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Introduction

•An ascent, short for ascent index, in an integer sequence s1s2 · · · sm
is an index 1 ≤ j ≤ m− 1 such that sj < sj+1.

•An ascent sequence a1a2 · · · an is one consisting of non-negative
integers satisfying

a1 = 0, ai ≤ asc(a1a2 · · · ai−1) + 1, i = 2, 3, . . . , n,

where asc(a1a2 · · · ak) is the number of ascents in the sequence
a1a2 · · · ak.

•For example, the sequence 0102321401 is an ascent sequence,
whereas 0104 is not.

•Bousquet-Mèlou, Claesson, Dukes, and Kitaev connected ascent
sequences to (2+2)-free posets. Since then, ascent sequences have
been considered in a series of papers where connections to many
other combinatorial structures have been found.



•Let a = a1a2 · · · an be any sequence and τ = τ1 · · · τm be any
pattern, that is, a word in {0, . . . , `}m which contains each letter
0, 1, . . . , ` for some m ≥ 1, ` ≥ 0.

•We say the sequence a contains τ if a has a subsequence that is
order isomorphic to τ , that is, there is a subsequence

af(1), af(2), . . . , af(m) with 1 ≤ f(1) < f(2) < · · · < f(m) ≤ n,

such that af(i)Xaf(j) if and only if τiXτj, for all X ∈ {<,>,=}
and 1 ≤ i, j ≤ m. Otherwise, a is said to avoid τ .

•For instance, the ascent sequence 0101304351 has two occur-
rences of the pattern 110, namely, the subsequences 110 (0101304351)
and 331 (0101304351), but avoids the pattern 3120.

•We denote the set of all ascent sequences that avoid a list of
patterns τ (1), . . . , τ (s) by An(τ (1), . . . , τ (s)) or An({τ (1), . . . , τ (s)}).



•We say that two sets of patterns P and Q are A-Wilf-equivalent,
denoted P

a∼ Q, if |An(P )| = |An(Q)| for every n ≥ 0.

•There are 13 patterns of length 3: 000, 001, 010, 100, 011, 101,
110, 012, 021, 102, 120, 201, and 210.

•The number of A-Wilf-equivalence classes among single patterns
of length 3 is 9 (Duncan and Steingŕımsson).

•The number of A-Wilf-equivalence classes among pairs of pat-
terns of length 3 is 35 (Baxter and Pudwell).

•Let awk be the number of A-Wilf-equivalence classes of k length-
3 patterns.

Theorem We have aw3 = 62, aw4 = 74, aw5 = 61, aw6 = 47,
aw7 = 35, aw8 = 25, aw9 = 18, aw10 = 12, aw11 = 7, aw12 = 3,
and aw13 = 1.



•Note that there are 213 = 8192 subsets of length-3 patterns. So,
we need a general method to deal with all these subsets.

Generating trees

•Let P be any set of patterns such that the length of each pattern
is at least two. Define A(P ) = ∪∞n=0An(P ).

•We will construct a pattern-avoidance generating tree T (P ) for
the class of pattern-avoiding ascent sequences A(P ).

• Starting with the root 0 which stays at level 1, we construct in
a recursive manner the non-root nodes of the tree T (P ) such that
the nth level of the tree consists of exactly the elements of An(P )
arranged so that the parent of an ascent sequence a1 · · · an ∈ An(p)
is the unique ascent sequence a1 · · · an−1 ∈ An−1(P ).



•The children of a1 · · · an−1 ∈ An−1(P ) are obtained from the set
{a1 · · · an−1an | an = 0, 1, . . . , asc(a1 · · · an−1) + 1} by applying the
pattern-avoiding restrictions of the patterns in P .

•We arrange the nodes from the left to the right so that if a =
a1 · · · an−1i and a′ = a1 · · · an−1i′ are children of the same parent
a1 · · · an−1, then a appears on the left of a′ if i < i′.

•The next figure presents the first few levels of T ({011}).
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•Clearly, |An(P )| =the number of nodes in the nth level of T (P ).

•Let T (P ; a) denote the subtree consisting of the ascent sequence
a as the root and its descendants in T (P ).

•For any a, a′ ∈ T (P ), we say that the subtrees T (P ; a) and
T (P ; a′) are isomorphic, and write T (P ; a) ∼= T (P ; a′), if these
subtrees are isomorphic in the sense of plane (ordered) tree.

•For any two nodes a, a′ ∈ T (P ), we say that a is equivalent to
a′, denoted by a ∼ a′, if and only if T (P ; a) ∼= T (P ; a′).

•Define V [P ] to be the set of all equivalence classes in the quotient
set T (P )/ ∼.

•We will represent each equivalence class [v] by the label of the
unique node v which appears on the tree T (P ) as the left-most
node at the lowest level among all other nodes in the same equiv-
alence class.



•Let T [P ] be the same tree T (P ) where we replace each node a
by its equivalence class label.

• So in our previous example, we see that the generating tree is
given by T ({011}) is
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This because 01 ∼= 00 ∼= 0.



Example: Let P = {000, 001, 021}. The generating tree T [P ]
has a root a0 and satisfies the following rules

am  bm, cm, am+1, cm  bm,

where am = 01 · · ·m, bm = am0, and cm = amm.

•To show that, we need to verify the succession rules of the gen-
erating tree:
•The children of am are of type amj, where j = 0, 1, . . . ,m+ 1, so
am has only three children bm, cm, am+1 in T [P ].

•Note that any child of bm contains a pattern in P , so there are
no children for bm in T [P ].

•Also, any child of cm that avoids P is cm0. But it is not hard
to see a = cm0v ∈ An(P ) if and only if a′ = am0v ∈ An−1(P ) by
removing the second occurrence of the letter m in a.

•Thus, am  bm, cm, am+1 and cm  bm.



General procedure

Step 1:
•Let P be any set of patterns and let D be any positive number
(here we use D = 8).

•We find the first D levels of the generating tree T (P ).

•By (2), we guess all the succession rules of T (P ).

•Based on (3), we try to prove these succession rules. If we fail,
then we increase D by 1 and go back to Step (2). Otherwise, the
succession rules of the generating tree T [P ] are found.



Step 2:
After we guessed and proved (if possible) the rules of the generat-
ing tree T [B], we translate these rules into a system of equations
and we solve for

FP (x) =
∑
n≥0

|An(P )|xn.

Note that the rule e v(1), . . . , v(s) can be translated to

Ae(x) = x+ x
s∑

j=1

Av(s)(x),

where

Aw(x) =
∑
n≥0

(#the nodes at level n in T (B;w))xn

is the generating function for the number of nodes at level n ≥ 1
in the subtree of T (B;w), where its root stays at level 1.



Triples

•Let L be the set of all triples of patterns of length-3. A candidate
class is a maximal subset C of L such that for any P, P ′ ∈ C,
|An(P )| = |An(P ′)|, for all n = 1, 2, . . . , 11.

•Table for all triples of patterns of length-3 shows all the 62 can-
didate classes of L.

•A candidate class is called trivial if it contains exactly one triple,
otherwise, it is called nontrivial. Clearly, any A-Wilf equivalence
class is contained in a candidate class.

•There are 35 trivial candidate classes and 27 nontrivial candidate
classes of triples of length-3 patterns.



•To prove aw3 = 62, we show that the 27 nontrivial candidate
classes of triples of length-3 patterns are indeed 27 A-Wilf equiv-
alences.

•To establish this, we use the generating tree method as described
above:

Table 1: Rules of generating trees for ascent sequences avoiding a triple of length-3 patterns.

Beginning of Table 1
Class B triple Rules of T (B) GB(x)/Reference
2 {000,001,012} 0  00, 01; 01  010, 011; 011  010

{000,010,012} 0  00, 01; 00  01; 01  011 x + 2x2 + 2x3 + x4

3 {000,001,010} am  bm, am+1, where

am = 01 · · ·m, bm = amm
{000,001,011} am  bm, am+1, where

am = 01 · · ·m, bm = am0
{000,010,011} a0  b0, a1; am  am+1;

bm  bm+1, where am = 01 · · ·m,

bm = 0am
{001,010,011} a0  00, a1; am  am+1; 00  00,

where am = 01 · · ·m
{001,010,012}
{001,011,012} 0  00, 01; 00  00; 01  01

{010,011,012} am  am+1, 01, where am = 0m
x(1+x)
1−x

4 {000,012,101} 0  00, 01; 00  001; 01  010, 001;
001  010

{000,012,110} 0  00, 01; 00  001; 01  001, 011;
001  011

x + 2x2 + 3x3 + 2x4

5 {000,012,021}
{000,012,100}
{000,012,102}
{000,012,120}
{000,012,201}



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{000,012,210} 0  00, 01; 00  001; 01  001, 001;
001  0011

x + 2x2 + 3x3 + 3x4

6 {000,011,102} am  bm, am+1; cm  cm+1,

where am = 01 · · ·m, bm = am0,
cm = 0am (b0 = c0)

{000,011,120} a0  b0, a1; a1  b1, a2;
am  am+1; bm  bm+1, where

am = 01 · · ·m, bm = 0am
{001,011,100} am  bm, am+1; b0  b0, where

am = 01 · · ·m, bm = 0am
{001,011,120} am  bm, am+1; bm  bm, where

am = 01 · · ·m, bm = 0am
{001,012,100} 0  00, 01; 00  00; 01  010, 01
{001,012,110} 0  00, 01; 00  00; 01  010, 010;

010  010

{011,012,100} am  am+1, 01; 01  010, where

am = 0m
x + 2x2 + 3x3

1−x

7 {000,001,021} a0  c0, a1; am  cm, bm, am+1;

bm  cm, where am = 01 · · ·m,
bm = amm, cm = am0

{000,001,120} a0  c0, a1; am  bm, cm, am+1;

bm  cm, where am = 01 · · ·m,
bm = amm, cm = am(m − 1)

x + 2x2 + 3x3 + 4x4

1−x

8 {000,001,110} am  (bm)m+1, am+1, where

am = 01 · · ·m, bm = am0
{000,011,021}
{000,011,100}
{000,011,101}
{000,011,110}
{000,011,201}
{000,011,210} am  bm, am+1; bm  bm+1,

where am = 01 · · ·m, bm = 0am
{001,010,021}
{001,010,100}
{001,010,101}
{001,010,102}
{001,010,110}
{001,010,120}
{001,010,201}
{001,010,210} am  bm, am+1; bm  bm, where

am = 01 · · ·m, bm = amm



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{001,011,021}
{001,011,101}
{001,011,102}
{001,011,110}
{001,011,201}
{001,011,210} am  bm, am+1; bm  bm, where

am = 01 · · ·m, bm = am0
{001,012,021}
{001,012,101}
{001,012,102}
{001,012,120}
{001,012,201}
{001,012,210} 0  00, 01; 00  00; 01  010, 01;

010  010
{010,011,021}
{010,011,100}
{010,011,101}
{010,011,102}
{010,011,110}
{010,011,120}
{010,011,201}
{010,011,210} am  am+1, bm,1;

bm,j  bm,j+1, where am = 0m

and bm,j = 0m12 · · · j
{010,012,021}
{010,012,100}
{010,012,101}
{010,012,102}
{010,012,110}
{010,012,120}
{010,012,201}
{010,012,210}
{011,012,021}
{011,012,101}
{011,012,102}
{011,012,110}
{011,012,120}
{011,012,201}
{011,012,210} am  am+1, 01; 01  01, where

am = 0m

x
(1−x)2

10 {000,001,100}
{000,001,101}
{000,001,102}



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{000,001,201} am  bm,0, . . . , bm,m, am+1;

bm,j  bm,0, . . . , bm,k−1, where

am = 01 · · ·m, bm,j = amj

{000,010,021}
{000,010,100}
{000,010,101}
{000,010,102}
{000,010,110}
{000,010,120}
{000,010,201}
{000,010,210} See [?]

14 {001,021,100} a0  c0, a1; c0  c0;
am  bm, cm, am+1;

cm  bm, cm, where
am = 01 · · ·m, bm = am0,
cm = amm

{001,021,110} a0  b0, a1; am  (bm)2, am+1;

bm  bm, where am = 01 · · ·m,
bm = am0

{001,021,120} a0  b0, a1; b0  b0;
a1  010, b1, a2; b1  010, b1;
am  bm, am+1; bmrubm, where

am = 01 · · ·m, bm = amm
{001,100,110} am  (bm)m, cm, am+1;

cm  cm, where am = 01 · · ·m,
bm = am0, cm = amm

{001,100,120} a0  b0, a1; b0  b0;
am  cm, bm, am+1;

bm  cm, bm, where
am = 01 · · ·m, bm = am(m − 1),
cm = amm

{001,110,120} a0  00, a1; 00  00;

am  (bm)2, am+1; bm  bm,

where am = 01 · · ·m,
bm = am(m − 1)

{011,100,102} am  am+1, bm,1;

bm,j  cm, bm,j+1, where

am = 0m, bm,j = am1 · · · j,
cm = 01 · · ·m0



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{011,100,120} am  am+1, bm,1;

bm,1  cm, bm,2; cm  bm+1,2;

bm,j  bm,j+1, where am = 0m,

bm,j = am1 · · · j, cm = am10

{011,102,120} am  am+1, bm,1;

bm,1  010, bm,2; 010  010;

bm,j  bm,j+1, where am = 0m,

bm,j = am1 · · · j
{012,100,101} am  am+1, 01; 01  010, 01,

where am = 0m

{012,100,110} am  am+1, 01; 01  010, 010;

010  0101; 0101  0101, where
am = 0m

{012,101,110} am  am+1, 01; 01  010, 010;

010  010, where am = 0m

x(1+x2)

(1−x)2

15 {001,021,101}
{001,021,102}
{001,021,201}
{001,021,210} a0  b0, a1; am  bm, cm, am+1;

bm  bm; cm  bm, cm, where
am = 01 · · ·m, bm = am0,
cm = amm

{001,100,210} am  (bm)m, cm, am+1;

cm  (bm)m, cm, where
am = 01 · · ·m, bm = am0,
cm = amm

{001,101,110}
{001,102,110}
{001,110,201}
{001,110,210} am  (bm)m+1, am+1; bm  bm,

where am = 01 · · ·m, bm = am0
{001,101,120}
{001,102,120}
{001,120,201}
{001,120,210} a0  b0, a1; b0  b0;

am  cm, bm, am+1; cm  cm;

bm  cm, bm, where
am = 01 · · ·m, bm = am(m − 1),
cm = amm



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{011,021,100}
{011,100,101}
{011,100,110}
{011,100,201}
{011,100,210} am  am+1, bm,1;

bm,j  cm,j, bm,j+1;

cm,j  cm,j+1, where am = 0m,

bm,j = 0m12 · · · j,
cm,j = 0m102 · · · j

{011,021,102}
{011,101,102}
{011,102,110}
{011,102,201}
{011,102,210} am  am+1, bm,1;

bm,j  cj, bm,j+1; cm  cm,

where am = 0m, bm,j = 0m12 · · · j,
cm = 01 · · ·m0

{011,021,120}
{011,101,120}
{011,110,120}
{011,120,201}
{011,120,210} am  am+1, bm,1;

bm,1  cm+1,1, bm,2;

bm,j  bm,j+1, where am = 0m,

bm,j = 0m12 · · · j
{012,021,100}
{012,100,102}
{012,100,120}
{012,100,201}
{012,100,210} am  am+1, 01; 01  010, 01;

010  0101; 0101  0101, where
am = 0m

{012,021,101}
{012,101,102}
{012,101,120}
{012,101,201}
{012,101,210} am  am+1, 01; 01  010, 01;

010  010, where am = 0m

{012,021,110}



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{012,102,110}
{012,110,120}
{012,110,201}

{012,110,210} am  am+1, 01; 01  01, 011;

011  011, where am = 0m

x(1−x+x2)

(1−x)3

16 {001,100,101}
{001,100,102}
{001,100,201} See [?]

21 {001,101,210}
{001,102,210}

{001,201,210} am  (bm)m, cm, am+1;

bm  bm; cm  (bm)m, cm, where
am = 01 · · ·m, bm = am0,
cm = amm

x(1−2x+2x2)

(1−x)4

22 {000,021,101}
{000,021,110} See [?]

24 {000,101,102} See Subsection ??
{000,101,110} See Subsection ??
{001,101,102}
{001,101,201}
{001,102,201} am  bm,0, . . . , bm,m, am+1;

bm,j  bm,0, . . . , bm,j , where

am = 01 · · ·m, bm,j = amj

{010,021,100}
{010,021,101}
{010,021,102}
{010,021,110}
{010,021,120}
{010,021,201}
{010,021,210}
{010,100,101}
{010,100,102}
{010,100,110}
{010,100,120}
{010,100,201}
{010,100,210}
{010,101,102}
{010,101,110}
{010,101,120}
{010,101,201}
{010,101,210}
{010,102,110}



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{010,102,120}
{010,102,201}
{010,102,210}
{010,110,120}
{010,110,201}
{010,110,210}
{010,120,201}
{010,120,210}
{010,201,210}
{011,021,101}
{011,021,110}
{011,021,201}
{011,021,210}
{011,101,110}
{011,101,201}
{011,101,210}
{011,110,201}
{011,110,210}
{011,201,210} am  am+1, bm,1;

bm,j  bm,j+1, bm,j+1, where

am = 0m, bm,j = 0m12 · · · j
{012,021,102}
{012,021,120}
{012,021,201}
{012,021,210}
{012,102,120}
{012,102,201}
{012,102,210}
{012,120,201}
{012,120,210}
{012,201,210} am  am+1, 01; 01  01, 01, where

am = 0m

x
1−2x

28 {000,021,100}
{000,021,201}
{000,021,210} See Section ??

34 {000,100,101}
{000,101,201} See Section ??

41 {021,101,102} am  am+1, bm,1;

bm,j  cj, bm+1,j , bm,j+1;

cm  cm, where am = 0m,
bm,j = 0m12 · · · j, cm = 01 · · ·m0



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{021,101,120} am  am+1, bm,1;

bm,1  cm, bm+1,1, bm,2;

bm,j  bm+1,j , bm,j+1;

cm  cm+1, bm,2, where am = 0m,

bm,j = 0m12 · · · j, cm = am10

{021,102,120} am  am+1, bm,1;

bm,1  010, bm+1,1, bm,2;

bm,j  bm+1,j , bm,j+1;

010  010, 0101; 0101  0101, 0101,
where am = 0m, bm,j = 0m12 · · · j

{100,102,120} am  am+1, bm,1;

bm,j  cj, bm+1,j , bm,j+1;

cm  dm; dm  dm, where
am = 0m, bm,j = 0m12 · · · j,
cm = 01 · · ·m(m − 1), dm = cmm

{101,102,110} am  010, a0, am+1; 010  010,

where am = 01 · · ·m
{101,102,120} 0  0, 01; 01  010, (01)2;

010  010

{102,110,120} 0  0, 01; 01  010, 0, 01;
010  010, 0101; 0101  0101

x(1−2x+2x2)

(1−2x)(1−x)2
42 {021,100,101}

{021,100,110}
{021,100,120}
{021,101,110}
{021,110,120} See Section ??

43 {100,101,110} am  εm, a0, am+1; ε  a0, where

am = 01 · · ·m
{100,101,120} 0  0, 01; 01  ε, (01)2; ε  0

{101,110,120} 0  0, 01; 01  010, 0, 01;
010  010, 0

x(1−x+x2)

1−3x+2x2−x3
47 {021,102,201} ={021,102}

{021,102,210} ={021,102} See [?]

{102,110,210} am  (010)m, a0, am+1;

010  010, 0101; 0101  0101, where
am = 01 · · ·m

x(1−3x+4x2−x3)

(1−2x)(1−x)3

49 {101,102,210}



Continuation of Table 1
Class B triple Rules of T (B) GB(x)/Reference

{102,120,201}
{102,120,210} See Section ??

51 {101,120,201}
{101,120,210} See [?]

52 {021,100,201} ={021,100}
{021,100,210} ={021,100}
{021,110,201} ={021,110}
{021,110,210} ={021,110} See [?]

53 {021,101,201} ={021,101}
{021,101,210} ={021,101}
{021,120,201} ={021,120}
{021,120,210} ={021,120}
{100,101,210}
{101,102,201}
{101,110,201}
{101,110,210} See [?,?]

55 {100,120,201}
{110,120,201} See Theorem ??

56 {100,120,210}
{110,120,210} See Theorem ??

61 {021,201,210} ={021} See [?]
{100,201,210}
{110,201,210} See Section ??

End of Table 1



Classes not covered by Table 1

Class 24
•From the results listed in Table 1, it remains to show first that

|An(000, 101, 102)| = |An(000, 101, 110)| = 2n−1.

•For any word w = w1w2 · · ·wn and integer k, we define k +w as
(w1 + k)(w2 + k) · · · (wn + k).

•Let an = |An(000, 101, 102)|. Clearly, a1 = 1 and a2 = 2. So,
from now on, we assume that n ≥ 3.

•Note that any ascent sequence π in An(000, 101, 102) can be de-
composed as either

π = 0(1 + π′), π = 0(1 + π′′)0, π = 00(1 + π′′)

such that π′ ∈ An−1(000, 101, 102) and π′′ ∈ An−2(000, 101, 102).

•Hence, an = an−1 + 2an−2 with a0 = 1 and a1 = 2. By induction
on n, we have an = 2n−1.



•For the case An(000, 101, 110), based on a small modification
of Proposition 15 of work of (Baxter and Pudwell), the ascent
sequences of An(000, 101, 110) can be characterized as a generating
tree with a root (2) and the rules

(k) (1)k−1, (k + 1); (1) (2).

•Let Ak(x) be the generating function for the number of nodes at
level n in the subtree with a root (k), where the root stays at level
1.
•Hence,

A1(x) = x+ xA2(x), Ak(x) = x+ (k − 1)xA1(x) + xAk+1(x).

Define A(x; v) =
∑

k≥2Ak(x)vk−2. Then

A(x; v) =
x

1− v
+

x

(1− v)2
A1(x) +

x

v
(A(x; v)− A2(x)).



•By taking v = x, we have

A2(x) =
x

1− x
+

x

(1− x)2
A1(x).

Thus, from A1(x) = x+ xA2(x), we obtain that A2(x) = x
1−2x , as

required.



Class 28: • Since an ascent sequence begins with a 0, if it contains
either 201 or 210, then it also contains 021.

•Also, if an ascent sequence contains 100, then it also contains
either 000 or 021.

•Hence,

{000, 021, 100} a∼ {000, 021, 201} a∼ {000, 021, 210}.



Class 61: Formula for |An(100, 201, 210)|
•Based on our algorithm, we find that the generating tree

T [100, 201, 210]

has a root α0,0 and satisfies the following rules:

αa,m  βm−a
a+1 , αa,m, αa,m+1, . . . , α0,m+1,

βa  αa,a, . . . , α0,a,

where

αa,m = 0101212 · · · a(a− 1)a (a+ 1)(a+ 2) · · ·m

and
βa = 0101212 · · · (a− 1)(a− 2)(a− 1)a(a− 1).

•To see the rules, we note that the children of αa,m (respectively,
βa) are exactly αa,mj with j = a, a+1, . . . , a+m+1 (respectively,
βaj with j = a, a+ 1, . . . , 2a).



•Now, we show the following equivalences:

• T ({100, 201, 210};αa,mj) ∼= T ({100, 201, 210}; βa+1), for all
j = a, a + 1, . . . ,m − 1: Let π = αa,mjπ

′ be any ascent
sequence that avoids {100, 201, 210}. So π′ does not contain
any letter from the set {0, 1, . . . ,m − 1}. Thus, π avoids
{100, 201, 210} if and only if βa+1(1 + a − m + π′) avoids
{100, 201, 210}, which proves the equivalence.

• T ({100, 201, 210};αa,mm) ∼= T (αa,m): Note that the ascent
sequence π = αa,mmπ

′ avoids {100, 201, 210} if and only if the
ascent sequence αa,mπ

′ avoids {100, 201, 210} (just remove the
letter m).



• T ({100, 201, 210};αa,mj) ∼= T ({100, 201, 210};αa+m+1−j,m+1),
for all j = m + 1,m + 2, . . . , a + m + 1: Let j = m +
1 + j′ and π = αa,mjπ

′ be any ascent sequence that avoids
{100, 201, 210}. Note that π′ does not contain any letter from
the set {0, 1, . . . , j′}. So by removing the letters 0, 1, . . . , j′

from π′ we obtain that π avoids {100, 201, 210} if and only if
the ascent sequence αa+m+1−j,m+1(−j′+π′) = αa−j′,m+1(−j′+
π′) avoids {100, 201, 210}, which proved the equivalence.

•Hence, the first rule is holding:

αa,m  βm−a
a+1 , αa,m, αa,m+1, . . . , α0,m+1.

Similarly, the second rule is holding.



•Define Aa,m(x) and Ba(x) to be the generating function for the
number of nodes at level n in the tree

T ({100, 201, 210};αa,a)

and
T ({100, 201, 210}; βa),

where the root stay at level 1.

•Hence, the above rules can be translated to

Aa,m(x) = x+ (m− a)xBa+1(x) + xAa,m(x) + x
a∑

j=0

Aj,m+1(x),

where m ≥ a ≥ 0

Ba(x) = x+ x
a∑

j=0

Aj,a(x), a ≥ 1.



•Now, we define

A(x; v, u) =
∑
a≥0

∑
m≥a

Aa,m(x)vaum

and
B(x; v) =

∑
a≥1

Ba(x)va−1.

•Then the last two recurrences can be written as

A(x; v, u) =
x

(1− u)(1− vu)
+ xA(x; v, u)

+
x

u(1− v)
(A(x; v, u)− A(x; 1, vu))

+
xu

(1− u)2
B(x; vu),

B(x; v) =
x

1− v
+
x

v
(A(x; 1, v)− A(x; 0, 0)).



•This implies

A(x; v/u, u) =
x

(1− u)(1− v)
+ xA(x; v/u, u)

+
x

u− v
(A(x; v/u, u)− A(x; 1, v))

+
xu

(1− u)2

(
x

1− v
+
x

v
(A(x; 1, v)− A(x; 0, 0))

)
.

• In order to solve this equation, we assume that A(x; 0, 0) =

C(x)− 1 = 1−
√
1−4x
2x

− 1.

•By substituting u = vx−v−x
x−1 , we obtain that

A(x; 1, v) =
x(xC(x)(vx− v − x) + v − xv + x2)

(v − 1)(v2(x− 1)2 − v(3x− 1)(x− 1) + x3)
.

•Hence, by substituting expression of A(x; 1, v) into the equation



and replacing v with vu, we obtain

A(x; v, u)

=
x((x− 1)u3v2 + (2− 3x)u2v + (3x− 1)u− x)

√
1− 4x

2((x− 1)2u2v2 − (3x− 1)(x− 1)uv + x3)(1− uv)(1− u)2

+
x((x− 1)u3v2 + 2(1− x)u2v2 − x(2x− 1)u2v)

2((x− 1)2u2v2 − (3x− 1)(x− 1)uv + x3)(1− uv)(1− u)2

+
x(2(2x− 1)uv + (4x− 1)(x− 1)u− 2x2 + x)

2((x− 1)2u2v2 − (3x− 1)(x− 1)uv + x3)(1− uv)(1− u)2
.

•Note that the expression of A(x; v, u) satisfies the equation and
the assumption A(x; 0, 0) = C(x) − 1. Hence, A(x; v, u) is the
solution of the equation, which implies the following result.

Theorem The number of ascent sequences in An(100, 201, 210) is
given by 1

n+1

(
2n
n

)
, the nth Catalan number.



Further results

By using our algorithm as in the previous sections, one can show
that the number awk of A-Wilf-equivalence classes of k length-3
patterns is given by

aw4 = 74, aw5 = 61, aw6 = 47, aw7 = 35, aw8 = 25,

aw9 = 18, aw10 = 12, aw11 = 7, aw12 = 3, aw13 = 1.



Thanks for attention

The full version of the paper is published in
Electronic Journal of Combinatorics.


