problem from another angle: noticing that the
removal of a vertex of degree 3 from an admissible graph of order 17 and
size 32 results in a maximum admissible graph (MAG) of order 16. We
constructed all MAGs of order 16 (as explained below) and established
that none of them extends to an admissible graph of order 17 and size 32,
thus proving that g(17) = 31.

For order n = 18, Theorem 4(II) implies g(18) ≤ 34 = ℓ(18) and thus
g(18) = 34.
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Computing g(n) for n ∈ [19, 20]

For order n = 19, Theorem 4(I) implies that any admissible graph of size
ℓ(19) + 1 = 37 should have minimum degree ≥ 3. With necessity such a
graph has a vertex of degree 3 and we proceed similarly to the case
n = 17. We construct MAGs of order 18 and show that none of them can
be extended to an admissible graph of order 19 and size 37. It follows that
g(19) = 36.

For order n = 20, Theorem 4(I) implies that any admissible graph of size
ℓ(20) + 1 = 40 should have minimum degree ≥ 4, implying that this graph
is regular of degree 4. There are 15, 156 such candidate graphs, all of
which are inadmissible. Hence, g(20) = 39.
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Computing g(21)
For order n = 21, Theorem 4(I) implies that any admissible graph G of
size ℓ(21) + 1 = 42 should have the minimum degree d ≥ 3. Also,
21d/2 ≤ 42 implies that d ≤ 4.

d = 3: We construct MAGs of order 20 and show that none of them can be
extended to an admissible graph by adding a vertex of degree 3.

d = 4: Such graph G would be 4-regular. Since G is squarefree, its girth g is
either 3 or ≥ 5.

g = 3: Removing from G vertices forming a 3-cycle results in an admissible
graph G ′ of order 18 and size 31, composed of 3 vertices of degree 2
and 15 vertices of degree 4. Further removing from G ′ two degree-2
vertices we obtain a MAG of order 16, which however cannot contain a
vertex of degree 2.

g ≥ 5: There exist 8 such graphs as computed by tool GENREG, which are listed
at https://mathe2.uni-bayreuth.de/markus/reggraphs.html
Our test shows that they all are inadmissible.

It follows that g(21) = 41.
This concludes our proof of Theorem 3 (modulo the announced MAGs
computations).
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MAGs of order 14

The maximum admissible graphs of each order n ≤ 14 can be obtained
directly from the candidate graphs generated by nauty.

In particular, for n = 14 we can restrict our attention to the 2, 184
connected squarefree graphs of minimum degree 3, among which we
identified only 4 MAGs:
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MAGs of order 14
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MAGs of order n ∈ [15, 18]

To construct MAGs of order n ∈ [15, 18], which by Theorem 4(I) have
minimum degree ≥ g(n)− g(n − 1), we generate and test for admissibility
candidate graphs of two types:

extended graphs resulted from adding a vertex of degree
g(n)− g(n − 1) to a MAG of order n − 1; and

denovo graphs with minimum degree ≥ g(n)− g(n − 1) + 1
generated by nauty. Clearly, denovo candidate graphs may exist only
if n(g(n)− g(n − 1) + 1) ≤ 2g(n), i.e., g(n) ≤ n

n−2(g(n − 1)− 1).

For n = 15, there are 124 extended and 33, 608 denovo candidate graphs,
among which we identified 20 + 8 = 28 MAGs.
For n = 16, there are 243 extended and no denovo candidate graphs,
delivering just 2 MAGs.
For n = 17, there are 82 extended and 5, 847, 706 denovo candidate
graphs, delivering 11 + 7 = 18 MAGs.
For n = 18, there are 287 extended and no denovo candidate graphs,
delivering just 2 MAGs.
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MAGs of order 19

For MAGs of order 19, we obtain 15 MAGs of minimum degree 2 from the
extended graphs. However, the number of denovo candidate graphs
appears to be prohibitively large.
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MAGs of order 19
We therefore take a different route by first computing sub-maximum
addmissible graphs (sub-MAGs) that have size just one less than that of
MAGs. Namely, we compute:

sub-MAGs of order 14 composed of 400 graphs of minimum degree 2 extended
from MAGs of order 13 and 34 denovo graphs of minimum degree 3;

sub-MAGs of order 15 composed of 54 graphs of minimum degree 1 extended from
MAGs of order 14, 1597 graphs of minimum degree 2 extended from sub-MAGs of
order 14, and 70 denovo graphs of minimum degree 1;

sub-MAGs of order 16 composed of 144 graphs of minimum degree 2 extended
from MAGs of order 15 and 36 denovo graphs of minimum degree 3;

sub-MAGs of order 17 composed of 32 graphs of minimum degree 1 extended from
MAGs of order 16, 909 graphs of minimum degree 2 extended from sub-MAGs of
order 16, 0 denovo graphs of minimum degree 3 without a connected pair of
degree-3 vertices,1 and 131 graphs extended from sub-MAGs of order 15 with a
connected pair of degree-3 vertices;

sub-MAGs of order 18 composed of 124 graphs of minimum degree 2 extended
from MAGs of order 17 and 50 graphs of minimum degree 3 extended from
sub-MAGs of order 17.

Then we get MAGs of minimum degree 3 by extending sub-MAGs of order
18, resulting in 7 such MAGs. So, we have 15+7 = 22 MAGs of order 19.

1Here any denovo graph has ≥ 4 · 17− 2 · 30 = 8 independent degree-3 vertices,
whose removal results in a graph of order 9 and size 6. We generate all 50 such graphs,
and then extend them with 8 independent degree-3 vertices to construct the candidate
denovo graphs.

Max Alekseyev Applications



MAGs of order 20

MAGs of order 20 have the minimum degree 3 and are the result of an
extension of MAGs of order 19, which gives just 2 MAGs.
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Computational Complexity and Benchmarks

While it seems difficult to give an accurate estimate for the computational complexity of
the proposed algorithms, the obtained practical results show that they are quite efficient
in practice:

Performance benchmarks for testing (inadmissible) graphs of order n, size ℓ(n) + 1, and
minimum degree ≥ 3, for n ∈ {12, 13, 15, 20}:

Graph order 12 13 15 20

# candidate graphs 18 173 8280 15,156

# graphs with an MFS 16 159 8252 14,591

# graphs tested w. GraphSolve 2 14 28 565

Average test time (sec.) 6.5 17.5 24.5 247.9

Performance benchmarks for identifying maximum admissible graphs:

Graph order 14 15 16 17 18

# candidate graphs 2,184 33,732 243 5,847,788 287

# graphs with an MFS 1,976 29,251 215 5,734,238 257

# graphs tested w. GraphSolve 208 4,481 28 113,550 30

Average test time (sec.) 30.9 44.2 51.0 81.4 79.1
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Concluding Remarks

Algorithm SolveInPowers can be easily extended to powers of
other primes, and further to powers of arbitrary positive integer b by
introducing independent variables for powers of each prime dividing b.

While we applied algorithm SolveInPowers to linear equations and
inequations, the linearity appears to be inessential and the algorithm
should work equally well for polynomial (in)equations.

Performance of algorithm SolveInPowers is sensitive to the
number of nonzero coefficients in equations, which in algorithm
GraphSolve are derived from the left kernel Kl of the given graph
incidence matrix. We found that upfront LLL reduction of Kl helps to
reduce the number of nonzero coefficients and greatly improves the
performance.

We have also explored the idea to perform LLL reduction of the
equations in E after each substitution, but it seems(?) to not provide
much benefit.

Preprint is available at https://arxiv.org/abs/2303.02872, soon
will appear in Journal of Computer and System Sciences.
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