A structured form of the Hadamard matrix conjecture

Ilias S. Kotsireas Wilfrid Laurier University Waterloo ON, Canada

ikotsire@wlu.ca

Hadamard matrices

Hadamard matrices are $n \times n$ matrices H with ± 1 elements such that $H \cdot H^t = nI_n$. trivial cases: n = 1 and n = 2.

well-known necessary condition: $n \equiv 0 \pmod{4}$ J. H. van Lint & R. M. Wilson, A course in combinatorics. 2nd ed. CUP 2001. the sufficiency of this condition is the celebrated Hadamard (matrix) conjecture "There exists a Hadamard matrix of order n, for every $n \equiv 0 \pmod{4}$ " (1893)

- smallest unresolved order until 1985: 268
- smallest unresolved order until 2004: 428
- smallest unresolved order until 2014: 668
- 3 unresolved cases < 1000: 668, 716, 892

10 unresolved cases < 2000: 1004, 1132, 1244, 1388, 1436, 1676, 1772, 1916, 1948, 1964 recent progress: HM of order $1004 = 4 \cdot 251$,

D. Z. Djokovic, O. Golubitsky, I. S. Kotsireas, JCD 22 (2014), no. 6, pp. 270-277.

How many (inequivalent) HMs are there?

Two HMs are **inequivalent** if one cannot be obtained from the other by a series of row/col permutations and/or by multiplying some rows or columns by -1.

- C. Lam, S. Lam, V. D. Tonchev, Bounds on the number of affine, symmetric, and Hadamard designs and matrices. JCTA 92 (2000), no. 2, 186-196.
- C. Lam, S. Lam, V. D. Tonchev, Bounds on the number of Hadamard designs of even order. JCD 9 (2001), no. 5, 363-378.

The number of inequivalent Hadamard matrices of order 40 is at least 3.66×10^{11} .

Constructions for Hadamard matrices

- 1. Kronecker product construction: $HM(n), HM(m) \longrightarrow HM(nm)$
- 2. Gruner's theorem: if p and p+2 are twin primes, then $\exists HM(p(p+2)+1)$
- 3. Quadratic Residues of primes $p \equiv 3 \pmod{4}$, $\{seq(x^2 \mod p, x=1..p)\}$

4. Williamson method (1944), Williamson array $\begin{pmatrix} A & B & C & D \\ -B & A & -D & C \\ -C & D & A & -B \\ -D & -C & B & A \end{pmatrix}$

where A, B, C, D are symmetric circulant matrices of (odd) order n satisfying $A^2 + B^2 + C^2 + D^2 = (4n) \cdot I_n$

- Williamson's method gave all HMs of order less that 100.
- HM(92), L. D. Baumert, S. W. Golomb, and M. Hall (1962) http://blogs.jpl.nasa.gov/2013/08/slice-of-history-hadamard-matrix/
- R. Turyn, An infinite class of Hadamard matrices. JCTA 12, (1972)

Problems with HM constructions

"For a long time, Williamson's method has been considered a promising way to tackle the Hadamard conjecture " – Bernhard Schmidt (AMS MathSciNet review)

- D. Z. Djokovic, Discrete Math. 115, pp. 267-271 (1993), Williamson method fails for n = 35
- W. H. Holzmann, et al. Designs Codes Cryptogr. 46, pp. 343-352 (2008) Williamson method fails for n = 47, 53, 59

There are literally 100s of HM constructions ... They all suffer from two kinds of disadvantages:

- they produce a **sparse** set of orders
- they **fail** for specific parameter values

Opinion: The Hadamard conjecture is too general.

There is one particular construction that seems to be one of the most prominent candidates to furnish a proof of the Hadamard conjecture:

two circulant cores construction (2cc)

- 2cc introduces some **structure** into the more general Hadamard Conjecture. This structure is described in terms of two circulant matrices whose first rows have constant autocorrelation.
- 2cc does not fail for any value of the parameter, covers full range of multiples of 4.
- I. S. Kotsireas, J. Seberry et al. Hadamard ideals and Hadamard matrices with two circulant cores *European J. Combin.*, 27(5):658–668, 2006.
- I. S. Kotsireas, Structured Hadamard Conjecture Springer Proceedings in Mathematics & Statistics Volume 43, 2013, pp. 215–227 in: Number Theory and Related Areas Eds: J. M. Borwein, I. Shparlinski, and W. Zudilin
- 3. I. S. Kotsireas, A. Razoumov, work in progress, 2014, JPDC

Circulant matrices Periodic Autocorrelation Function

A $n \times n$ matrix C(A) is called **circulant** if every row (except the first) is obtained by the previous row by a right cyclic shift by one.

 $C(A) = \begin{bmatrix} a_0 & a_1 & \dots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-3} & a_{n-2} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_2 & a_3 & \dots & a_0 & a_1 \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{bmatrix}$

The **periodic autocorrelation function (PAF)** of a finite sequence $A = [a_0, \ldots, a_{n-1}]$ is defined as: (k + s is taken modulo n)

$$P_A(s) = \sum_{k=0}^{n-1} a_k a_{k+s}, \ s = 0, \dots, n-1,$$

PAF properties

• Consider a finite sequence $A = [a_0, \ldots, a_{n-1}]$ of length n and the circulant matrix C(A) whose first row is equal to A.

Then $P_A(i)$ is the inner product of the first row of C(A) and the i + 1 row of C(A).

• symmetry property

$$P_A(s) = P_A(n-s), s = 1, \dots, n-1.$$

• 2nd ESF property

$$P_A(1) + P_A(2) + \ldots + P_A(n-1) = 2e_2(a_0, \ldots, a_{n-1})$$

2cc construction for Hadamard matrices

Let ℓ be an odd integer, such that $\ell > 1$ and set $m = \frac{\ell-1}{2}$. If there exist two ± 1 sequences $A = [a_0, \ldots, a_{\ell-1}]$ and $B = [b_0, \ldots, b_{\ell-1}]$ of length ℓ each, such that

$$P_A(s) + P_B(s) = -2$$
, for $s = 1, \dots, m$

then \exists a 2cc Hadamard matrix of order $2\ell + 2$ given by

Example: Let $\ell = 5$, m = 2 and consider the two sequences A = [1, 1, -1, -1, 1]and B = [-1, 1, -1, 1, 1]. Then we have that

s	$P_A(s)$	$P_B(s)$	$P_A(s) + P_B(s)$
1	1	-3	-2
2	-3	1	-2

and the corresponding 2cc matrix H_{12} is a 12×12 Hadamard matrix. Necessary condition:

$$(a_0 + \dots + a_{\ell-1})^2 + (b_0 + \dots + b_{\ell-1})^2 = 2$$

w.l.o.g. $a_0 + \cdots + a_{\ell-1} = 1$ and $b_0 + \cdots + b_{\ell-1} = 1$.

ℓ	order of $H_{2\ell+2}$	total number of matrices		
3	8	9	$= 1 \times 3^2$	
5	12	50	$= 2 \times 5^2$	
7	16	196	$= 4 \times 7^2$	
9	20	972	$= 12 \times 9^2$	
11	24	2,904	$= 24 \times 11^2$	exhaustive
13	28	7,098	$= 42 \times 13^2$	searches
15	32	38,700	$= 172 \times 15^2$	for 2cc
17	36	93,058	$= 322 \times 17^2$	Hadamard
19	40	161,728	$= 448 \times 19^2$	matrices
21	44	433,944	$= 984 \times 21^2$	
23	48	1,235,744	$= 2,336 \times 23^2$	
25	52	2,075,000	$= 3,320 \times 25^2$	
27	56	5,353,776	$= 7,344 \times 27^2$	
29	60	12,401,386	$= 14,746 \times 29^2$	
31	64	22,472,024	$= 23,384 \times 31^2$	J

Commutative Algebra formulation of the structured Hadamard conjecture

Consider the polynomial ring in 2ℓ variables $a_0, \ldots, a_{\ell-1}, b_0, \ldots, b_{\ell-1}$.

Set $m = \frac{\ell - 1}{2}$.

Consider the ideal defined by $m + 2 + 2\ell$ linear and quadratic polynomials

$$\mathcal{H}_{\ell} = \langle P_A(1) + P_B(1) + 2, \dots, P_A(m) + P_B(m) + 2, \\ a_0 + \dots + a_{\ell-1} - 1, b_0 + \dots + b_{\ell-1} - 1, \\ a_0^2 - 1, \dots, a_{\ell-1}^2 - 1, b_0^2 - 1, \dots, b_{\ell-1}^2 - 1 \rangle$$

The structured Hadamard conjecture amounts in proving that the ideal \mathcal{H}_{ℓ} is non-empty, for all odd $\ell > 1$.

Exact formulas for # of Hadamard matrices of order n

1. Shalom Eliahou

Enumerative combinatorics and coding theory **Enseign. Math.** (2), 40(1-2):171–185, 1994.

- Warwick de Launey and Daniel A. Levin A Fourier-analytic approach to counting partial Hadamard matrices Cryptogr. Commun., 2(2):307–334, 2010.
- The Eliahou formula uses Coding Theory.
- The de Launey-Levin formula uses multidimensional integrals associated with lattice walks.
- Both formulas require a certain amount of technical definitions before they can be stated in a self-contained manner and are difficult (practically impossible) to evaluate for large *n*.
- It is far from evident why these two formulae (should) agree for all $n \equiv 0 \pmod{4}$.

Eliahou Theory

Fundamental link between the number of solutions of polynomial equations (in binary variables) with positive integer coefficients and certain associated binary linear codes and their weight enumerators.

- Let $f(x_1, \ldots, x_n)$ be a polynomial with non-negative integer coefficients. Then the enumeration of the values assumed by f on the boolean cube $\{-1, +1\}^n$ is equivalent to the enumeration of the weights in an associated binary linear code L_f .
- This correspondence in conjunction with the MacWilliams identity is used to enumerate Hadamard matrices of fixed order.
- Question: Is there a $p \in \{-1, +1\}^n$ s.t. f(p) = 0 ?
- How many such binary zeros does f admit?
- The value enumerator of f is the Laurent polynomial in T, T^{-1} :

$$V_f(T) = \sum_{p \in \{-1,+1\}^n} T^{f(p)}$$

• The coefficient of T^u in $V_f(T)$ is the # binary points p s.t. $f(p) = u, u \in Z$.

- w.l.o.g. we can consider polynomials *f* that are composed of **square-free** monomials only.
- removing squares does not alter the value of $f: x^2y y$ takes the constant value 0
- Let M_n denote the set of square-free monomials in the *n* variables x_1, \ldots, x_n .
- Let f be decomposed as $f = u_1 + \cdots + u_N$ with monomials $u_i \in M_n, i = 1, \ldots, N$. The monomials u_i need not be distinct and they can be equal to 1.
- Associate with f the $n \times N$ matrix $\Phi_f = (\Phi_{ij})$ over F_2 defined by

$$\Phi_{ij} = \begin{cases} 1, \text{if } x_i \text{ divides } u_j \\ 0, \text{otherwise} \end{cases}$$

- Define L_f to be the binary linear code generated by the *n* rows of the matrix Φ_f .
- The dual code $K_f = L_f^{\perp}$ admits Φ_f as a parity check matrix.
- Alternative description of the code L_f: with a p ∈ {-1,+1}ⁿ we associate:
 (1) a subset v_f(p) ⊂ {1,...,N} defined as: v_f(p) = {i ∈ [1,...,n] | u_i(p) = -1}
 (2) a codeword c_f(p) in F₂^N defined as: c_f(p) = ∑_{i∈v_f(p)} where E₁,..., E_N is the standard basis of F₂^N.

• This defines a **MAP** (group homomorphism) $c_f : \{-1, +1\}^n \to F_2^N$ with properties:

$$Im(c_f) = L_f$$
 $Ker(c_f) = \{p \mid f(p) = N\}$ $f(p) = N - 2 \mid c(p)$

• Theorem: (the weight enumerator of f determines the value enumerator of f)

$$V_f(T) = 2^{n - \dim L_f} T^N P_L(1/T^2)$$

• For every $u \in Z$, the **binary fiber** of u is defined as

$$f^{-1}(u) = \{p \in \{-1, +1\}^n | f(p) = u\}.$$

• Eliahou theory furnishes a way to compute the cardinality of the binary fiber, $\forall u \in Z$. **Theorem:**

$$|f^{-1}(u)| = 2^{n-\dim L_f} \cdot \text{ coefficient of } (XY)^{(N-u)/2} \text{ in the weight enumerator of } L_f$$

Note that we make use of the **bivariate** weight enumerator of L_f .

Many (but not all) combinatorial objects that are defined via $\{-1, +1\}$ sequences of constant autocorrelation can be defined as solutions of systems of polynomial equations $f_1(x_i) = \cdots = f_k(x_i) = 0$ over the boolean cube, which can be reduced to one equation $f = f_1^2 + \ldots + f_k^2$.

Eliahou Theory for 2cc HMs

Set
$$f_H = \sum_{s=1}^{m} (P_A(s) + P_B(s) + 2)^2$$
, $m = \frac{\ell - 1}{2}$ and compute the cardinality of the

binary fiber of 0, for f_H (polynomial in 2ℓ variables a_i, b_i).

Example:
$$\ell = 3, n = 2\ell = 6, m = 1,$$

 $f_H = (P_A(1) + P_B(1) + 2)^2 = (a_1a_2 + a_2a_3 + a_3a_1 + b_1b_2 + b_2b_3 + b_3b_1 + 2)^2$
 $f_H = 5 + 3(P_A(1) + P_B(1)) + P_A(1)P_B(1)$
which implies that f_H has $N = 5 + 3 \cdot 6 + 9 = 32$ and the associated 6×32 matrix Φ_{f_H} is

Let L_{f_H} denote the binary linear code generated by the 6 rows of the matrix Φ_{f_H} . The bivariate weight enumerator of the binary linear code L_{f_H} can be computed with Magma:

$$X^{32} + 6X^{20}Y^{12} + 9X^{16}Y^{16}.$$

The dimension of the binary linear code L_{f_H} can also be computed in Magma and is equal to 4.

$$|f^{-1}(0)| = 2^{n-\dim L_{f_H}} \cdot \text{ coefficient of } (XY)^{N/2} \text{ in the weight enumerator of } L_{f_H} = 2^{6-4} \cdot 9 = 4 \cdot 9 = 36$$

which means that the equation $f_H = 0$ has 36 solutions in $\{-1, +1\}^6$.

we constructed the codes L_{f_H} and computed their weight enumerators for $\ell = 3, 5, 7, 9, 11, 13, 15, 17, 19$ using Magma.

ℓ	$n(=2\ell)$	N	$\dim L_{f_H}$	coeff. of $X^{N/2}Y^{N/2}$ in the weight enum. of L_{f_H}
3	6	32	4	9
5	10	144	8	50
7	14	384	12	196
9	18	800	16	972
11	22	1440	20	2,904
13	26	2352	24	7,098
15	30	3584	28	38,700
17	34	5184	32	93,058
19	38	7200	36	161,728

Table 1: Eliahou theory results for Hadamard matrices with two circulant cores

Coding Theory formulation of the structured Hadamard conjecture

For all odd $\ell > 1$, set $n = 2\ell, m = \frac{\ell - 1}{2}$ and form

$$f_H = \sum_{s=1}^{m} (P_A(s) + P_B(s) + 2)^2$$

Reduce all the squares in f_H , i.e. compute N

Form the $n \times N$ matrix Φ_{f_H} and consider the binary linear code L_{f_H} it generates

Prove that dim $L_{f_H} = 2\ell - 2$

Prove that there are codewords of weight N/2 in L_{f_H}