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Theorem (Classical Central Limit Theorem)
Suppose (Xn) is a sequence of IID (independent and identically distributed)
random variables with mean 0 and variance 1. Then

Sn ∶=
X1 +⋯ +Xn√

n

distrÐ→ X ,

where
distrÐ→ denotes convergence in distribution and X is a random variable

with the standard normal distribution N(0,1).

f (x) = 1
√

2π
e−

x2
2
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Definition (Convergence in distribution)
The sequence of random variables (Yn) is said to converge in distribution
to a random variable Y , denoted by

Yn
distrÐ→ Y

if the respective cumulative distribution functions converge, that is,

FYn(x) → FY (x), wherever FY is continuous.

This is equivalent to the convergence of the expected value operators:

E(f (Yn)) → E(f (Y )), for all bounded continuous functions f .
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A (noncommutative) ∗-probability space is a pair (M, ψ), whereM is a
unital ∗-algebra and ψ is a unital positive linear functional onM.

Unital ∗-algebra: An algebraM with an identity element which has an
involution ∗.
Unital positive linear functional ψ: ψ(1) = 1, ψ(x∗x) ≥ 0 for all x ∈ M,
ψ(αx + y) = αψ(x) + ψ(y), for all x , y ∈ M and α ∈ C.

Examples
(Mn(C),Tr), where Tr is the normalized trace on square matrices.

(CG , φ) where CG is the group algebra of a group G and φ = δg=e is
the canonical trace.
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How does a classical probability space fit in?

Let (Ω,Σ, µ) be a probability space, where Ω is a sample space, Σ is a
σ-algebra and µ is a probability measure.
Then L ∶= L∞(Ω,Σ, µ) is a commutative ∗-algebra and

trµ(f ) ∶= ∫
Ω
f dµ

defines a unital positive linear functional on L. The pair (L, trµ) is a
∗-probability space.
Sometimes we need to work with the ∗-algebra

L∞−(Ω,Σ, µ) ∶= ⋂
p≥1

Lp(Ω,Σ, µ)
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In a ∗-probability space (M, ψ), a (noncommutative) random variable is
an element x inM.

Definition (Convergence in distribution)
Let (An, φn) (n ∈ N) and (A, φ) be ∗-probability spaces. Let an = a∗n ∈ An

(n ∈ N) and x ∈ A be random variables. We say that (an) converges in

distribution to x as n →∞, and denote this by an
distrÐ→ x , if we have

lim
n→∞

φn(adn) = φ(xd), ∀d ∈ N.

Definition (Tensor independence)
A sequence of random variables (an) ⊂M is said to be tensor independent
if aiaj = ajai for all i , j ∈ N and

φ(am1
n1
⋯amk

nk
) = φ(am1

n1
)⋯φ(amk

nk
), nl ,ml ∈ N0, k ∈ N.
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Theorem (Classical CLT restated algebraically)
Let (A, φ) be a ∗-probability space where A is commutative. Suppose
(an = a∗n) ⊂ A is a sequence of tensor independent and identically
distributed random variables. Furthermore, assume that φ(an) = 0 and
φ(a2

n) = 1 (n ∈ N). Then we have

sn ∶=
a1 +⋯ + an√

n

distrÐ→ x ,

where x is a normally distributed random variable of mean 0 and variance 1.

Remark: As the normal distribution is determined by its moments, this
seemingly weaker algebraic formulation is actually equivalent to the
classical CLT stated earlier.
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The (classical/ tensor) independence of the sequence (an) can be replaced
by some other property to give other algebraic CLTs.

Definition (Free independence)
A sequence of random variables (an) ⊂ A is said to be freely independent if
for Ai ∶= ∗ − alg{1, ai}, we have φ(x1⋯xk) = 0 for k ∈ N whenever

1 φ(xj) = 0 for all j ∈ {1, . . . , k};
2 xj ∈ Ai(j) for each j ∈ {1, . . . , k};
3 i(1) ≠ i(2), i(2) ≠ i(3), . . . , i(k − 1) ≠ i(k).

Remark: The joint distributions of a freely independent sequence of
random variables is determined by the knowledge of the individual
distributions of each random variable.
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Theorem (Free CLT, Voiculescu 1985, Combinatorial proof by
Speicher 1990)
Let (A, φ) be a ∗-probability space and (an = a∗n) ⊂ A be a sequence of
freely independent and identically distributed random variables.
Furthermore, assume that φ(an) = 0 and φ(a2

n) = 1 (n ∈ N). Then we have

sn ∶=
a1 +⋯ + an√

n

distrÐ→ s,

where s is a semicircular element of mean 0 and variance 1.

f (x) = 1
2π

√
4 − x2
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In both central limit theorems, we try to find

lim
n→∞

φ(sdn ) = lim
n→∞

1
nd/2

∑
i ∶[d]→{1,...,n},

φ(ai(1)⋯ai(d))

Both tensor independence and free independence give a rule for
calculating mixed moments from the values of the moments. This
means φ(ai(1)⋯ai(d)) depends on the tuple (i(1), . . . , i(d)) only
through the information on which indices are the same and which are
different.

This information is encoded via a partition – the kernel of the tuple i .
Here, ker(i) is the partition of [d] into the level sets of the tuple i .
φ(a3a1a3a2a2a4a1a4) ↝ π = ker(i) = {{1,3},{2,7},{4,5},{6,8}}.
For both tensor and free independence, the only tuples that contribute
are those whose kernels are pair partitions – all pair partitions in the
tensor case, and non-crossing pair partitions in the free case.
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Pair partitions: For even d ∈ N, a pair partition of the set
[d] ∶= {1, . . . ,d} is a disjoint collection of pairs, i.e., π = {V1, . . . ,V d

2
} with

Vi ⊆ [d], Vi ∩Vj = ∅ for i ≠ j , and ∣Vi ∣ = 2 for each i ∈ [d2 ].The set of pair
partitions of [d] is denoted by P2(d).

Example
A crossing pair partition of [6]: {{1,3},{2,4},{5,6}}

1 32 4 5 6

A non-crossing pair partition of [6]: {{1,6},{2,3},{4,5}}

1 62 3 4 5
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Let d be even.
The number of all pair partitions of [d] is

(d − 1)!! ∶= (d − 1) × (d − 3) ×⋯(3) × (1).

This is the d-th moment of the normal distribution, which is the
limiting law in the classical CLT.

The number of non-crossing pair partitions of [d] is given by the
Catalan number

C d
2
= 1
( d2 + 1)

(dd
2
).

This is the d-th moment of Wigner’s semicircular distribution, which is
the limiting law in the free CLT.
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Theorem (Generalized CLT, Bożejko, Speicher, von Waldenfels 1994)
Let (A, φ) be a ∗-probability space and suppose that the sequence
(an = a∗n)∞n=1 ⊂ A satisfies:

1 an invariance principle known as exchangeability.
2 the singleton vanishing property.

Let sn = 1√
n
(a1 +⋯ + an). Then one has, for any d ∈ N,

lim
n→∞

φ(sdn ) = ∑
π∈P2(d)

φπ

where φπ = φ(aℓ(1)⋯aℓ(d)) with π = ker(ℓ).
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Can we compute the limit distribution of a sequence in the group algebra of
a particular group of interest?

Infinite symmetric group S∞ (Biane 1995; Campbell, Köstler, Nica
2021 and 2022).

Coxeter and Artin systems of extra large types (Fendler 2003).

Thompson’s group F has the following infinite presentation:

F = ⟨g0,g1, . . . ∣ gngk = gkgn+1, 0 ≤ k < n < ∞⟩.

For instance, g7g3 = g3g8.
Let (C(F ), φ) be the ∗-probability space with C(F ) denoting the group
algebra of F and φ the canonical trace defined by

φ(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x = e
0, x ≠ e.
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The group F was introduced by Richard Thompson in 1965 as a
certain subgroup of piece-wise linear homeomorphisms on the interval
[0,1].
It can also be realised in terms of morphisms on the category of rooted
ordered binary trees.

It is an object of interest to those in many fields; notably, the question
of its amenability is still open.

There has also been interest in probabilistic aspects of F .
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Theorem (A Central Limit Theorem for F , K. 2023)
Let (an) be the sequence of self-adjoint random variables in (C(F ), φ)
given by

an =
gn + g∗n√

2
, n ∈ N0

and
sn ∶=

1√
n
(a0 +⋯ + an−1), n ∈ N.

Then we have

lim
n→∞

φ(sdn ) =
⎧⎪⎪⎨⎪⎪⎩

(d − 1)!! for d even,

0 for d odd.

That is,
sn

distrÐ→ x ,

where x is a random variable with standard normal distribution.
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The d-th moment of sn can be expressed as

φ(sdn ) =
1

(2n)d/2 ∑
i ∶[d]→{0,...,n−1},
ε∶[d]→{−1,1}

φ(g ε(1)
i(1) ⋯g

ε(d)
i(d) )

= 1
(2n)d/2

∣W0(d ,n)∣

where

W0(d ,n) ∶= {(i , ε)
i ∶ [d] → {0, . . . ,n − 1}, ε ∶ [d] → {−1,1},
and g

ε(1)
i(1) ⋯g

ε(d)
i(d) = e

}.

Task: Count the number of words (of length d) composed of the first
n generators of F and their inverses which evaluate to the identity.
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Step 0: We observe that

Only words of even length d can evaluate to the identity. So all
odd moments are 0.

Each word which evaluates to the identity must have an equal
number of generators and inverses.

Step 1: We reduce each such word (i , ε) to a normal form

(j , ε0) = (gj(1), . . .gj( d2 ),g
−1
j( d2 )

, . . . ,g−1j(1))

with j(l) + 1 ≥ j(l + 1) for all l ∈ [d2 ].
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Example

Suppose d = 8 and (i , ε) ∈ W0(8,20) is given by

(i , ε) = (g2,g0,g
−1
18 ,g

−1
4 ,g−10 ,g16,g3,g

−1
2 ).

Then the normal form (j , ε0) of (i , ε) is

(j , ε0) = (g16,g2,g3,g0,g
−1
0 ,g−13 ,g−12 ,g−116 ).

The uniqueness of the above normal form can be shown using the
formalism of abstract reduction systems.
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Definition
An abstract reduction system is a pair (A,→), where A is a set and → is a
relation on A.

The element y is a normal form of x if x
∗→ y and y cannot be

reduced further.

A reduction is said to be normalizing if every element has a normal
form.

A reduction is said to be terminating if there is no infinite chain
x0 → x1 → x2 → ⋯.

A reduction → is said to be confluent if for all w , x , y ∈ A with w
∗→ x

and w
∗→ y , we have x ↓ y . It is said to be locally confluent if for all

w , x , y ∈ A with w → x and w → y , we have x ↓ y .

Lemma (Newman)
A terminating reduction is confluent if and only if it is locally confluent.
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Example
Let A ∶= N ∖ {1} and →∶= {(m,n) ∣ m > n and n∣m}. Then we have the
following:

m is in normal form if and only if m is prime.

p is a normal form of m if and only if p is a prime factor of m.

→ is terminating as m → n implies that n < m.

→ is normalizing but normal forms are not unique. For example, 2 and
3 are both normal forms of 6.

→ is not locally confluent (and hence not confluent). For example,
6→ 2 and 6→ 3 but 2 /↓ 3.
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We will take A to be the set of words in F and → to be a reduction
described by the relations satisfied by the generators of F .

We define two reduction rules in turn:

(g−1k ,gl) →

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(gl ,g−1k ) if k = l ,
(gl ,g−1k+1) if k > l ,
(gl+1,g−1k ) if k < l .

followed by

gkgl → gk−1gl if k − 1 > l ,
g−1l g−1k → g−1k g−1l−1 if l − 1 > k .

By showing that the reduction is terminating and (locally) confluent,
we can conclude that each word has a unique normal form.
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Step 2: We use the normal form to assign a unique pair partition
π ∈ P2(d) to each word that evaluates to the identity.

We visualize the rainbow pair partition on the normal form as

g16 g−116
g2 g−12

g3 g−13
g0 g−10

We can then trace back to the original word (i , ε) to get the pair partition
{{1,8},{2,5},{3,6},{4,7}}:

g2 g−12
g0 g−10g−118

g16g−14
g3

A CLT in the framework of F 27 / 36



Step 3: Let N(d ,n, π) be the number of words (i , ε) which are
assigned to the pair partition π ∈ P2(d). We will find upper and
lower bounds on this number.

We will then be able to estimate the limit as n →∞ of the d-th moment:

φ(sdn ) =
1

(2n)d/2
∣W0(d ,n)∣ =

1
(2n)d/2 ∑

π∈P2(d)
N(d ,n, π).

Remark: The second of the above equations is possible thanks to the
normal form given by the abstract reduction system.

A CLT in the framework of F 28 / 36



Key observation: If we know all the generators in a word assigned
to some pair partition, and their indices are “sufficiently spread out”,
then inverse generators can be filled in uniquely to give a word that
evaluates to the identity.

g0 g−1i(8)
g75 g−1i(5)g−1i(3)

g25g−1i(4)
g50
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Our filled in word is

g0 g−10
g75 g−173g−125

g25g−149
g50

Recall that the generator with smaller index remains unchanged, for
instance,

g0g75 = g74g0.

The precise change in an index is determined by the number of crossings
between pairs.
Upshot: We have the freedom to choose only d

2 indices from the pool of n
indices {0, . . . ,n − 1} for a word of length d to evaluate to the identity.

A CLT in the framework of F 30 / 36



Proposition
We get the following bounds on N(d ,n, π):

2
d
2 (d

2
)!(

n + 2d − 3d2

2
d
2

) ≤ N(d ,n, π) ≤ 2
d
2 (d

2
)!(

n + d2

2 − 2
d
2

). (1)

Recall that we have the limit of the d-th moment of sn given by

φ(sdn ) =
1

(2n)d/2 ∑
π∈P2(d)

N(d ,n, π).
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Final Steps:

Divide (1) by (2n) d2 to get

1

n
d
2

(n + 2d − 3d2

2 )!
(n + 2d − 3d2

2 −
d
2 )!
≤ 1

(2n) d2
N(d ,n, π) ≤ 1

n
d
2

(n + d2

2 − 2)!
(n + d2

2 − 2 − d
2 )!

.

Summing over all pair partitions π ∈ P2(d) and in the limit as
n →∞:

lim
n→∞

1

n
d
2
∑

π∈P2(d)

(n + 2d − 3d2

2 )!
(n + 2d − 3d2

2 −
d
2 )!
≤ lim

n→∞
∑

π∈P2(d)

1

(2n) d2
N(d ,n, π)

= lim
n→∞

φ(sdn )

≤ lim
n→∞

1

n
d
2
∑

π∈P2(d)

(n + d2

2 − 2)!
(n + d2

2 − 2 − d
2 )!

.
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Final Steps: This gives

∑
π∈P2(d)

1 ≤ lim
n→∞

φ(sdn ) ≤ ∑
π∈P2(d)

1.

Hence
lim
n→∞

φ(sdn ) = ∣P2(d)∣ = (d − 1)!!.
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Recap:
F is generated by gn satisfying

gngk = gkgn+1, 0 ≤ k < n < ∞.

Let (an) be the sequence of self-adjoint random variables in (C(F ), φ)
given by

an =
gn + g∗n√

2
, n ∈ N0

Consider the sequence of rescaled averages

sn ∶=
1√
n
(a0 +⋯ + an−1), n ∈ N.

Then sn
distrÐ→ x , where x is a normally distributed random variable of

mean 0 and variance 1.
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Ongoing Research / Some Questions

What property of the relations satisfied by the generators of F allow
us to make this association with pair partitions? Note that the
sequence an is not exchangeable and does not satisfy the singleton
vanishing property (conditions in the Generalized CLT).

Recently Aiello extended this CLT to Brown - Thompson groups
(gngk = gkgn+p−1, p ≥ 2).

Can we formulate a multidimensional version of the theorem in the
hope of getting the multivariate normal distribution in the limit?
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Thank You!
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