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3,5 7, 95 11, 13, 15, 17, 19, 21, 23, 25

1, 3,9, 21, 41, 71, 113, 169, 241, 331, 441, 573

1 interpolate
%(7@ —x)+1

1, 5, 19, 65, 211, 665, 1869, 4593, 10029, 19885, 36479

1 interpolate
2 (47x5—590x+3065%3 —7570x2+8888x—3780)



3,5, 7,9 11,13, 15, 17, 19, 21, 23, 25

1, 3,9, 21, 41, 71, 113, 169, 241, 331, 441, 573

1 interpolate
%(x3 —x)+1

1, 5, 19, 65, 211, 665, 2, 2, 2, 2, ?



3,5, 7,9 11,13, 15, 17, 19, 21, 23, 25

1, 3,9, 21, 41, 71, 113, 169, 241, 331, 441, 573

1 interpolate
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3,5, 7,9 11,13, 15, 17, 19, 21, 23, 25

1, 3,9, 21, 41, 71, 113, 169, 241, 331, 441, 573

1 interpolate
%(7@ —x)+1

1, 5, 19, 65, 211, 665, 2059, 6305, 19171, 58025, 175099

1 “interpolate”
Qnt2 —9Any1 +6an =0
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equation with polynomial coefficients.
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A sequence (an) is called D-finite if it satisfies a linear recurrence
equation with polynomial coefficients.

pO(n)an + P (n)an—H + 4+ pr(n)an+r =0

Examples:
e a, =n! anip—M+1)a, =0
e a, =2" ant1 —2a, =0

e Catalan numbers (n+2)C 1 —22n+1)C,, =0
o 3n?+5m—7)an o+ Gn2+2n+8)an i+ (2n*—9n—1)a, =0
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21, 51, 127, 323, 835, 2188,

Is this sequence D-finite?
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Let's try to find a recurrence (candidate)!
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Let's try to find a recurrence (candidate)!

( + n—+ nz)anJrZ
+ ( +cim+ nz)an;r]
+ (coo+com+coon?a, =0

Instantiate this template (“ansatz”) for n =1,...,8 to obtain a
system of linear constraints for the undetermined coefficients.



an nan

1 1 1

2 4 8
4 12 36
9 36 144
21 105 525
51 306 1836
127 889 6223

323 2584 20672

2
4

9
21
51
127
323
835

2
8
27
84
255
762
2261
6680

2
16
81
336
1275
4572
15827
53440

4
9
21
51
127
323
835
2188

4
18
63
204
635
1938
5845
17504

2 2 2
Tan An41 MAn+1 T An4+1 Ang2 TGn+2 T Any2

4
36
189
816
3175
11628
40915
140032




a, TNan
1 1
2 4
4 12
9 36
21 105
51 306
127 889
323 2584

2
n an

1
8
36
144
525
1836
6223

20672

An 1

2

4

9
21
51
127
323
835

2 2
NAn4+1 M7Anp1 AQny2 NAny2 TV Any2

2
8
27
84
255
762
2261
6680

2
16
81
336
1275
4572
15827
53440

4
9
21
51
127
323
835
2188

4
18
63
204
635
1938
5845
17504

More variables than equations.

4

36

189

816

3175

11628
40915
140032




an  na, nfa,
1 1 1
2 4 8
4 12 36
9 36 144
21 105 525
51 306 1836
127 889 6223

323 2584 20672

This system must have solutions.

An 1

2
4

9
21
51
127
323
835

2 2
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2
8
27
84
255
762
2261
6680

2
16
81
336
1275
4572
15827
53440

4
9
21
51
127
323
835
2188

4
18
63

204
635
1938

5845

17504

More variables than equations.

4
36
189
816
3175
11628
40915
140032




an  na, nfa,
1 1 1
2 4 8
4 12 36
9 36 144
21 105 525
51 306 1836
127 889 6223

323 2584 20672

This system must have solutions.

An 1

2
4

9
21
51
127
323
835

2 2
NAn4+1 M7Anp1 AQny2 NAny2 TV Any2

2
8
27
84
255
762
2261
6680

2
16
81
336
1275
4572
15827
53440

4
9
21
51
127
323
835
2188

4
18
63

204
635
1938

5845

17504

More variables than equations.

Not helpful.

4
36
189
816
3175
11628
40915
140032




Let's try to find a recurrence (candidate)!

( + n)anJrZ
+ ( + n)a11+1
+ ( + Tl)(ln =0

Instantiate this template (“ansatz”) for n =1,...,8 to obtain a
system of linear constraints for the undetermined coefficients.
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n=1 1 1 2 2 4 4
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n=6 | 51 306 127 762 323 1938

n=7 {127 889 323 2261 835 5845

n=8 \323 2584 835 6680 2188 17504
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an Nan  Qn+1 NAn41 Any2 NAny2

n=1 1 1 2 2 4 4

n=2|( 2 4 4 8 9 18

n=3| 4 12 9 27 21 63

n=4| 9 36 21 84 51 204 —0
n=5| 21 105 51 255 127 635

n=6 | 51 306 127 762 323 1938

n=7 {127 889 323 2261 835 5845

n=8 \323 2584 835 6680 2188 17504

More equations than variables.
Not supposed to have a solution.
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an Nan  Qn+1 NAn41 Any2 NAny2

n=I1 1 1 2 2 4 4

n=2|( 2 4 4 8 9 18 3

n=3| 4 12 9 27 21 63 3

n=4| 9 36 21 84 51 204 ) —0
n=51 21 105 51 255 127 635 2

n=6 | 51 306 127 762 323 1938 —4

n=7 {127 889 323 2261 835 5845 -1

n=8 \323 2584 835 6680 2188 17504

More equations than variables.
Not supposed to have a solution.

What if it does?



n=1

n=2
n=3
n=4
n=>5
n=6
n=7
n==8

an TNan
1 1
2 4
4 12
9 36
A B [0)
51 306
127 889
323 2584

An+4+1 MAn4+1 An42

2

4

9
21
51
127
323
835

2

8

27

84
255
762
2261
6680

4
9
21
51
127
323
835
2188

Nan4+2

4
18
63
204
635
1938
5845
17504

—(d+n)an2+ 5+ 2n)any + (3+3n)a, =0.



an Nan  Qn+1 NAn41 Any2 NAny2

n=I1 1 1 2 2 4 4

n=2|( 2 4 4 8 9 18 3

n=3| 4 12 9 27 21 63 3

n=4| 9 36 21 84 51 204 ) —0
n=51 21 105 51 255 127 635 2

n=6 | 51 306 127 762 323 1938 —4

n=7 {127 889 323 2261 835 5845 -1

n=8 \323 2584 835 6680 2188 17504
—(d+n)an2+ 5+ 2n)any + (3+3n)a, =0.

By construction, this recurrence holds forn =1,...,8.
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an Nan  Qn+1 NAn41 Any2 NAny2

n=I1 1 1 2 2 4 4

n=2|( 2 4 4 8 9 18 3

n=3| 4 12 9 27 21 63 3

n=4| 9 36 21 84 51 204 ) —0
n=51 21 105 51 255 127 635 2

n=6 | 51 306 127 762 323 1938 —4

n=7 {127 889 323 2261 835 5845 -1

n=8 \323 2584 835 6680 2188 17504
—(d+n)an2+ 5+ 2n)any + (3+3n)a, =0.

By construction, this recurrence holds forn =1,...,8.

By lack of coincidence, it actually holds for all n € N.
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There are three parameters:
e N... the number of terms available
e 1... the order of the sought recurrence

e d... the degree of its polynomial coefficients

We obtain an overdetermined linear system when
N> (r+1)(d+2).

This inequality determines the boundary of the search space.
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order r
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degree d

N=(r+1)(d+2)

order r
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What if we don't have enough data?

e For large examples, there is an old trick.

e For small examples, there is a new trick.
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degree d small order, high degree
N = (30 + 1)(739 + 2) = 22971

terms needed

order r
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minimal order

non-minimal order

degree
integer lengths

better

better

12



minimal order non-minimal order

degree better
integer lengths better

We can efficiently get the minimal-order equation from a
non-minimal-order equation.

12
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Guessing with Little Data’

Manuel Kauers
Institute for Algebra, Johannes Kepler University
040 Linz, Austria
maneLkauers@jkuat

ABSTRACT

constructing a hypothetical recurrence equation from the first
terms of an infinite sequence i a lassical and well-known tech
nique in experimental mathemalics. We propose a varition of this
echnique which can succeed with fewer input terms.

+ Computing methodologies —» Algebraic algorithms.
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Experimental Mathematics, D-fnite Functions, Lattice Reduction
 Sequence
ference Format
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Correct equations are typically much nicer than generic solutions.
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Correct equations are typically much nicer than generic solutions.
Idea: search specifically for nice equations.

Some common features of nice equations:

Unrolling the recurrence produces integers

There are no irregular singularities

The so-called p-curvature is nilpotent

The coefficients only involve small integers
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Enforcing the first three leads to nonlinear equations @
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Correct equations are typically much nicer than generic solutions.

Idea: search specifically for nice equations.
Some common features of nice equations:

[ ]

[

[ ]

e The coefficients only involve small integers

Enforcing the first three leads to nonlinear equations @

But the last one is accessible via LLL ©®

15
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3 e
an =Y  (})” satisfies a recurrence of order 2 and degree 2.

Classical guessing needs at least 12 terms to find this equation.
Suppose we only know ay,

.y ag.
1 0 0 2 0 0 10 0 0
pl 2 2 10 10 10 56 56 56
10 20 40 56 112 224 346 692 1384 =0
56 168 504 346 1038 3114 2252 6756 20268
346 1384 5536 2252 9008 36032 15184 60736 242944

16



A basis for the Z-module of all solutions in Z7 is

2
0
0
67069
—52693
—45994
—13414
13424
5636

0
1
1
231310
—181747
—158629
—46262
46300
19438

[
]

2
232560
—182728
—159486
—46512
46550
19543

B

0
[

0
434140
—341119
—297729
—86828
86900
36483

16



A basis for the Z-module of all solutions in Z7 is

—8
—16

—8
—16
—21
-7

4

4

1

B

-8
21
11
—6

-291,

1

2
4
0

12 —42
12 14
—34 58
—46 —29
27 —17
21 40
8 10
—6 —4

—6

16



A basis for the Z-module of all solutions in Z7 is

-8

-8 12 —42
—16 21 12 14
-8 —11 —34 58
—~16 -6 —46 —29
—21|, |-29], | 27 —17
-7 1 21 40
4 2 3 10
4 4 -6 —4

1 0 -2



A basis for the Z-module of all solutions in Z7 is

—8 -8 12 —42
—16 21 12 14
-8 —11 —34 58
—16 —6 —46 —29
—211, -291, 27 —17
—7 1 21 40
4 2 8 10
4 4 —6 —4
1 0 -2 —6

Indeed,
(—8—T6n—8n?)an+(—16—21n—7n?)an 1+ (@+4n+n?)anss =0

is a correct recurrence.



N=100

N=500

N=20
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N=100

N=500

N=500

/

N=20

N=20

N=100
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Why don't we simply compute more terms?
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Why don't we simply compute more terms?
Because it might be too hard.

cost
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The On-Line Encyclopedia of Integer Sequences (OEIS) - Chromium
% The On-Line Encyclopec

< C @ oeisorg

7 THE ON-LINE ENCYCLOPEDIA
> OF INTEGER SEQUENCES

founded in 1964 by N. J. A. Sloane

The On-Line Encyclopedia of Integer Sequences (OEIS)

Enter a sequence, word, ot

h | Hints Welcome V
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Entry First terms Noeis  Ninalg N v d
AL77317 1,2, 48,2288, 135040 29 60 22 3 14
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8
A265234 1, 43, 2592, 184740 31 56 27 6 6
A172572 90, 67950, 90291600 33 44 17 3 9
A172671 90, 202410, 747558000 33 75 25 4 13
A188818 2, 9, 48, 256, 1360 32 55 26 5 10
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10
A216940 260, 27768, 1664244 37 44 29 1 23
A104478 0,0, 0, 1, 337, 8733 32 35 10 2 12
A215570 1,35, 18720, 19369350 48 68 27 3 15
A330087 1, 4, 90, 8400, 1426950 40 70 24 5 10
A260021 1,2, 23, 588, 24553 42 108 28 4 21
A181108 1,18, 169, 6392 27 33 14 2 9
A181100 1,1, 16,985, 141696 26 103 34 3 24
A181280 0,0, 0, 58, 1629, 28924 27 32 2 10 1
A253217 0,0, 1,19,268,3568 37 53 27 5 9
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7
A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4



Entry First terms Noeis  Niinalg  Niie T d
A177317 1, 2, 48, 2288, 135040 29 60 22 3 14 v
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8 v
A265234 1,43, 2592, 184740 31 56 27 6 6 v
A172572 90, 67950, 90291600 33 44 17 3 9 v
A172671 90, 202410, 747558000 33 75 25 4 13 Vv
A188818 2, 9, 48, 256, 1360 32 55 26 5 10 V
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14 v
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10 V
A216940 260, 27768, 1664244 37 44 29 1 23 Vv
A194478 0,0, 0, 1, 337, 8733 32 35 19 2 12
A215570 1, 35, 18720, 19369350 48 68 27 3 15
A339987 1, 4, 90, 8400, 1426950 40 70 24 5 10 v
A269021 1, 2, 23, 588, 24553 42 108 28 4 21
A181198 1,1, 8, 169, 6392 27 KX] 14 2 9
A181199 1,1, 16, 985, 141696 26 103 34 3 24
A181280 0,0, 0, 58, 1629, 28924 27 32 26 10 1
A253217 0,0, 1, 19, 268, 3568 37 53 27 5 9
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7
A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4



Entry First terms Noeis  Niinalg  Niie T d
A177317 1, 2, 48, 2288, 135040 29 60 22 3 14 v
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8 v
A265234 1,43, 2592, 184740 31 56 27 6 6 v
A172572 90, 67950, 90291600 33 44 17 3 9 v
A172671 90, 202410, 747558000 33 75 25 4 13 Vv
A188818 2, 9, 48, 256, 1360 32 55 26 5 10 V
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14 v
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10 V
A216940 260, 27768, 1664244 37 44 29 1 23 Vv
A194478 0,0, 0, 1, 337, 8733 32 35 19 2 12
A215570 1, 35, 18720, 19369350 48 68 27 3 15
A339987 1, 4, 90, 8400, 1426950 40 70 24 5 10 v
A269021 1, 2, 23, 588, 24553 42 108 28 4 21
A181198 1,1, 8, 169, 6392 27 KX] 14 2 9
A181199 1,1, 16, 985, 141696 26 103 34 3 24
A181280 0,0, 0, 58, 1629, 28924 27 32 26 10 1 v
v
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7
A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4
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Abstract

In 2014, R.H. Hardin contributed a fmily of sequences abont king-moves on an

array to the Ou-Line Encyclopedia of Integer Sequences (OELS). The sequences were

recently noticed in an automated search of the OEIS by Kaners and Koutschan, who

conjectured a recurrence for one of them. We prove their conjecture as well as some

older conjectures stated in the OEIS entries. We also have some new conjectures
for the asymptotics of Hardin's sequences.

Mathen ct Classifications: 05A15, 33F10

1 Introduction

The On-Line Encyclopedia of Integer sequences [15] contains over 350,000 sequence

and

perhaps tens of thousands of conjectures about them. Here we resolve some of the

related to a family of sequences due to R.H. Hardin,

For any positive integer r, let H,(n. k) be the number of n x & arrays which obey t

following rule

© The entry in position (1,1) is 0, and the entry in position (. k) is max(r

© The entry in position (. j) must equal or be one more than cach of the entric
1

positions (i — L. j), (i, and (i — 1,j
© The entry in position (i, j) must be within r of max

We call such an arrangement of numbers a Hardinian array
quivalently, Hardinian arrays can be defined in terms of the king-distan
entries, i.c., the length of the shortest path that a king on a chessboard can tak

from one entry to the other. Using this notion, we can say that a Hardinian arra

1 0 at position at the top-left entry, the entry at the bottom-right entry is king-distance

setween the top-left comer and the bottom-right corner minus r, every entry incre

“Rutgers University, New Druane

Tustitute for Algebra, J. Kepler University Linz,

22



s Rutgers Experimental h

& & & sites.math.rutgers.edu/~zeilberg/expmath/archive23.htm

Date: Thu., Oct. 26, 2023, 5:00pm (Eastern Time) Zoom Link [password: The 20th Catalan
number, alias (40)!/(201*21!), alias 6564120420 ]

Speaker:Robert Dougherty-Bliss, Rutgers University

Title: Hardinian Arrays

Abstract: Kauers and Koutschan recently performed an automated search of sequences in the
OEIS that might satisfy previously unknown recurrences. Among many promising hits was a

2014 sequence about king-moves on an array submitted by R.H. Hardin. I will show how to
confirm and extend the conjectured recurrence using determinant evaluations and computer
algebra.
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Entry First terms Noeis  Niinalg  Niie T d
A177317 1, 2, 48, 2288, 135040 29 60 22 3 14 v
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8 v
A265234 1,43, 2592, 184740 31 56 27 6 6 v
A172572 90, 67950, 90291600 33 44 17 3 9 v
A172671 90, 202410, 747558000 33 75 25 4 13 Vv
A188818 2, 9, 48, 256, 1360 32 55 26 5 10 V
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14 v
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10 V
A216940 260, 27768, 1664244 37 44 29 1 23 Vv
A194478 0,0, 0, 1, 337, 8733 32 35 19 2 12
A215570 1, 35, 18720, 19369350 48 68 27 3 15
A339987 1, 4, 90, 8400, 1426950 40 70 24 5 10 v
A269021 1, 2, 23, 588, 24553 42 108 28 4 21
A181198 1,1, 8, 169, 6392 27 KX] 14 2 9
A181199 1,1, 16, 985, 141696 26 103 34 3 24
A181280 0,0, 0, 58, 1629, 28924 27 32 26 10 1 v
v
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7
A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4
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Entry First terms Noeis  Niinalg  Niie T d
A177317 1, 2, 48, 2288, 135040 29 60 22 3 14 v
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8 v
A265234 1,43, 2592, 184740 31 56 27 6 6 v
A172572 90, 67950, 90291600 33 44 17 3 9 v
A172671 90, 202410, 747558000 33 75 25 4 13 Vv
A188818 2, 9, 48, 256, 1360 32 55 26 5 10 V
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14 v
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10 V
A216940 260, 27768, 1664244 37 44 29 1 23 Vv
A194478 0,0, 0, 1, 337, 8733 32 35 19 2 12
A215570 1, 35, 18720, 19369350 48 68 27 3 15
A339987 1, 4, 90, 8400, 1426950 40 70 24 5 10 v
A269021 1, 2, 23, 588, 24553 42 108 28 4 21
A181198 1,1, 8, 169, 6392 27 KX] 14 2 9
A181199 1,1, 16, 985, 141696 26 103 34 3 24

v
A253217 0,0, 1, 19, 268, 3568 37 53 27 5 9 v
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7
A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4

bl
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A181280. Number of 4 x n binary matrices M with rows in
strictly increasing order and rows of MM (mod 2) in strictly
decreasing order.
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0,0,0,58, 1629, 28924, 507052, 8211776, 133693904, . . .
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—22912660668416(n — 2)a(n) + 4194304(4419089n —
5784790)a(n + 1) + 458752(9499785n — 97594504)a(n + 2) —
8192(8909670491 — 4679365255)a(n + 3) + 1024(1488027923n —
5601351692)a(n +4) + 6528(44221759n — 387235809)a(n + 5) —
32(3992176883n — 26858644798)a(n + 6) + 8(1107194741n —
6399743425)a(n + 7) + 2(610453317n — 4593544888)a(n + 8) —
(1821398231 — 1273140745)a(n + 9) + (6061186n —

41678719)a(n +10) = 0
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a(n)

?

221’1711 (6112 —21%n + 820) i %2“75(3]’1 + 32)
— W33t L q)m2n T (130 — T64)

+ 1237142880 — 3473) 4 277

W —
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= A € 77" fixed
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A € 75 fixed
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A € 75 fixed
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= A €727 fixed
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= A €727 fixed
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20000000

1
1
1

40 00 00 O

040000 0

004000 O

00223800 0

02020380 0

0220008 0
00004 4 4

16
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n

20000000

1
1
1

40 00 00 O

040000 0

004000 O

00223800 0

02020380 0

0220008 0
00004 4 4

16
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1

n

20000000

1
1
1

0
0
0

40 00 00 O

040000 0

004000 O

00223800 0

02020380 0

0220008 0
00004 4 4

16
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1

n

20000000

1
1
1

0
0

4 0 00 00 O

040000 0

004000 O

00223800 0

02020380 0

0220008 0
00004 4 4

16

6,6,0,0,0,0,0,1)
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1

n

20000000

1
1
1

0
0

4 0 00 00 O

040000 0

004000 O

00223800 0

02020380 0

0220008 0
00004 4 4

16

6,6,0,0,0,0,0,1)

Number of 4 x n binary matrices M with rows

in strictly increasing order
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A € Z5** fixed
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= A €7y fixed

What is the effect on a;j; when we extend M by another column?
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= A €7y fixed

What is the effect on a;j; when we extend M by another column?

It will flip if and only if the new column has a 1 in rows i and j.

34



Refine the counting by introducing marker variables x;; that keep
track of the number of columns in M that have a 1 in rows i and j.
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Refine the counting by introducing marker variables x;; that keep
track of the number of columns in M that have a 1 in rows i and j.

Examples:

— 1 — X2,2X2,3X2,4X3,3X34X4 4

o =00

1
— X33 8 — X1,1X1,4X4,4
1

[eNoNoNe)
—_——_ -

— X1,1X1,2X1,3X1,4X2,2X2 3X2 4X3 3X3 4X4 4

—_—
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©,0,0,0,0,0,0,1)

messy lower triangular
matrix with
polynomial entries

O OC OC C = = = =
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n
1
1
. 1
messy lower triangular 1

(0,0,0,0,0,0,0,1) matrix with
polynomial entries 0
0
0
0
= a polynomial p such that the coefficient of xi‘f‘ . -xjff is the

number of 4 x n binary matrices M with rows in strictly increasing
order that have e;; columns with a 1 in rows i and j, for all 1,j.
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= A€ Zy fixed
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= A€ Zy fixed

Matrices M yielding aij; = | are counted by monomials
in which the exponent of x;j is

37



= A€ Zy fixed

Matrices M yielding aij; = | are counted by monomials
in which the exponent of x;j is

Matrices M yielding aij = O are counted by monomials
in which the exponent of x;; is even.
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The complete generating function f is rational in t and all the x; ;.
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The complete generating function f is rational in t and all the x; ;.
1

Let's say we fix A =

1
(]) €z
1

—_ O —= O

0
1 1
0 1
0 0

38



The complete generating function f is rational in t and all the x; ;.

11

, : |1 o0
Let's say we fix A = 0 1
1

0

Then the 4 x n binary matrices M with rows in strictly increasing
order and MM = A (mod 2) is counted by

0 0
11 44
ol ez
0 1

odd, odd_ even_even_even_ odd, odd, odd, even odd
([Xu X12X13 X174 X22 X23X24 X33 X34 X44 ]f)

xij=1"
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The complete generating function f is rational in t and all the x; ;.

11

, : |1 o0
Let's say we fix A = 0 1
1

0

Then the 4 x n binary matrices M with rows in strictly increasing
order and MM = A (mod 2) is counted by

0 0
11 44
ol ez
0 1

odd, odd_ even_even_even_ odd, odd, odd, even odd
([Xu X12X13 X174 X22 X23X24 X33 X34 X44 ]f)

xij=1"

This is a rational function in t.
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Theorem.
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Theorem.
e Let k € N.
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Theorem.
e Let k € N.
o Let AC Z5
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Theorem.
e Let k € N.
o Let AC Z5

e Let a, be the number of matrices M €
strictly increasing order and MM " € A.

kxn
ZZ

with rows in
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Theorem.
e Let ke N.
o Let AC Z5
e Let a, be the number of matrices M €
strictly increasing order and MM " € A.
Then (aq)$2, is C-finite.

kxn
ZZ

with rows in
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Theorem.
e Let ke N.
o Let AC Z5
e Let a, be the number of matrices M € le‘xn with rows in
strictly increasing order and MM " € A.
Then (aq)$2, is C-finite.

In particular, the sequence A181280 is C-finite. m
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Entry First terms Noeis  Niinalg  Niie T d
A177317 1, 2, 48, 2288, 135040 29 60 22 3 14 v
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8 v
A265234 1,43, 2592, 184740 31 56 27 6 6 v
A172572 90, 67950, 90291600 33 44 17 3 9 v
A172671 90, 202410, 747558000 33 75 25 4 13 Vv
A188818 2, 9, 48, 256, 1360 32 55 26 5 10 V
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14 v
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10 V
A216940 260, 27768, 1664244 37 44 29 1 23 Vv
A194478 0,0, 0, 1, 337, 8733 32 35 19 2 12
A215570 1, 35, 18720, 19369350 48 68 27 3 15
A339987 1, 4, 90, 8400, 1426950 40 70 24 5 10 v
A269021 1, 2, 23, 588, 24553 42 108 28 4 21
A181198 1,1, 8, 169, 6392 27 KX] 14 2 9
A181199 1,1, 16, 985, 141696 26 103 34 3 24

v
A253217 0,0, 1, 19, 268, 3568 37 53 27 5 9 v
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7
A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4

bl

40



Entry First terms Noeis  Niinalg  Niie T d

A177317 1, 2, 48, 2288, 135040 29 60 22 3 14 v
A199250 1,1, 14, 21, 424, 571 56 98 56 8 18
A250556 8, 60, 302, 1516, 7126 47 58 47 9 8 v
A265234 1,43, 2592, 184740 31 56 27 6 6 v
A172572 90, 67950, 90291600 33 44 17 3 9 v
A172671 90, 202410, 747558000 33 75 25 4 13 Vv
A188818 2, 9, 48, 256, 1360 32 55 26 5 10 V
A306322 1,0, 0, 25, 386, 4657 41 63 30 4 14 v
A195806 16, 105, 496, 1759, 5052 32 41 30 4 10 V
A216940 260, 27768, 1664244 37 44 29 1 23 Vv
A194478 0,0, 0, 1, 337, 8733 32 35 19 2 12
A215570 1, 35, 18720, 19369350 48 68 27 3 15

A339987 1, 4, 90, 8400, 1426950 40 70 24 5 10 v
A181198 1,1, 8, 169, 6392 27 KX] 14 2 9

A181199 1,1, 16, 985, 141696 26 103 34 3 24

A181280 0,0, 0, 58, 1629, 28924 27 32 26 10 1 v
A253217 0,0, 1, 19, 268, 3568 37 53 27 5 9 v
A098926 0, 2, 12, 90, 556, 5242 34 55 26 8 7

A164735 0,0,0,0,0,0,0,1,0,4 70 80 66 15 4

bl bl
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3 4 2 7 9

1

5

6
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3 4 2 7 9

1

5

6

41



3 4 2 7 9

1

5

6
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3 4 2 7 9 1 5 6 8

1 3 2 4

How many permutations contain the pattern 13247
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3 4 2 7 9 1 5 6 8

1 3 2 4

How many permutations contain the pattern 13247

Let an be the number of such permutations in S,
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3 4 2 7 9 1 5 6 8

1 3 2 4

How many permutations contain the pattern 13247
Let an be the number of such permutations in S,

Famous open problem: is a, D-finite?
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1
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1
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6
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3 4 2 7 9 1 5 6 8

1 2 3 4

How many permutations contain the pattern 12347
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3 4 2 7 9 1 5 6 8

1 2 3 4

How many permutations contain the pattern 12347

Let an be the number of such permutations in S,
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3 4 2 7 9 1 5 6 8

1 2 3 4

How many permutations contain the pattern 12347
Let an be the number of such permutations in S,

Well-known fact: a, is D-finite.
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3 4 2 7 9 1 5 6 8

1 2 3 4

How many permutations contain the pattern 12... k7?7
Let an be the number of such permutations in S,

Well-known fact: ay, is D-finite for every fixed k.
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A269021: a, = number of permutations of length 2n, containing
the pattern 12...m.
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A269021: a, = number of permutations of length 2n, containing
the pattern 12...m.

Conjecture: This sequence is D-finite.
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A269021: a, = number of permutations of length 2n, containing
the pattern 12...m.

Conjecture: This sequence is D-finite.

—64m+ 12 +22M+3)2n+ 1)?*(2n+3)*(2n + 5)%(64n'° + 196807 +
26156n% + 1984691 + 952323n° + 3012795n° + 6333869n* + 8663374n> +
726453412 4-3266000n+549760)an+16(n+2)*(n+3)(2n+3)?(2n+5)*(64n'3 +
2672n'2 +49788n'! +545913n'° 4 3917758n7 + 1935953518 + 6738588617 +
1657893631° + 284054698n° + 325846005n* + 229526554n> + 78563984n? —
4879641 —5543040)ans1 —4(n+3)(2n+5)2(512n'° +21568n"* +419248n '3 +
4969164112 4 39928763n'" + 228837227110 + 95906867217 + 2966908118n% +
675309492917 + 11118771121n° + 12741784568n> + 9313604242n* +
327171159613 — 56256913612 — 946158512n — 250467360) an+2 + 2(512n'° +
26752n'° + 624800n"* + 8677944n'3 + 80260596n'% + 523718876n'! +
248858338110 + 874756643517 + 22820793074n8 + 43766004538n” +
600041070391° + 55047935941n° + 27672902302n* — 778719870n> —
10812498240n? — 63600998401 — 1300242000)an+3 — 3(n +4)(3n + 8)(3n +
10)(64n'° + 1328n7 + 11324n® + 523897 + 143536n° + 233810n° +
204716n* + 48699n°> — 68928n2 — 61278n — 15900) an+4 = O
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