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Introduction

e An ascent, short for ascent index, in an integer sequence $183 - - * Sy,
is an index 1 < j <m — 1 such that s; < s;4;.

e An ascent sequence ajas - - -a, is one consisting of non-negative
integers satisfying

a; =0, a; <asclajag---a;—1)+1, i=2,3,...,n,

where asc(ajag - --ax) is the number of ascents in the sequence
ai1a9 -+ Q.

e For example, the sequence 0102321401 is an ascent sequence,
whereas 0104 is not.

e Bousquet-Melou, Claesson, Dukes, and Kitaev connected ascent
sequences to (24 2)-free posets. Since then, ascent sequences have
been considered in a series of papers where connections to many
other combinatorial structures have been found.




e Let a = ajas---a, be any sequence and 7 = 77 ---7, be any
pattern, that is, a word in {0,...,¢}"™ which contains each letter
0,1,...,¢ for some m > 1, ¢ > 0.

e We say the sequence a contains 7 if a has a subsequence that is
order isomorphic to 7, that is, there is a subsequence

af), Afe2), - - - pmy With 1 < f(1) < f(2) <--- < f(m) < n,

such that ay;)Xay) if and only if 7,.X7;, for all X € {<,>,=}

and 1 <1,7 < m. Otherwise, a is said to avoid 7.

e For instance, the ascent sequence 0101304351 has two occur-
rences of the pattern 110, namely, the subsequences 110 (0101304351)
and 331 (0101304351), but avoids the pattern 3120.

e We denote the set of all ascent sequences that avoid a list of
patterns 71, ... 7 by A, (7M. 7)) or A, ({7, ..., 7)),




e We say that two sets of patterns P and () are A-Wilf-equivalent,
denoted P ~ Q, if |A,(P)| = |A4,(Q)| for every n > 0.

e There are 13 patterns of length 3: 000, 001, 010, 100, 011, 101,
110, 012, 021, 102, 120, 201, and 210.

e The number of A-Wilf-equivalence classes among single patterns
of length 3 is 9 (Duncan and Steingrimsson).

e The number of A-Wilf-equivalence classes among pairs of pat-
terns of length 3 is 35 (Baxter and Pudwell).

e Let awy, be the number of A-Wilf-equivalence classes of k length-
3 patterns.

Theorem We have aws = 62, awy = 74, aws = 61, awg = 47,
aw; = 35, awg = 25, awg = 18, awig = 12, awyy = 7, awis = 3,
and awiz = 1.




e Note that there are 2!3 = 8192 subsets of length-3 patterns. So,
we need a general method to deal with all these subsets.

Generating trees

e Let P be any set of patterns such that the length of each pattern
is at least two. Define A(P) = UX A, (P).

e We will construct a pattern-avoidance generating tree 7 (P) for
the class of pattern-avoiding ascent sequences A(P).

e Starting with the root 0 which stays at level 1, we construct in
a recursive manner the non-root nodes of the tree 7 (P) such that
the nth level of the tree consists of exactly the elements of A,,(P)
arranged so that the parent of an ascent sequence a; - - - a,, € A,(p)
is the unique ascent sequence a; ---a,_1 € A,_1(P).




e The children of a; - --a,_1 € A,_1(P) are obtained from the set
{a;---an_1a, | a, =0,1,... asc(ay -+ a,_1) + 1} by applying the
pattern-avoiding restrictions of the patterns in P.

e We arrange the nodes from the left to the right so that if a =

ay---ap_19 and a’ = ay---a,_17 are children of the same parent
ay -+ - ay_1, then a appears on the left of o' if 7 < 7'.

e The next figure presents the first few levels of T ({011}).
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e Clearly, |A,,(P)| =the number of nodes in the nth level of 7 (P).

e Let 7T (P;a) denote the subtree consisting of the ascent sequence
a as the root and its descendants in T (P).

e For any a,a’ € T(P), we say that the subtrees 7 (P;a) and
T (P;a’) are isomorphic, and write 7(P;a) = T(P;d’), if these
subtrees are isomorphic in the sense of plane (ordered) tree.

e For any two nodes a,a’ € T(P), we say that a is equivalent to
a’, denoted by a ~ o, if and only if T(P;a) = T(P;d’).

e Define V[ P] to be the set of all equivalence classes in the quotient

set T(P)/ ~.

e We will represent each equivalence class [v] by the label of the
unique node v which appears on the tree 7(P) as the left-most
node at the lowest level among all other nodes in the same equiv-
alence class.




e Let T[P] be the same tree 7 (P) where we replace each node a
by its equivalence class label.

e So in our previous example, we see that the generating tree is
given by 7 ({011}) is

000 012

/ N\ / N\ / N\ /N

0000 0001 0010 0012 0100 0102 0120 0123

and the generating tree T [{011}] is

U/ \0
SN, SN
INCIN NN

This because 01 = 00 = 0.




Example: Let P = {000,001,021}. The generating tree T [P]
has a root ag and satisfies the following rules

Ay ~ bmacmaam+17 Cm ~ bma

where a,, =01---m, b,, = a,,,0, and ¢,, = a,,m.

e To show that, we need to verify the succession rules of the gen-
erating tree:
e The children of a,, are of type a,,7, where j =0,1,...,m+1, so

@, has only three children by, ¢, Gy in T[P).

e Note that any child of b,, contains a pattern in P, so there are
no children for b, in T[P].

e Also, any child of ¢,, that avoids P is ¢,,0. But it is not hard
to see a = ¢,,0v € A, (P) if and only if a’ = a,,00 € A, 1(P) by
removing the second occurrence of the letter m in a.

e Thus, a,, ~> by, Cn, @1 and ¢, ~> by,




General procedure

Step 1:
e Let P be any set of patterns and let D be any positive number
(here we use D = 8).

e We find the first D levels of the generating tree T (P).
e By (2), we guess all the succession rules of 7 (P).

e Based on (3), we try to prove these succession rules. If we fail,
then we increase D by 1 and go back to Step (2). Otherwise, the
succession rules of the generating tree T [P] are found.




Step 2:
After we guessed and proved (if possible) the rules of the generat-
ing tree T [B], we translate these rules into a system of equations

and we solve for
Fp(x) =) |Au(P)]2".

n>0

Note that the rule e ~» v, ... v can be translated to

Az) =z 42 Ay(),
j=1

where

Ay(x) = Z(#the nodes at level n in 7 (B;w))x"

n>0

is the generating function for the number of nodes at level n > 1
in the subtree of 7(B;w), where its root stays at level 1.




Triples

e Let L be the set of all triples of patterns of length-3. A candidate

class is a maximal subset C' of L such that for any P, P’ € C,
|A,(P)| = |A,(P")], for all n = 1,2,...,11.

e Table for all triples of patterns of length-3 shows all the 62 can-
didate classes of L.

e A candidate class is called trivial if it contains exactly one triple,
otherwise, it is called nontrivial. Clearly, any A-Wilf equivalence
class is contained in a candidate class.

e There are 35 trivial candidate classes and 27 nontrivial candidate
classes of triples of length-3 patterns.




e To prove awsz = 62, we show that the 27 nontrivial candidate
classes of triples of length-3 patterns are indeed 27 A-Wilf equiv-
alences.

e To establish this, we use the generating tree method as described
above:

Table 1: Rules of generating trees for ascent sequences avoiding a triple of length-3 patterns.

Beginning of Table T
B triple Rules of T(B) G g (z) /Reference
1000,001,012] 0 — 00,01; 01 — 010,011; 011 ~ 010
{000,010,012} 0 ~ 00, 01; 00 ~ 01; 01 ~ 011 z + 222 + 223 + 2%
{000,001,0107} am ~ bm, Gppq1, Where

am =01 -m, by = amm
{000,00T,0TTF am ~ b, Gppq1, Where

am =01:--m, byy = am0
{000,010,011F} ag ~ b0, 15 am ~ 1]

bm ~> by t1, Where ap = 01---m,

bm = Oam
{00T,0T0,01T} | aqg ~ 00, a1 am ~ @y 17 00 ~ 00;
where ay, = 01 m

00T,010,012

001,011,012

{010,011,012} | am ~ apyp1,01, where ap, =

1000,012,101F | 0 ~ 00, 01; 00 ~ 001; 01 ~ 010, 001;
001 ~» 010

{000,012,110} 0 ~ 00, 01; 00 ~ 001; 01 ~ 001, 011; z + 222 + 323 + 224
001 ~» 011

0 ~» 00, 01; 00 ~» 00; 01 ~» 01

o e(1te)
1—x

000,012,021
000,012,100
000,012,102
000,012,120
000,012,201




Continuation of Table 1

B triple

Rules of T(B)

G 5 (=) /Roferonce

{000,012,210}

0 ~» 00, 01; 00 ~» 001; 01 ~» 001, 001;
001 ~» 0011

o + 222 + 325 + 327

1000,011,102}

am ~ bm, am 41 Cm ~ Cmt1,
where ay, = 01:--m, by = am0,
cm = Oam (bg = cq)

000,011,120}

ag ~ bg,aj; ay ~ by, ag;
am = G by ~ byt 1, where
agy =01 --m, by, = Oa

{00T,01T,T00F

am ~ bm, am+1, bg ~ bo, where
am =01---m, by, = O0am

{00T,01T,120F

T 15 bm ~ by, whore
ap = 01. =

{00T,012,100F

0->00,01; 00w0 01«»010 0T

{00T,012,1107}

0 ~ 00, 0T; 00->00 01 ~ 010, 010;
010 ~ 010

{011,012,100}

@m ~* g1, 015 01 ~» 010, where
m

apm =0

7000,001,021F

ag ~> cQ, a1 AGm ~* Cm, bm, Q1
bm ~+ ¢m, where ap, = 01---m,
by = amm, ¢y = am0

{000,001,120}

ag ~ €0, a1; am ~ bm, em, ami1;
b, ~ cm, where am = 01 - m,
bm = amm, cpy_= ap (m — 1)

E 4
2 23 4x
+ 323 + do

{000,001,110}

am ~ (bm)™ T, ap,1q, where
am =01---m, by = am0

000,011,021
000,011,100
000,011,101
000,011,110
000,011,201
000,011,210

am ~> bm, amy1; bm ~> by,
where ay, = 01 --m, by, = Oap,

001,010,021
001,010,100
001,010,101
001,010,102
001,010,110
001,010,120
001,010,201
001,010,210

am ~ bm, Gy i1; bm ~ by, where

am =01 -m, by =amm




Continuation of Table 1

B triple

Rulos of 7(B)

G 5 (z)/Roferonce

00T,01T,021
001,011,101
001,011,102
001,011,110
001,011,201
001,011,210

am ~ bm, Gyt 1i bm ~> bm, where
ap =01 -m, by = am0

001,012,021
001,012,101
001,012,102
001,012,120
001,012,201
001,012,210

0 ~» 00, 01; 00 ~» 00; 01 ~» 010, 01;
010 ~ 010

010,011,021
010,011,100
010,011,101
010,011,102
010,011,110
010,011,120
010,011,201
010,011,210

am ~ Amt1s bm 15
b, ~ b, j41, where ay = 0™
and by, ; =012 ..

010,012,021
010,012,100

011,012,120
011,012,201
011,012,210

Ay ~> am+1,01; 01 ~~ 01, where

apy = 0™

000,001,101

000,001,100
000,001,102

%




Continuation of Table 1

Class

B triple

Rules of 7(B)

G g (x) /Reference

000,001,201

am, wbm,o""me,’Vn1am+1;
bm,j ~* bm, 055 b, kg—1, Where
am =01---m, by, ; =amj

000,010,021
000,010,100
000,010,101
000,010,102
000,010,110
000,010,120
000,010,201
000,010,210

001,021,100

ag ~> €Q,al; €Q ~* €0
am ~ bm, Cm, am1;

cm ~* bm, cm, where

am = 01---m, by = am0,
Cm = amm

{001,021,110}

ag ~ b0, a1; am ~ (bm)Z, amp1;
b ~+ bm, where ay, = 01---m,

{00T,021,T207}

aq ~ 010, by, ag; by ~ 010, by;
am ~> bm, Gyt 15 bmrubm, where
g =01 m, by =amm

001,100,110

T d
am ~ (bm S Cms G415

¢m ~> ¢m, where apm = 01---m,
bm = am0, ¢y = amm

{0071,T00,1207}

ag ~ bg,a1; bg ~ bo;
am ~ Cm,,bm,am+1;
bm ~ ¢m, bm, where
am =01:--m, by = am(m — 1),

{00T,1T10,1207}

cm = amm
ag ~ 00, a7; 00 ~ 00;

am ~ (bm)?2, api1i bm ~> bm,
where ay, = 01+ m,
bm = am((m —1)

{0TT,T00,102F}

am ¥ am1s bm, 15

bim,j ~* ¢ms by, j41. Where
am = 0", b, = aml-- -,
cm = 01---m0




Continuation of Table 1

B triple

Rules of T(B)

G 5 (z)/Roferonce

T011,100,120F

am ~ ami1, bm 15
bm,1 ~ ¢m, by 25 cm > by 25
by, ~ b1, where am = =om,

b j =aml- - j, cm = aml0

{OTT, 102,120}

am ~* Qm 1 brn,lv
b1~ 010, by 95 010 ~» 010;
b, ~ bm L where am

bm,j =am

—=om,

{0T2,T00,T0TF}

Gm ~ Gyt 1, 013 0T ~ 010, 0T,

where ay, = 0™

{0T2,T00,TT0F

@m ~ ay, 11,015 0T ~ 010, 010;
010 ~» 0101; 0101 ~» 0101, where
am = 0™

{012,101,110}

am ~> @y, 41,015 01 ~ 010, 010;
010 ~» 010, where ay = 0™

001,021,101
001,021,102
001,021,201
001,021,210

ag ~ b, a1; Gm ~ b, Cms Gy 15
by ~> bm; ¢m ~* bm, ¢m, where
am = 01---m, by, = am0,

Cm = amm

{001,100,2107

am ~ (bm)"", cm,a Am 415
cm ~ (bm)™, cm, where
am = 01:--m, by = am0,
cm = amm

001,102,110
001,110,201

{001,110,210}

§001,101,110§

am ~ (bm) ™ a1 15 b ~ b,
where ap, = 01---m, by = amy0

00T, T0T,120
001,102,120
001,120,201
001,120,210

ag ~ bg, ay; by ~ bg;
am ~> cm,bm, Gyt 1; cm ~> Cm;
bm ~> cm, bm, where

am =01---m, by, = am(m — 1),
cm = amm




Continuation of Table 1

B triple

Rulos of 7(B)

G 5 (z)/Roferonce

011,021,100
011,100,101
011,100,110
011,100,201
011,100,210

am ~* amy 1, bm 15

bm,j ™ €m,jo bm 415

Cm,j ~ ¢m,j4+1, Where am = om,
b =012 .4,

m,j
Cm =0"102.-.j

OTT,021,102
011,101,102

011,102,210

am ~ amy1sbm 13
bm,j ~ €jr bm, 415 em > em,
where am = 0", b =0m12.. .3,

c¢m = 01---m0

m,j

OTT,02T,120
011,101,120

011,120,210

am ~ amy1sbm 13

bm, 1~ Cm41,1:bm, 23
bim,j ~ bm,j+1, Where am
=0™M12...j

—om

bm . j

012,021,100
012,100,102
012,100,120
012,100,201
012,100,210

am ~ apy41,01; 01 ~ 010, 01;
010 ~» 0101; 0101 ~» 0101, where
am = 0"

012,021,101
012,101,102
012,101,120
012,101,201
012,101,210

@m ~ Gy, 015 01 ~ 010, 01;
010 ~» 010, where ay, = 0™

{012,021, 1107




Continuation of Table 1

B triple

Rules of T(B)

G 5 (z)/Roferonce

012,110,120
012,110,201

{012,110,210}

§o12,102,110§

~+ @41, 015 01 ~» 01, 011;
~» 011, where ay, = 0™

z(l—z+z?)
(1-=)3

001,100,101
001,100,102
001,100,201

See [?]

001,101,210
001,102,210

{001,201,210}

~ (bm)mvcmv"'m«{»l?

~ bm;i cm ~ (bm)™, cm, where
=01---m, by = am0,

=amm

z(1—2z42x2)
T a-o)f

000,021,101
000,021,110

See [7]

000,101,102
000,101,110

001,101,102
001,101,201
001,102,201

am ~ by 0y -5 bmyms g1
bm,j ~* bm, 055 b j, Where
am =01---m, by ;= amj

010,021,100
010,021,101
010,021,102
010,021,110
010,021,120
010,021,201
010,021,210
010,100,101
010,100,102
010,100,110
010,100,120
010,100,201
010,100,210
010,101,102
010,101,110
010,101,120
010,101,201
010,101,210
010,102,110

See Subsection 77
See Subsection 77




Continuation of Table T
Class B triple Rules of 7 (B) G 5 (@) /Referonce
010,102,120
010,102,201
010,102,210
010,110,120
010,110,201
010,110,210
010,120,201
010,120,210
010,201,210

@m ~ Qi1 b1
bm,j ~ bm j4+15bm, j+1, where
am = 0™, by, =012

012,021,102
012,021,120
012,021,201
012,021,210
012,102,120
012,102,201
012,102,210
012,120,201
012,120,210
012,201,210 @m ~ Gyyi1,01; 01 ~» 01,01, where
ay = 0™

000,021,100
000,021,201
000,021,210 See Section 77
000,100,101
000,101,201 See Section 77
021,101,102 Am ~ Gt 1 0,1

bm,j ™ €5 bm41,50 bm, 415
Ccm ~> Ccm, where ay,, = 0™,

by, j =012 j, ey =01 --

m




Continuation of Table 1

B triple

Rules of T(B)

G 5 (z)/Roferonce

T021,101,1207

am ~ Am1s Om 15

bm,1 ~ cmsbmymt115 bm 25

bm,j = b1, bm,jt1

Cm ~> Ciy41s bm,2, where am = 0™

bmj=0m12«»-j, cm = am 10

{02T,102,120F

am ~ Gmt1s0m, 15

bm,1 ~> 010, b, 11 15 bm 25

bm,j ~ bm41,55 bm 415

010 ~» 010, 0101; 0101 ~» 0101, 0101,
= 0m12... 4

where ay = 0™, b,

{T00,102,120F

Am > am 41, bm 15

bm,j ~ €5 bm41,55 bm j415

c¢m ~ dm; dm ~> dm, where

am = 0™, b, = 0mi12... 4,

cm =01 -m(m—1), dmp = cmm

{T0T,102,TT0}

am ~ 010, ag, ap,t1; 010 ~ 010,
where a;; =01 ... m

{101,102,120}

0 ~ 0,01; 01 ~ 010, (01)%;
010 ~» 010

{102,110,120}

0 ~+ 0,01; 01 ~ 010, 0, 01;
010 ~» 010, 0101; 0101 ~» 0101

z(1—2z+222)
(1—2z)(1—x)2

021,100,101
021,100,110
021,100,120
021,101,110
021,110,120

See Section 77

100,101,110

am ~ e’”,ao,uerl; € ~» ag, where
am =01---m

{100,101,120}

0 ~ 0,01; 01 ~ ¢, (01)%; € ~ 0

{101,110,120}

0 ~~ 0,01; 01 ~~ 010, 0, 01;
010 ~» 010, 0

z(1—z+z2)
1—3z+222—13

021,102,201
021,102,210

={021,102
021,102

{102,110,210}

am ~ (010)™, ag, amy1;
010 ~» 010, 0101; 0101 ~» 0101, where
lm

am = 01

See [7]
z(1—3z+4z2—a3)
(1—22)(1—=)3

{101,102,2107




Continuation of Table 1

B triple

Rules of T(B)

G 5 (z)/Roferonce

102,120,201
102,120,210

See

Section 77

101,120,201
101,120,210

See

[7]

021,100,201
021,100,210
021,110,201
021,110,210

021,100
021,100
021,110
021,110

[?]

021,101,201

100,101,210
101,102,201
101,110,201
101,110,210

021,101
021,101
021,120
021,120

[7,7]

100,120,201
110,120,201

Theorem 77

100,120,210
110,120,210

Theorem 77

021,201,210
100,201,210
110,201,210

[7]

Section 77

End of Table T




Classes not covered by Table 1

Class 24
e From the results listed in Table 1, it remains to show first that

|A4,,(000,101,102)| = | A4,(000, 101, 110)| = 2",

e For any word w = wyws - - - w, and integer k, we define k 4+ w as
(w1 + k’)(’LUQ + k’) s (wn + k’)
e Let a, = |A,(000,101,102)|. Clearly, a; = 1 and as = 2. So,

from now on, we assume that n > 3.

e Note that any ascent sequence 7 in A,,(000, 101, 102) can be de-
composed as either

7=01+7"),7=001+x")0,7=00(1+7")
such that 7’ € A,_1(000,101,102) and 7" € A, (000,101, 102).

e Hence, a,, = a,_1 + 2a,_o with ag = 1 and a; = 2. By induction
on n, we have a, = 2" L.




e For the case A,(000,101,110), based on a small modification
of Proposition 15 of work of (Baxter and Pudwell), the ascent
sequences of A, (000,101, 110) can be characterized as a generating
tree with a root (2) and the rules

(k) ~ ()1 (B +1); 0 (1)~ (2).

o Let Ai(x) be the generating function for the number of nodes at
level n in the subtree with a root (k), where the root stays at level
L.

e Hence,

Ai(z) =z +2As(x), Ak(z) =2+ (k — 1)z Ay(z) + 2 Ak (2).
Define A(z;v) = 37,5, Ar(2)v* . Then

Aw;v) = ——+ q _"”U)zAl(x) + = (Al v) — As(a)).




e By taking v = x, we have

As(z) = 1; + (1fx)2A1(x).

Thus, from A;(x) =  + xAy(x), we obtain that Ay(r) = 75, as
required.




Class 28: e Since an ascent sequence begins with a 0, if it contains
either 201 or 210, then it also contains 021.

e Also, if an ascent sequence contains 100, then it also contains
either 000 or 021.

e Hence,

{000,021, 100} & {000, 021,201} < {000,021, 210}.




Class 61: Formula for |A,(100,201,210)]
e Based on our algorithm, we find that the generating tree

T100,201, 210]

has a root ag o and satisfies the following rules:

m—a
Qgm ~ 6a+1 y Oams Olam41y - -+ XOmA+1,

Ba M Qg gy XOLasy

Qgm = 0101212 -a(a — 1)a(a+1)(a+2)---m

and
fa = 0101212 - (a — 1)(a — 2)(a — 1)a(a — 1).

e To see the rules, we note that the children of «, ,, (respectively,
B.) are exactly aqmj with j = a,a+1,...,a+m+1 (respectively,
Boj with j =a,a+1,...,2a).




e Now, we show the following equivalences:

e 7({100,201,210}; vgmj) = T({100,201,210}; Bus1), for all
j=aa+1...,m—1 Let T = agmjm" be any ascent
sequence that avoids {100, 201,210}. So 7’ does not contain
any letter from the set {0,1,...,m — 1}. Thus, 7 avoids
{100,201,210} if and only if B,41(1 + @ — m + 7') avoids
{100, 201,210}, which proves the equivalence.

e 7({100,201,210}; g mm) = T (aqm): Note that the ascent

sequence m = o, ,mn’ avoids {100, 201, 210} if and only if the
ascent sequence o, avoids {100, 201,210} (just remove the
letter m).




e 7({100,201,210}; cvgmj) = T ({100,201, 210}; Cgtmt1—jm+1),
forall j = m+1m+2,....,a+m+ 1. Let j = m +
147 and m = ag.,j7 be any ascent sequence that avoids
{100,201, 210}. Note that 7’ does not contain any letter from
the set {0,1,...,7}. So by removing the letters 0,1,..., '
from 7’ we obtain that 7 avoids {100,201, 210} if and only if
the ascent sequence g mi1—jm+1(—J +7") = Qa—jrmy1(—5"+
7') avoids {100, 201,210}, which proved the equivalence.

e Hence, the first rule is holding:

m—a
Qg.m ~ 5a+1 y Xams Vam+1y -5 XOmA+1-

Similarly, the second rule is holding.




e Define A, (x) and B,(x) to be the generating function for the
number of nodes at level n in the tree

T({100,201,210}; cta.0)

and
T ({100,201, 210}; 5,),

where the root stay at level 1.

e Hence, the above rules can be translated to

z 4 (m — a)rBot1(z) + vAqm(z) + 2 Z Ajmi1 (),
7=0

where m > a > 0

B,(x) = x+mZAj,a(x), a>1.
=0




e Now, we define

e Then the last two recurrences can be written as
x

(1 —u)(1 — vu)
+ u(l — ) (Az;0,u) — A(z; 1, 0u))
(1—w)?

T + (Al Lv) — A(x;0,0)).

A(z;v,u) = + zA(z;v,u)

B(x;vu),




e This implies

A(z;v/u,u) =

- + xA(z;v/u,u)

— (Alwsv/u,u) = Ax; 1,0))

c s (5 + S - Ao

(1—u)2\1—v v

eIn order to solve this equation, we assume that A(z;0,0) =
Clw) 1= 128 1,

Vr—Vv—X

—2=%, we obtain that

e By substituting u =

z(zC(z)(ve —v — ) + v — 2V + 2?)

Alz;1,0) = (v—1(2(x—1)2—vBz — 1)(z — 1)+ 23)

e Hence, by substituting expression of A(z;1,v) into the equation




and replacing v with vu, we obtain

A(z;v,u)
e Dudo? + (2 — 3x)uv + (32 — Nu — )1 — 4z
2((z — 1D)?u?v? — (32 — 1)(z — Duv + 23)(1 — uw) (1 — u)?
r((r — Dudv? + 2(1 — 2)uv? — z(22 — 1)uv)
2((z — 1)2u?v? — 3z — 1)(x — Duv + 23) (1 — uv) (1 — u)?
(222 — Duv + (4o — 1)(z — V)u — 22% + )

+

2((z — 1)2u?v? — 3z — 1)(x — Duv + 23) (1 — uv) (1 — u)?

e Note that the expression of A(x;v,u) satisfies the equation and
the assumption A(z;0,0) = C(z) — 1. Hence, A(z;v,u) is the
solution of the equation, which implies the following result.

Theorem The number of ascent sequences in A, (100, 201,210) is
given by +1( ) the nth Catalan number.




Further results

By using our algorithm as in the previous sections, one can show
that the number aw;, of A-Wilf-equivalence classes of k length-3
patterns is given by

awy =74, aws =061, awg =47, aw;=35, awg=25,

awg = 18, awig =12, awy =7, awix =3, awz3=1.




Thanks for attention

The full version of the paper is published in
Electronic Journal of Combinatorics.




