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Lennard-Jones crystals 101

“On April 22, 1924, the Royal Society of London received a
paper written by a research student at Trinity College at
Cambridge, John Edward Jones, ...”

“In Lennard-Jones’ third paper of 1924, lattice sums were
introduced to obtain bulk properties for cubic crystals. This
work is particularly interesting (and perhaps less well-known to
the chemistry community), as it opened up a whole new field in
mathematical lattice theory.”

Quoted from:
100 Years of the Lennard-Jones potential
Peter Schwerdtfeger and David J. Wales
J. Chem. Theory and Comp. 20, 3379–3405 (2024).
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The family of Lennard-Jones potentials

In his first article of 1924, (then still) Jones proposed that the
potential energy V (r) of two like atoms a distance r > 0 apart
(measured center to center) is given by

Vn,m(r) :=
An

rn −
Bm

rm ; n > m > 0,

where An > 0 and Bm > 0 are two constants that need to be
matched to the species of atoms under consideration.
This potential pair energy had actually been proposed earlier, in
1912, by Eduard Grüneisen, who was inspired by even earlier
work of Gustav Mie from (1903), who proposed the same pair
energy though with n = 5.
However, these earlier proposals were made in the context of
solid state physics, and the theoretical physics community did
not have much overlap with the theoretical chemistry
community (still true nowadays).
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THE Lennard-Jones potential

Using either updated Newtonian mechanics or quantum
mechanics, one concludes that m = 6 for neutral, though
polarizable atoms.

For mathematical convenience (employing the “quadratic
formula”) one then chooses n = 12. Thus, after suitable
scaling, one considers

VLJ(r) := 4ε
(
σ12

r12 −
σ6

r6

)
.

Here, σ is a reference length, and ε a reference energy.
We will choose σ = 1 and ε = 1

4 .
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3-dimensional crystals

100 years ago, in 1925, (then still) Jones, jointly with Albert
Ingham, published the paper titled:

“On the calculation of certain crystal potential constants, and
on the cubic crystal of least potential energy”

They concluded that among the standard cubic lattices (fcc,
bcc, simple cubic) the fcc lattice has the lowest energy per
particle. Much later (2023) it was proved by Bétermin and
Šamaj that the hcp packing has lower energy per particle.

In any event, the Jones & Ingham paper became the template
for computing crystal structures that “match” those seen in
nature. We illustrate how this is done using a 1D toy model.
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1-dimensional illustration

Suppose∞ many Lennard-Jones atoms (point particles
with Lennard-Jones pair interactions) are placed, one
each, on the lattice aZ, with a > 0 the spacing between
any two consecutive lattice points.

The potential LJ energy per particle, W (a), is identical to
the potential energy of any particular point particle in the
∞ chain of point particles; viz.

W (a) =
∑

k∈Z\{0}

VLJ(|ka|)

Since
∑

`∈N
1
`c converges when c > 1, we obtain

W (a) =
∑

k∈Z\{0}

1
(ak)12 −

∑
k∈Z\{0}

1
(ak)6 =

2ζ(12)

a12 − 2ζ(6)

a6 .
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The LJ potential energy per particle

Manifestly there exists a unique minimum at some amin, easily
determined via calculus to be at amin = (2ζ(12)/ζ(6))

1
6 .

Choosing a = amin gives the∞ long idealization of an LJ crystal
in a hypothetical 1D world.
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Why minimizing energy gives the right physics?

The usual narrative is that without kinetic energy in the system
(N.B.: we are neglecting the influence of temperature, which
would cause the atoms to jiggle around their equilibrium
positions), the stable crystal state is attained when each atom is
in its lowest energy state, and minimizing w.r.t. a gives you that.

But why that narrative?

Answer: Empirical observations show that if you slowly cool
down a liquid (like liquid water) it will eventually crystalize into
solid water ice, having lower energy than the same amount of
liquid water at higher temperature. Our physical theories are
designed to reflect those observations in the mathematics of
our idealized models of nature.
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Small oscillations about the stable equilibrium

I just mentioned that with non-zero temperature, there is
kinetic energy in the system, too: the atoms “jiggle” about
their equilibrium positions.

Let’s compute Newton’s equation of motion for each atom!
If two particles are at locations x ∈ R and y ∈ R, having
Lennard-Jones pair energy VLJ(|x − y |), then Newton’s
force of the particle at y on the particle at x is given by

FLJ(x |y) = − ∂
∂x VLJ(|x − y |),

and this also obeys Newton’s “actio = re-actio,” viz.

FLJ(x |y) = −FLJ(y |x).

Newton’s EoM:

∀i ∈ Z :
d2

dt2 xi(t) =
∑
j 6=i

FLJ

(
xi(t)|xj(t)

)
.
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Dilational Dynamics

The oscillatory motions of perturbed lattices can be very
complicated. So let’s look at the simplest special case that
comes to mind:

Imagine the∞ LJ chain to be either compressed or
stretched uniformly away from its equilibrium state, and
then released from such a constrained initial state,
evolving henceforth as per Newton’s equations of motion.

The keyword is “uniformly;” so we cleverly anticipate the
final result of a lengthy calculation, the effective differential
equation for the lattice spacing a(t) as function of time, viz.

d2

dt2 a(t) = − ∂

∂r

(
2ζ(12)

r12 − 2ζ(6)

r6

) ∣∣∣∣
r=a(t)

Initial data: a(0) = a0 and d
dt a(t)|t=0 = 0.
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Dilational Dynamics (cont.d )

This one-dimensional effective dynamical equation for a(t) is
solvable in closed form, though not necessarily explicitly for a
as function of t , but for t as function of a, using the so-called
energy method.

The energy method yields (for sufficiently short times)

t(a) = ±
∫ a

a0

dr√
2
(

W (a0)−W (r)
) ,

where “+” is to be used for a compressed initial state,
“−” for the stretched one.

N.B.: This method yields a patchwork job (turning point to
turning point, repeat); in the small-amplitude approximation
one gets a(t)− amin =

(
a0 − amin

)
cos(ωt) for some ω > 0.
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Dilational Dynamics (cont.d )

BUT: Let’s check whether this “ingenious” guess is correct!
We evaluate the total Newtonian force acting on any
particular point particle in the stipulated initial state of the
chain of evenly spaced∞ many Lennard-Jones atoms with
nearest neighbor spacing a 6= amin.

Let’s be clever again and use the symmetry of the chain!
For each k ∈ N, particle i “feels” a particle a distance ka to
its right and another one a distance −ka to its left.
Now we notice that, for each i ∈ Z and k ∈ N,

FLJ(xi |xi + ka) = −FLJ(xi |xi − ka),

and so, initially:∑
j 6=i

FLJ

(
xi |xj

)
=
∑
k∈N

FLJ

(
xi |xi − ka

)
+ FLJ

(
xi |xi + ka

)
= 0 (!)

UPSHOT: The chain is in equilibrium for any a !
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“Houston, we’re having a problem!”

We seem to have arrived at a paradoxical situation!
What is going on?

We’ve twice tried to find “ingenious” short-cuts to the
answer, so perhaps we have been “too ingenious” ?

The conclusion that the∞ chain is in equilibrium for any a
surely is completely counter-intuitive, right? So let’s first
inspect our “clever symmetry argument.” After all, we did a
particular partial summation first (the left-right step for each
k ∈ N), then we summed over all k ∈ N. Is this allowed?
YES! ∀i ∈ Z, the series over all LJ forces on particle i is

absolutely summable
UPSHOT: The∞ chain is in force equilibrium for any a !
While counter-intuitive, it is true nevertheless.
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What’s “rong” with the oscillating a(t) argument?
Suppose the∞ chain is oscillating with periodic lattice
spacing a(t), as computed earlier.
How do you actually picture this in 1D physical space?

We could fix particle i = 0 at the origin, thus x0(t) = 0∀ t ,
and all particles with i > 0 moving always in the same
direction, either all away from x0 when ȧ(t) > 0, or toward
it when ȧ(t) < 0, while all particles with i < 0 behave in the
same manner though moving in the opposite direction.
But what’s so special about i = 0? NOTHING!
In our visualization of the chain oscillating with lattice
spacing a(t) we arbitrarily broke the symmetry of the
the particle system by singling out i = 0, and by tacitly
assuming it wouldn’t move, while all others would.
In the stipulated IVP for the∞ chain with spacing a, the
particles of the chain would not “know” which one should
stay put while the others should start to move!
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Lowest LJ energy clusters

This is an NP-hard problem.
For 2 ≤ N < 2000 (≈, say) there are computer-generated
data available that passed some optimality tests.
See, for instance, the Cambridge Cluster Database of
David Wales et al.

For N not larger than a few 100, one may have confidence
in the data’s reliability, but eventually it’s becoming less
certain.
For N not larger than a few 1000, there are lots of
structural transitions:
E.g., Mackay to anti-Mackay icosahedral structure, vs.
decahedral structure, etc.
For N very very large, on the other hand, one can safely
assume that the∞ crystal lattice results show the way
toward an asymptotic expansion, at least for the energy.
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structural transitions:
E.g., Mackay to anti-Mackay icosahedral structure, vs.
decahedral structure, etc.

For N very very large, on the other hand, one can safely
assume that the∞ crystal lattice results show the way
toward an asymptotic expansion, at least for the energy.
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Lowest LJ energy clusters (cont.d )

In particular, one expects a continuum approximation to be
accurate when N � 1.

Suppose the Lennard-Jones N body cluster for N � 1
is ≈ polyhedral in shape, then its energy is expected to be

E(N) = αV + βA + γE + δC + c.a.c (∗)

where V is the volume, A the surface area, E the edge
length, and C the number of corners of the polyhedron
(e.g. 8 for a cube); the N dependence is V ∝ N, A ∝ N2/3,
E ∝ N1/3. The c.a.c are “centered atomic contributions,”
less regular, and account for the fact that our perceived
continua are actually atomistic in nature.
Lattice sum calculations should yield α, β, γ, δ.
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Lowest LJ energy clusters with n = 2m→∞

When we replace the so-called 12-6 potential by the Grüneisen
/ general Lennard-Jones n-m potential, with n = 2m, and let
m→∞, we obtain the limit of sticky hard spheres. The lowest
energy is the negative of the largest number of kissing points.

The 2D special case has been solved

The lowest energy as function of N reads (Harborth, 1974):

E(N) = −b3N −
√

12N − 3c

The floor function makes it plain that this is not an analytic
expression in

√
N. It produces the “atomic contributions.”
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Asymptotics of the Harborth function

We can extract an analog of the asymptotic expansion (∗), viz.

E(N) = αA + βE + γC + c.a.c. (∗∗)

where now A ∝ N, E ∝ N
1
2 , C = 6. Thus (∗∗) is the same as

E(N) = α̃N + β̃N
1
2 + γC + c.a.c. (∗ ∗ ∗)

We compute α̃ as

α̃ = lim
N→∞

1
N
E(N) = −3.

We compute β̃ as

β̃ = lim
N→∞

1

N
1
2

(
E(N) + 3N

)
= 2
√

3.

Already the next term is strongly fluctuating.
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Asymptotics of the Harborth function

The figure shows ∆E(N) := E(N) + 3N − 2
√

3N
1
2 vs. N, where

E(N) is the Harborth function. One can shift ∆E by a constant
to center it at zero (asymptotically as N ∼ ∞), thus obtaining
the term γ. Such centered “atomic contributions” account for
the microscopic discreteness of our matter in bulk.
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That’s it (for now) / MANY THANKS!

There is a surprising regularity embedded in the “irregular” fluctuations.

To be continued ...
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