A central limit theorem in the framework of the Thompson group F

Arundhathi Krishnan

Mary Immaculate College, Ireland

Rutgers Experimental Mathematics Seminar

(arXiv:2309.05626, to appear in IUMJ)

Outline

Algebraic Central Limit Theorems

2 The Thompson Group F

Sketch of Proof of CLT

Outline

Algebraic Central Limit Theorems

The Thompson Group F

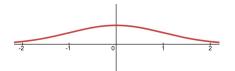
Sketch of Proof of CLT

Theorem (Classical Central Limit Theorem)

Suppose (X_n) is a sequence of IID (independent and identically distributed) random variables with mean 0 and variance 1. Then

$$S_n := \frac{X_1 + \dots + X_n}{\sqrt{n}} \xrightarrow{distr} X,$$

where $\stackrel{\text{distr}}{\longrightarrow}$ denotes convergence in distribution and X is a random variable with the standard normal distribution $\mathcal{N}(0,1)$.



$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Definition (Convergence in distribution)

The sequence of random variables (Y_n) is said to converge in distribution to a random variable Y, denoted by

$$Y_n \stackrel{\mathsf{distr}}{\longrightarrow} Y$$

if the respective cumulative distribution functions converge, that is,

$$F_{Y_n}(x) \to F_Y(x)$$
, wherever F_Y is continuous.

This is equivalent to the convergence of the expected value operators:

 $\mathbb{E}(f(Y_n)) \to \mathbb{E}(f(Y))$, for all bounded continuous functions f.

A (noncommutative) *-probability space is a pair (\mathcal{M}, ψ) , where \mathcal{M} is a unital *-algebra and ψ is a unital positive linear functional on \mathcal{M} .

Unital *-algebra: An algebra ${\mathcal M}$ with an identity element which has an involution *.

Unital positive linear functional ψ : $\psi(1) = 1$, $\psi(x^*x) \ge 0$ for all $x \in \mathcal{M}$, $\psi(\alpha x + y) = \alpha \psi(x) + \psi(y)$, for all $x, y \in \mathcal{M}$ and $\alpha \in \mathbb{C}$.

Examples

- $(M_n(\mathbb{C}), Tr)$, where Tr is the normalized trace on square matrices.
- $(\mathbb{C}G, \varphi)$ where $\mathbb{C}G$ is the group algebra of a group G and $\varphi = \delta_{g=e}$ is the canonical trace.

How does a classical probability space fit in?

Let (Ω, Σ, μ) be a probability space, where Ω is a sample space, Σ is a σ -algebra and μ is a probability measure.

Then $\mathcal{L} := L^{\infty}(\Omega, \Sigma, \mu)$ is a commutative *-algebra and

$$\mathsf{tr}_{\mu}(f) \coloneqq \int_{\Omega} f \, d\mu$$

defines a unital positive linear functional on \mathcal{L} . The pair $(\mathcal{L}, \mathsf{tr}_{\mu})$ is a *-probability space.

Sometimes we need to work with the *-algebra

$$L^{\infty-}(\Omega,\Sigma,\mu)\coloneqq\bigcap_{p\geq 1}L^p(\Omega,\Sigma,\mu)$$

In a *-probability space (\mathcal{M}, ψ) , a (noncommutative) random variable is an element x in \mathcal{M} .

Definition (Convergence in distribution)

Let $(\mathcal{A}_n, \varphi_n)$ $(n \in \mathbb{N})$ and (\mathcal{A}, φ) be *-probability spaces. Let $a_n = a_n^* \in \mathcal{A}_n$ $(n \in \mathbb{N})$ and $x \in \mathcal{A}$ be random variables. We say that (a_n) converges in distribution to x as $n \to \infty$, and denote this by $a_n \stackrel{\text{distr}}{\longrightarrow} x$, if we have

$$\lim_{n\to\infty}\varphi_n(a_n^d)=\varphi(x^d),\ \forall\,d\in\mathbb{N}.$$

Definition (Tensor independence)

A sequence of random variables $(a_n) \subset \mathcal{M}$ is said to be tensor independent if $a_i a_j = a_j a_i$ for all $i, j \in \mathbb{N}$ and

$$\varphi(a_{n_1}^{m_1}\cdots a_{n_k}^{m_k})=\varphi(a_{n_1}^{m_1})\cdots \varphi(a_{n_k}^{m_k}),\ n_l,m_l\in\mathbb{N}_0,k\in\mathbb{N}.$$

Theorem (Classical CLT restated algebraically)

Let (A, φ) be a *-probability space where A is commutative. Suppose $(a_n = a_n^*) \subset A$ is a sequence of tensor independent and identically distributed random variables. Furthermore, assume that $\varphi(a_n) = 0$ and $\varphi(a_n^2) = 1$ $(n \in \mathbb{N})$. Then we have

$$s_n := \frac{a_1 + \dots + a_n}{\sqrt{n}} \xrightarrow{distr} X,$$

where x is a normally distributed random variable of mean 0 and variance 1.

Theorem (Classical CLT restated algebraically)

Let (A, φ) be a *-probability space where A is commutative. Suppose $(a_n = a_n^*) \subset A$ is a sequence of tensor independent and identically distributed random variables. Furthermore, assume that $\varphi(a_n) = 0$ and $\varphi(a_n^2) = 1$ $(n \in \mathbb{N})$. Then we have

$$s_n := \frac{a_1 + \dots + a_n}{\sqrt{n}} \xrightarrow{distr} X,$$

where x is a normally distributed random variable of mean 0 and variance 1.

Remark: As the normal distribution is determined by its moments, this seemingly weaker algebraic formulation is actually equivalent to the classical CLT stated earlier.

The (classical/ tensor) independence of the sequence (a_n) can be replaced by some other property to give other algebraic CLTs.

The (classical/ tensor) independence of the sequence (a_n) can be replaced by some other property to give other algebraic CLTs.

Definition (Free independence)

A sequence of random variables $(a_n) \subset \mathcal{A}$ is said to be freely independent if for $\mathcal{A}_i := * - \mathsf{alg}\{1, a_i\}$, we have $\varphi(x_1 \cdots x_k) = 0$ for $k \in \mathbb{N}$ whenever

- **1** $\varphi(x_j) = 0$ for all $j \in \{1, ..., k\}$;
- $x_j \in A_{i(j)}$ for each $j \in \{1, ..., k\}$;
- $(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k).$

The (classical/ tensor) independence of the sequence (a_n) can be replaced by some other property to give other algebraic CLTs.

Definition (Free independence)

A sequence of random variables $(a_n) \subset \mathcal{A}$ is said to be freely independent if for $\mathcal{A}_i := * - \mathsf{alg}\{1, a_i\}$, we have $\varphi(x_1 \cdots x_k) = 0$ for $k \in \mathbb{N}$ whenever

- **1** $\varphi(x_j) = 0$ for all $j \in \{1, ..., k\}$;
- ② $x_j ∈ A_{i(j)}$ for each $j ∈ \{1, ..., k\}$;
- $(1) \neq i(2), i(2) \neq i(3), \ldots, i(k-1) \neq i(k).$

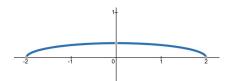
Remark: The joint distributions of a freely independent sequence of random variables is determined by the knowledge of the individual distributions of each random variable.

Theorem (Free CLT, Voiculescu 1985, Combinatorial proof by Speicher 1990)

Let (A, φ) be a *-probability space and $(a_n = a_n^*) \subset A$ be a sequence of freely independent and identically distributed random variables. Furthermore, assume that $\varphi(a_n) = 0$ and $\varphi(a_n^2) = 1$ $(n \in \mathbb{N})$. Then we have

$$s_n := \frac{a_1 + \dots + a_n}{\sqrt{n}} \xrightarrow{distr} s,$$

where s is a semicircular element of mean 0 and variance 1.



$$f(x) = \frac{1}{2\pi} \sqrt{4 - x^2}$$

In both central limit theorems, we try to find

$$\lim_{n\to\infty}\varphi(s_n^d)=\lim_{n\to\infty}\frac{1}{n^{d/2}}\sum_{\underline{i}:[d]\to\{1,\ldots,n\},}\varphi(a_{\underline{i}(1)}\cdots a_{\underline{i}(d)})$$

- Both tensor independence and free independence give a rule for calculating mixed moments from the values of the moments. This means $\varphi(a_{\underline{i}(1)}\cdots a_{\underline{i}(d)})$ depends on the tuple $(\underline{i}(1),\ldots,\underline{i}(d))$ only through the information on which indices are the same and which are different.
- This information is encoded via a partition the kernel of the tuple \underline{i} . Here, $\ker(\underline{i})$ is the partition of [d] into the level sets of the tuple \underline{i} . $\varphi(a_3a_1a_3a_2a_2a_4a_1a_4) \rightarrow \pi = \ker(\underline{i}) = \{\{1,3\},\{2,7\},\{4,5\},\{6,8\}\}.$
- For both tensor and free independence, the only tuples that contribute are those whose kernels are pair partitions – all pair partitions in the tensor case, and non-crossing pair partitions in the free case.

4□ > 4ⓓ > 4힐 > 4힐 > 힐 99℃

Pair partitions: For even $d \in \mathbb{N}$, a pair partition of the set $[d] := \{1, \ldots, d\}$ is a disjoint collection of pairs, i.e., $\pi = \{V_1, \ldots, V_{\frac{d}{2}}\}$ with $V_i \subseteq [d]$, $V_i \cap V_j = \emptyset$ for $i \neq j$, and $|V_i| = 2$ for each $i \in [\frac{d}{2}]$. The set of pair partitions of [d] is denoted by $\mathcal{P}_2(d)$.

Example

A crossing pair partition of [6]: $\{\{1,3\},\{2,4\},\{5,6\}\}$

A non-crossing pair partition of [6]: $\{\{1,6\},\{2,3\},\{4,5\}\}$

Let d be even.

• The number of all pair partitions of [d] is

$$(d-1)!! := (d-1) \times (d-3) \times \cdots (3) \times (1).$$

 The number of non-crossing pair partitions of [d] is given by the Catalan number

$$C_{\frac{d}{2}} = \frac{1}{\left(\frac{d}{2} + 1\right)} \binom{d}{\frac{d}{2}}.$$

Let d be even.

• The number of all pair partitions of [d] is

$$(d-1)!! := (d-1) \times (d-3) \times \cdots (3) \times (1).$$

This is the d-th moment of the normal distribution, which is the limiting law in the classical CLT.

The number of non-crossing pair partitions of [d] is given by the Catalan number

$$C_{\frac{d}{2}} = \frac{1}{\left(\frac{d}{2} + 1\right)} \binom{d}{\frac{d}{2}}.$$

This is the *d*-th moment of Wigner's semicircular distribution, which is the limiting law in the free CLT.

Theorem (Generalized CLT, Bożejko, Speicher, von Waldenfels 1994)

Let (A, φ) be a *-probability space and suppose that the sequence $(a_n = a_n^*)_{n=1}^{\infty} \subset A$ satisfies:

- an invariance principle known as exchangeability.
- 2 the singleton vanishing property.

Let $s_n = \frac{1}{\sqrt{n}}(a_1 + \dots + a_n)$. Then one has, for any $d \in \mathbb{N}$,

$$\lim_{n\to\infty}\varphi(s_n^d)=\sum_{\pi\in\mathcal{P}_2(d)}\varphi_\pi$$

where $\varphi_{\pi} = \varphi(a_{\underline{\ell}(1)} \cdots a_{\underline{\ell}(d)})$ with $\pi = \ker(\underline{\ell})$.

Outline

Algebraic Central Limit Theorems

2 The Thompson Group F

Sketch of Proof of CLT

Can we compute the limit distribution of a sequence in the group algebra of a particular group of interest?

- Infinite symmetric group S_{∞} (Biane 1995; Campbell, Köstler, Nica 2021 and 2022).
- Coxeter and Artin systems of extra large types (Fendler 2003).

Can we compute the limit distribution of a sequence in the group algebra of a particular group of interest?

- Infinite symmetric group S_{∞} (Biane 1995; Campbell, Köstler, Nica 2021 and 2022).
- Coxeter and Artin systems of extra large types (Fendler 2003).

Thompson's group F has the following infinite presentation:

$$F = \langle g_0, g_1, \dots \mid g_n g_k = g_k g_{n+1}, \ 0 \le k < n < \infty \rangle.$$

For instance, $g_7g_3 = g_3g_8$.

Let $(\mathbb{C}(F), \varphi)$ be the *-probability space with $\mathbb{C}(F)$ denoting the group algebra of F and φ the canonical trace defined by

$$\varphi(x) = \begin{cases} 1, & x = e \\ 0, & x \neq e. \end{cases}$$

- The group F was introduced by Richard Thompson in 1965 as a certain subgroup of piece-wise linear homeomorphisms on the interval [0,1].
- It can also be realised in terms of morphisms on the category of rooted ordered binary trees.
- It is an object of interest to those in many fields; notably, the question of its amenability is still open.
- There has also been interest in probabilistic aspects of F.

Theorem (A Central Limit Theorem for F, K. 2023)

Let (a_n) be the sequence of self-adjoint random variables in $(\mathbb{C}(F), \varphi)$ given by

$$a_n = \frac{g_n + g_n^*}{\sqrt{2}}, \ n \in \mathbb{N}_0$$

and

$$s_n := \frac{1}{\sqrt{n}} (a_0 + \cdots + a_{n-1}), \ n \in \mathbb{N}.$$

Then we have

$$\lim_{n\to\infty}\varphi(s_n^d)=\begin{cases} (d-1)!! & \text{for } d \text{ even,} \\ 0 & \text{for } d \text{ odd.} \end{cases}$$

That is,

$$s_n \xrightarrow{distr} x$$
,

where x is a random variable with standard normal distribution.

The d-th moment of s_n can be expressed as

$$\varphi(s_n^d) = \frac{1}{(2n)^{d/2}} \sum_{\substack{\underline{i}: [d] \to \{0, \dots, n-1\}, \\ \underline{\varepsilon}: [d] \to \{-1, 1\}}} \varphi(g_{\underline{i}(1)}^{\underline{\varepsilon}(1)} \cdots g_{\underline{i}(d)}^{\underline{\varepsilon}(d)})$$
$$= \frac{1}{(2n)^{d/2}} |\mathcal{W}_0(d, n)|$$

where

$$\mathcal{W}_0(\textit{d},\textit{n}) \coloneqq \Big\{ (\underline{\textit{i}},\underline{\varepsilon}) \; \middle| \; \begin{array}{l} \underline{\textit{i}} : [\textit{d}] \to \{0,\dots,\textit{n}-1\}, \; \underline{\varepsilon} : [\textit{d}] \to \{-1,1\}, \\ \text{and} \; g_{\underline{\textit{i}}(1)}^{\underline{\varepsilon}(1)} \cdots g_{\underline{\textit{i}}(\textit{d})}^{\underline{\varepsilon}(\textit{d})} = e \end{array} \Big\}.$$

Task: Count the number of words (of length d) composed of the first *n* generators of *F* and their inverses which evaluate to the identity.

Outline

Algebraic Central Limit Theorems

The Thompson Group F

Sketch of Proof of CLT

Step 0: We observe that

- Only words of even length d can evaluate to the identity. So all odd moments are 0.
- Each word which evaluates to the identity must have an equal number of generators and inverses.

Step 1: We reduce each such word $(\underline{i},\underline{\varepsilon})$ to a normal form

$$(\underline{j},\underline{\varepsilon}_0) = (g_{\underline{j}(1)}, \dots g_{\underline{j}(\frac{d}{2})}, g_{\underline{j}(\frac{d}{2})}^{-1}, \dots, g_{\underline{j}(1)}^{-1})$$

with $\underline{\underline{j}}(I) + 1 \ge \underline{\underline{j}}(I+1)$ for all $I \in \left[\frac{\underline{d}}{2}\right]$.

Example

Suppose d=8 and $(\underline{i},\underline{\varepsilon})\in\mathcal{W}_0(8,20)$ is given by

$$(\underline{i},\underline{\varepsilon}) = (g_2,g_0,g_{18}^{-1},g_4^{-1},g_0^{-1},g_{16},g_3,g_2^{-1}).$$

Then the normal form $(\underline{j},\underline{\varepsilon}_0)$ of $(\underline{i},\underline{\varepsilon})$ is

$$(\underline{j}, \underline{\varepsilon}_0) = (g_{16}, g_2, g_3, g_0, g_0^{-1}, g_3^{-1}, g_2^{-1}, g_{16}^{-1}).$$

The uniqueness of the above normal form can be shown using the formalism of abstract reduction systems.

Definition

An abstract reduction system is a pair (A, \rightarrow) , where A is a set and \rightarrow is a relation on A.

- The element y is a normal form of x if $x \stackrel{*}{\rightarrow} y$ and y cannot be reduced further.
- A reduction is said to be normalizing if every element has a normal form.
- A reduction is said to be *terminating* if there is no infinite chain $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots$.
- A reduction \rightarrow is said to be *confluent* if for all $w, x, y \in A$ with $w \stackrel{*}{\rightarrow} x$ and $w \stackrel{*}{\rightarrow} y$, we have $x \downarrow y$. It is said to be *locally confluent* if for all $w, x, y \in A$ with $w \rightarrow x$ and $w \rightarrow y$, we have $x \downarrow y$.

Lemma (Newman)

A terminating reduction is confluent if and only if it is locally confluent.

Example

Let $A := \mathbb{N} \setminus \{1\}$ and $\rightarrow := \{(m, n) \mid m > n \text{ and } n \mid m\}$. Then we have the following:

- *m* is in normal form if and only if *m* is prime.
- p is a normal form of m if and only if p is a prime factor of m.
- \rightarrow is terminating as $m \rightarrow n$ implies that n < m.
- → is normalizing but normal forms are not unique. For example, 2 and 3 are both normal forms of 6.
- \rightarrow is not locally confluent (and hence not confluent). For example, $6 \rightarrow 2$ and $6 \rightarrow 3$ but $2 \not\downarrow 3$.

- We will take A to be the set of words in F and → to be a reduction described by the relations satisfied by the generators of F.
- We define two reduction rules in turn:

$$(g_k^{-1}, g_l) \to \begin{cases} (g_l, g_k^{-1}) & \text{if } k = l, \\ (g_l, g_{k+1}^{-1}) & \text{if } k > l, \\ (g_{l+1}, g_k^{-1}) & \text{if } k < l. \end{cases}$$

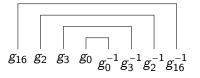
followed by

$$g_k g_l \to g_{k-1} g_l$$
 if $k-1 > l$,
 $g_l^{-1} g_k^{-1} \to g_k^{-1} g_{l-1}^{-1}$ if $l-1 > k$.

• By showing that the reduction is *terminating* and *(locally) confluent*, we can conclude that each word has a unique normal form.

Step 2: We use the normal form to assign a unique pair partition $\pi \in \mathcal{P}_2(d)$ to each word that evaluates to the identity.

We visualize the rainbow pair partition on the normal form as



We can then trace back to the original word $(\underline{i},\underline{\varepsilon})$ to get the pair partition $\{\{1,8\},\{2,5\},\{3,6\},\{4,7\}\}$:

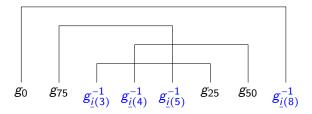
Step 3: Let $N(d, n, \pi)$ be the number of words $(\underline{i}, \underline{\varepsilon})$ which are assigned to the pair partition $\pi \in \mathcal{P}_2(d)$. We will find upper and lower bounds on this number.

We will then be able to estimate the limit as $n \to \infty$ of the *d*-th moment:

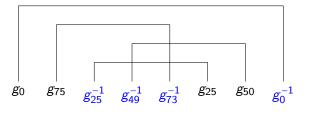
$$\varphi(s_n^d) = \frac{1}{(2n)^{d/2}} |\mathcal{W}_0(d,n)| = \frac{1}{(2n)^{d/2}} \sum_{\pi \in \mathcal{P}_2(d)} N(d,n,\pi).$$

Remark: The second of the above equations is possible thanks to the normal form given by the abstract reduction system.

Key observation: If we know all the generators in a word assigned to some pair partition, and their indices are "sufficiently spread out", then inverse generators can be filled in uniquely to give a word that evaluates to the identity.



Our filled in word is



Recall that the generator with smaller index remains unchanged, for instance,

$$g_0g_{75} = g_{74}g_0$$
.

The precise change in an index is determined by the number of crossings between pairs.

Upshot: We have the freedom to choose only $\frac{d}{2}$ indices from the pool of n indices $\{0, \ldots, n-1\}$ for a word of length d to evaluate to the identity.

Proposition

We get the following bounds on $N(d, n, \pi)$:

$$2^{\frac{d}{2}} \left(\frac{d}{2}\right)! \binom{n+2d-\frac{3d^2}{2}}{\frac{d}{2}} \le N(d,n,\pi) \le 2^{\frac{d}{2}} \left(\frac{d}{2}\right)! \binom{n+\frac{d^2}{2}-2}{\frac{d}{2}}. \tag{1}$$

Recall that we have the limit of the d-th moment of s_n given by

$$\varphi(s_n^d) = \frac{1}{(2n)^{d/2}} \sum_{\pi \in \mathcal{P}_2(d)} \mathcal{N}(d, n, \pi).$$

Final Steps:

• Divide (1) by $(2n)^{\frac{d}{2}}$ to get

$$\frac{1}{n^{\frac{d}{2}}}\frac{\left(n+2d-\frac{3d^2}{2}\right)!}{\left(n+2d-\frac{3d^2}{2}-\frac{d}{2}\right)!} \leq \frac{1}{(2n)^{\frac{d}{2}}}N(d,n,\pi) \leq \frac{1}{n^{\frac{d}{2}}}\frac{\left(n+\frac{d^2}{2}-2\right)!}{\left(n+\frac{d^2}{2}-2-\frac{d}{2}\right)!}.$$

• Summing over all pair partitions $\pi \in \mathcal{P}_2(d)$ and in the limit as $n \to \infty$:

$$\lim_{n \to \infty} \frac{1}{n^{\frac{d}{2}}} \sum_{\pi \in \mathcal{P}_{2}(d)} \frac{(n + 2d - \frac{3d^{2}}{2})!}{(n + 2d - \frac{3d^{2}}{2} - \frac{d}{2})!} \le \lim_{n \to \infty} \sum_{\pi \in \mathcal{P}_{2}(d)} \frac{1}{(2n)^{\frac{d}{2}}} N(d, n, \pi)$$

$$= \lim_{n \to \infty} \varphi(s_{n}^{d})$$

$$\le \lim_{n \to \infty} \frac{1}{n^{\frac{d}{2}}} \sum_{\pi \in \mathcal{P}_{2}(d)} \frac{(n + \frac{d^{2}}{2} - 2)!}{(n + \frac{d^{2}}{2} - 2 - \frac{d}{2})!}.$$

Final Steps: This gives

$$\sum_{\pi \in \mathcal{P}_2(d)} 1 \leq \lim_{n \to \infty} \varphi(s_n^d) \leq \sum_{\pi \in \mathcal{P}_2(d)} 1.$$

Hence

$$\lim_{n\to\infty}\varphi(s_n^d)=|\mathcal{P}_2(d)|=(d-1)!!.$$

F is generated by g_n satisfying

$$g_ng_k=g_kg_{n+1},\ 0\leq k< n<\infty.$$

F is generated by g_n satisfying

$$g_ng_k = g_kg_{n+1}, \ 0 \leq k < n < \infty.$$

Let (a_n) be the sequence of self-adjoint random variables in $(\mathbb{C}(F), \varphi)$ given by

$$a_n = \frac{g_n + g_n^*}{\sqrt{2}}, \ n \in \mathbb{N}_0$$

F is generated by g_n satisfying

$$g_n g_k = g_k g_{n+1}, \ 0 \le k < n < \infty.$$

Let (a_n) be the sequence of self-adjoint random variables in $(\mathbb{C}(F), \varphi)$ given by

$$a_n = \frac{g_n + g_n^*}{\sqrt{2}}, \ n \in \mathbb{N}_0$$

Consider the sequence of rescaled averages

$$s_n := \frac{1}{\sqrt{n}}(a_0 + \cdots + a_{n-1}), \ n \in \mathbb{N}.$$

F is generated by g_n satisfying

$$g_n g_k = g_k g_{n+1}, \ 0 \le k < n < \infty.$$

Let (a_n) be the sequence of self-adjoint random variables in $(\mathbb{C}(F), \varphi)$ given by

$$a_n = \frac{g_n + g_n^*}{\sqrt{2}}, \ n \in \mathbb{N}_0$$

Consider the sequence of rescaled averages

$$s_n := \frac{1}{\sqrt{n}}(a_0 + \cdots + a_{n-1}), \ n \in \mathbb{N}.$$

Then $s_n \stackrel{\text{distr}}{\longrightarrow} x$, where x is a normally distributed random variable of mean 0 and variance 1.

Ongoing Research / Some Questions

- What property of the relations satisfied by the generators of F allow us to make this association with pair partitions? Note that the sequence a_n is not exchangeable and does not satisfy the singleton vanishing property (conditions in the Generalized CLT).
- Recently Aiello extended this CLT to Brown Thompson groups $(g_ng_k = g_kg_{n+p-1}, p \ge 2)$.
- Can we formulate a multidimensional version of the theorem in the hope of getting the multivariate normal distribution in the limit?

Thank You!