Title: Ascent sequences avoiding a set of length-3 patterns

Abstract: An ascent sequence is a sequence $a_1a_2\cdots a_n$ consisting of non-negative integers satisfying $a_1 = 0$ and for $1 < i \leq n, a_i \leq asc(a_1a_2\cdots a_{i-1}) + 1$, where $asc(a_1a_2\cdots a_k)$ is the number of ascents in the sequence $a_1a_2\cdots a_k$. We say that two sets of patterns B and C are A-Wilf-equivalent if the number of ascent sequences of length nthat avoid B equals the number of ascent sequences of length n that avoid C, for all $n \geq 0$.

In this talk, we show that the number aw_k of A-Wilf-equivalence classes of k length-3 patterns is given by

 $aw_1 = 9$ (Duncan and Steingrímsson), $aw_2 = 35$ (Baxter and Pudwell), $aw_3 = 62, aw_4 = 74, aw_5 = 61, aw_6 = 47, aw_7 = 35, aw_8 = 25,$ $aw_9 = 18, aw_{10} = 12, aw_{11} = 7, aw_{12} = 3, aw_{13} = 1.$

Based on joint work with David Callan.