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Hadamard matrices
Hadamard matrices are n× n matrices H with ±1 elements such that H ·Ht = nIn.

trivial cases: n = 1 and n = 2.

well-known necessary condition: n ≡ 0 (mod 4)

J. H. van Lint & R. M. Wilson, A course in combinatorics. 2nd ed. CUP 2001.

the sufficiency of this condition is the celebrated Hadamard (matrix) conjecture

“There exists a Hadamard matrix of order n, for every n ≡ 0 (mod 4)” (1893)

• smallest unresolved order until 1985: 268

• smallest unresolved order until 2004: 428

• smallest unresolved order until 2014: 668

3 unresolved cases < 1000: 668, 716, 892

10 unresolved cases < 2000: 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, 1964

recent progress: HM of order 1004 = 4 · 251,
D. Z. Djokovic, O. Golubitsky, I. S. Kotsireas, JCD 22 (2014), no. 6, pp. 270-277.
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How many (inequivalent) HMs are there?
Two HMs are inequivalent if one cannot be obtained from the other by a series of

row/col permutations and/or by multiplying some rows or columns by −1.

• C. Lam, S. Lam, V. D. Tonchev, Bounds on the number of affine, symmetric, and

Hadamard designs and matrices. JCTA 92 (2000), no. 2, 186-196.

• C. Lam, S. Lam, V. D. Tonchev, Bounds on the number of Hadamard designs of even

order. JCD 9 (2001), no. 5, 363-378.

The number of inequivalent Hadamard matrices of order 40 is at least 3.66× 1011.
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Constructions for Hadamard matrices
1. Kronecker product construction: HM(n),HM(m) −→ HM(nm)

2. Gruner’s theorem: if p and p+ 2 are twin primes, then ∃ HM(p(p+ 2) + 1)

3. Quadratic Residues of primes p ≡ 3 (mod 4), {seq(x^ 2 mod p,x=1..p)}

4. Williamson method (1944), Williamson array


A B C D

−B A −D C

−C D A −B

−D −C B A


where A,B,C,D are symmetric circulant matrices of (odd) order n satisfying

A2 +B2 + C2 +D2 = (4n) · In
• Williamson’s method gave all HMs of order less that 100.

• HM(92), L. D. Baumert, S. W. Golomb, and M. Hall (1962)

http://blogs.jpl.nasa.gov/2013/08/slice-of-history-hadamard-matrix/

• R. Turyn, An infinite class of Hadamard matrices. JCTA 12, (1972)

4





Problems with HM constructions
“For a long time, Williamson’s method has been considered a promising way to

tackle the Hadamard conjecture ” – Bernhard Schmidt (AMS MathSciNet review)

• D. Z. Djokovic, Discrete Math. 115, pp. 267-271 (1993),

Williamson method fails for n = 35

• W. H. Holzmann, et al. Designs Codes Cryptogr. 46, pp. 343-352 (2008)

Williamson method fails for n = 47, 53, 59

There are literally 100s of HM constructions ...

They all suffer from two kinds of disadvantages:

• they produce a sparse set of orders

• they fail for specific parameter values

5



Opinion: The Hadamard conjecture is too general.

There is one particular construction that seems to be one of the most prominent

candidates to furnish a proof of the Hadamard conjecture:

two circulant cores construction (2cc)

• 2cc introduces some structure into the more general Hadamard Conjecture. This

structure is described in terms of two circulant matrices whose first rows have constant

autocorrelation.

• 2cc does not fail for any value of the parameter, covers full range of multiples of 4.

1. I. S. Kotsireas, J. Seberry et al. Hadamard ideals and Hadamard matrices with two circulant

cores

European J. Combin., 27(5):658–668, 2006.

2. I. S. Kotsireas, Structured Hadamard Conjecture

Springer Proceedings in Mathematics & Statistics Volume 43, 2013, pp. 215–227

in: Number Theory and Related Areas Eds: J. M. Borwein, I. Shparlinski, and W. Zudilin

3. I. S. Kotsireas, A. Razoumov, work in progress, 2014, JPDC
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Circulant matrices
Periodic Autocorrelation Function

A n× n matrix C(A) is called circulant if every row (except the first) is obtained

by the previous row by a right cyclic shift by one.

C(A) =



a0 a1 . . . an−2 an−1

an−1 a0 . . . an−3 an−2

...
... . . .

...
...

a2 a3 . . . a0 a1

a1 a2 . . . an−1 a0


The periodic autocorrelation function (PAF) of a finite sequence

A = [a0, . . . , an−1] is defined as: (k + s is taken modulo n)

PA(s) =
n−1∑
k=0

akak+s, s = 0, . . . , n− 1,
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PAF properties
• Consider a finite sequence A = [a0, . . . , an−1] of length n and the circulant matrix C(A)

whose first row is equal to A.

Then PA(i) is the inner product of the first row of C(A) and the i+ 1 row of C(A).

• symmetry property

PA(s) = PA(n− s), s = 1, . . . , n− 1.

• 2nd ESF property

PA(1) + PA(2) + . . .+ PA(n− 1) = 2e2(a0, . . . , an−1)
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2cc construction for Hadamard matrices
Let ℓ be an odd integer, such that ℓ > 1 and set m = ℓ−1

2 . If there exist two ±1

sequences A = [a0, . . . , aℓ−1] and B = [b0, . . . , bℓ−1] of length ℓ each, such that

PA(s) + PB(s) = −2, for s = 1, . . . ,m

then ∃ a 2cc Hadamard matrix of order 2ℓ+ 2 given by

H2ℓ+2 =



− − + · · · + + · · · +

− + + · · · + − · · · −

+ +
...

... C(A) C(B)

+ +

+ −
...

... C(B)t −C(A)t

+ −
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Example: Let ℓ = 5, m = 2 and consider the two sequences A = [1, 1,−1,−1, 1]

and B = [−1, 1,−1, 1, 1]. Then we have that

s PA(s) PB(s) PA(s) + PB(s)

1 1 −3 −2

2 −3 1 −2

and the corresponding 2cc matrix H12 is a 12× 12 Hadamard matrix.

Necessary condition:

(a0 + · · ·+ aℓ−1)
2 + (b0 + · · ·+ bℓ−1)

2 = 2

w.l.o.g. a0 + · · ·+ aℓ−1 = 1 and b0 + · · ·+ bℓ−1 = 1.
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ℓ order of H2ℓ+2 total number of matrices

3 8 9 = 1× 32

5 12 50 = 2× 52

7 16 196 = 4× 72

9 20 972 = 12× 92

11 24 2, 904 = 24× 112

13 28 7, 098 = 42× 132

15 32 38, 700 = 172× 152

17 36 93, 058 = 322× 172

19 40 161, 728 = 448× 192

21 44 433, 944 = 984× 212

23 48 1, 235, 744 = 2, 336× 232

25 52 2, 075, 000 = 3, 320× 252

27 56 5, 353, 776 = 7, 344× 272

29 60 12, 401, 386 = 14, 746× 292

31 64 22, 472, 024 = 23, 384× 312



exhaustive

searches

for 2cc

Hadamard

matrices
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Commutative Algebra formulation
of the structured Hadamard conjecture

Consider the polynomial ring in 2ℓ variables a0, . . . , aℓ−1, b0, . . . , bℓ−1.

Set m = ℓ−1
2 .

Consider the ideal defined by m+ 2 + 2ℓ linear and quadratic polynomials

Hℓ = ⟨PA(1) + PB(1) + 2, . . . , PA(m) + PB(m) + 2,

a0 + . . .+ aℓ−1 − 1, b0 + . . .+ bℓ−1 − 1,

a20 − 1, . . . , a2ℓ−1 − 1, b20 − 1, . . . , b2ℓ−1 − 1⟩

The structured Hadamard conjecture amounts in proving that the ideal Hℓ is

non-empty, for all odd ℓ > 1.
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Exact formulas for #
of Hadamard matrices of order n

1. Shalom Eliahou

Enumerative combinatorics and coding theory

Enseign. Math. (2), 40(1-2):171–185, 1994.

2. Warwick de Launey and Daniel A. Levin

A Fourier-analytic approach to counting partial Hadamard matrices

Cryptogr. Commun., 2(2):307–334, 2010.

• The Eliahou formula uses Coding Theory.

• The de Launey-Levin formula uses multidimensional integrals associated with lattice

walks.

• Both formulas require a certain amount of technical definitions before they can be

stated in a self-contained manner and are difficult (practically impossible) to evaluate

for large n.

• It is far from evident why these two formulae (should) agree for all n ≡ 0 (mod 4).
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Eliahou Theory
Fundamental link between the number of solutions of polynomial equations (in

binary variables) with positive integer coefficients and certain associated binary

linear codes and their weight enumerators.

• Let f(x1, . . . , xn) be a polynomial with non-negative integer coefficients. Then the

enumeration of the values assumed by f on the boolean cube {−1,+1}n is equivalent to

the enumeration of the weights in an associated binary linear code Lf .

• This correspondence in conjunction with the MacWilliams identity is used to enumerate

Hadamard matrices of fixed order.

• Question: Is there a p ∈ {−1,+1}n s.t. f(p) = 0 ?

• How many such binary zeros does f admit?

• The value enumerator of f is the Laurent polynomial in T, T−1:

Vf (T ) =
∑

p∈{−1,+1}n
T f(p)

• The coefficient of Tu in Vf (T ) is the # binary points p s.t. f(p) = u, u ∈ Z.
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• w.l.o.g. we can consider polynomials f that are composed of square-free monomials

only.

• removing squares does not alter the value of f : x2y − y takes the constant value 0

• Let Mn denote the set of square-free monomials in the n variables x1, . . . , xn.

• Let f be decomposed as f = u1 + · · ·+ uN with monomials ui ∈ Mn, i = 1, . . . , N . The

monomials ui need not be distinct and they can be equal to 1.

• Associate with f the n×N matrix Φf = (Φij) over F2 defined by

Φij =

 1, if xi divides uj

0, otherwise

• Define Lf to be the binary linear code generated by the n rows of the matrix Φf .

• The dual code Kf = L⊥
f admits Φf as a parity check matrix.

• Alternative description of the code Lf : with a p ∈ {−1,+1}n we associate:

(1) a subset vf (p) ⊂ {1, . . . , N} defined as: vf (p) = {i ∈ [1, . . . , n] | ui(p) = −1}
(2) a codeword cf (p) in FN

2 defined as: cf (p) =
∑

i∈vf (p) where E1, . . . , EN is the

standard basis of FN
2 .
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• This defines a MAP (group homomorphism) cf : {−1,+1}n → FN
2 with properties:

Im(cf ) = Lf Ker(cf ) = {p | f(p) = N} f(p) = N − 2 | c(p) |

• Theorem: (the weight enumerator of f determines the value enumerator of f)

Vf (T ) = 2n−dimLfTNPL(1/T
2)

• For every u ∈ Z, the binary fiber of u is defined as

f−1(u) = {p ∈ {−1,+1}n|f(p) = u}.

• Eliahou theory furnishes a way to compute the cardinality of the binary fiber, ∀u ∈ Z.

Theorem:

|f−1(u)| = 2n−dimLf · coefficient of (XY )(N−u)/2 in the weight enumerator of Lf

Note that we make use of the bivariate weight enumerator of Lf .

Many (but not all) combinatorial objects that are defined via {−1,+1} sequences of

constant autocorrelation can be defined as solutions of systems of polynomial

equations f1(xi) = · · · = fk(xi) = 0 over the boolean cube, which can be reduced to

one equation f = f2
1 + . . .+ f2

k .
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Eliahou Theory for 2cc HMs

Set fH =
m∑
s=1

(PA(s) + PB(s) + 2)2, m =
ℓ− 1

2
and compute the cardinality of the

binary fiber of 0, for fH (polynomial in 2ℓ variables ai, bi).

Example: ℓ = 3, n = 2ℓ = 6, m = 1,

fH = (PA(1) + PB(1) + 2)2 = (a1a2 + a2a3 + a3a1 + b1b2 + b2b3 + b3b1 + 2)2

fH = 5 + 3(PA(1) + PB(1)) + PA(1)PB(1)

which implies that fH has N = 5 + 3 · 6 + 9 = 32 and the associated 6× 32 matrix

ΦfH is 

0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0

0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1
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Let LfH denote the binary linear code generated by the 6 rows of the matrix ΦfH .

The bivariate weight enumerator of the binary linear code LfH can be computed

with Magma:

X32 + 6X20Y 12 + 9X16Y 16.

The dimension of the binary linear code LfH can also be computed in Magma and is

equal to 4.

|f−1(0)| = 2n−dimLfH · coefficient of (XY )N/2 in the weight enumerator of LfH =

= 26−4 · 9 = 4 · 9 = 36

which means that the equation fH = 0 has 36 solutions in {−1,+1}6.
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we constructed the codes LfH and computed their weight enumerators for ℓ = 3, 5,

7, 9, 11, 13, 15, 17, 19 using Magma.

ℓ n(= 2ℓ) N dimLfH coeff. of XN/2Y N/2 in the weight enum. of LfH

3 6 32 4 9

5 10 144 8 50

7 14 384 12 196

9 18 800 16 972

11 22 1440 20 2, 904

13 26 2352 24 7, 098

15 30 3584 28 38, 700

17 34 5184 32 93, 058

19 38 7200 36 161, 728

Table 1: Eliahou theory results for Hadamard matrices with two circulant cores
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Coding Theory formulation
of the structured Hadamard conjecture

For all odd ℓ > 1, set n = 2ℓ,m = ℓ−1
2 and form

fH =
m∑
s=1

(PA(s) + PB(s) + 2)2

Reduce all the squares in fH , i.e. compute N

Form the n×N matrix ΦfH and consider the binary linear code LfH it generates

Prove that dimLfH = 2ℓ− 2

Prove that there are codewords of weight N/2 in LfH
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