Experimenting with Permutation Wordle Experimental Math Seminar 5/1

Aurora Hiveley

Department of Mathematics Rutgers University

Permutation Wordle

- **1** I'm thinking of $\pi \in \mathcal{S}_n$
- **2** Your goal: guess π in as few guesses as possible
- S After each guess, I will tell you which indices (if any) are correct
- The game ends when you have guessed my permutation

Example

$$\gamma_1 = 12345 \quad \begin{cases} \mathcal{I}_1 = \{1,3,4,5\} \\ \mathcal{J}_1 = \{2\} \end{cases}$$

$$\gamma_2 = 52134 egin{array}{cc} \mathcal{I}_2 = \{1,3,5\} \ \mathcal{J}_2 = \{2,4\} \end{array}$$

$$\gamma_3 =$$
 42531 $\begin{cases} \mathcal{I}_3 = \emptyset \\ \mathcal{J}_3 = \{1, 2, 3, 4, 5\} \end{cases}$

Cyclic Shift Conjecture

Def. In cyclic shift (abbreviated CS): • $\gamma_{k+1}[j_a] = \gamma_k[j_a]$ for $j_a \in \{j_1, \dots, j_{|\mathcal{J}_k|}\} = \mathcal{J}_k$

•
$$\gamma_{k+1}[i_b] = \gamma_k[i_{b-1}]$$
 for $i_b \in \{i_1, \dots, i_{|\mathcal{I}_k|}\} = \mathcal{I}_k$

Example.

Conjecture. *CS* attains the maximal probability of success in *r* guesses **Alt:** *CS* has the smallest average number of guesses for $\pi \in S_n$

Strategy Formalization

- $S := [S_1, S_2, \dots, S_n]$ where $S_i \in S_i$ for all $i \in [n]$
- Generate γ_{k+1} from γ_k using $S[|\mathcal{I}_k|] = S_{|\mathcal{I}_k|}$

Example:

- $\gamma_2=5\mathbf{2}1\mathbf{3}4$, $\mathcal{I}_2=\{1,3,5\}$ \implies use $S[3]\in\mathcal{S}_3$
- If S[3] = 231, then $514 \mapsto 451$
- γ₃ = 42531

Alternative:

• If S[3] = 132, then $514 \mapsto 541$

• $\gamma_3 = 52431$

Cyclic Shift & Other Strategies

Cyclic Shifts

$$CS := [[1], [2, 1], [2, 3, 1], \dots, [2, 3, \dots, n, 1]]$$

$$CS' := [[1], [2, 1], [3, 1, 2], \dots, [n, 1, 2, \dots, n-1]]$$

Cyclic Strategies:

$$S := [C_1, C_2, C_3, \dots, C_n]$$
 where C_i cyclic perm of $[i]$
 $\implies S := [[1], [2, 1], C_3, \dots, C_n]$
 $\implies C_3 = [2, 3, 1]$ or $[3, 1, 2]$

Motivation:

- No fixed points
- Smaller scope
- Easier to generate/analyze, recursive patterns

Later: $S := [D_1, D_2, D_3, \dots, D_n]$ where $D_i \in Der(i)$

Generating Functions

 $f_S(x) = \sum_{m \ge 1} a_m x^m$ where $a_m = \# \pi \in S_n$ guessed in *m* guesses by strategy *S*

Example: S = [[1], [2, 1], [2, 3, 1]] has $f_S(x) = x + 4x^2 + x^3$

Remarks:

- For any S, $coeff(f_S(x),1) = 1$ (trivial perm.)
- Maximum degree not fixed (bounded?)
- Coeffs of $f_{CS}(x)$ are Eulerian numbers! (Kutin-Smithline)

Excedances & Eulerian Numbers

Def.
$$Exc(\pi) = \{i \mid \pi(i) > i\}$$

Examples:

$$\pi = 132 \implies \mathsf{Exc}(\pi) = \{2\}$$

$$\pi = 231 \implies \mathsf{Exc}(\pi) = \{1, 2\}$$

Claim (Kutin-Smithline)

CS guesses π in $1 + |Exc(\pi)|$ guesses

★
$$A(n,k) = \#\pi \in S_n$$
 s.t. $|\mathsf{Exc}(\pi)| = k$

Proof.

Omitted for time (see Kutin-Smithline Section 3)

 $\begin{aligned} \mathsf{CSInd} &:= [[1], [2, 1], [2, 3, 1], \dots, [2, 3, \dots, n-1, 1], d] \\ &\hookrightarrow d \in \mathit{Der}(n) \end{aligned}$

Test Performance:

- $\pi \in Der(n)$
- Stop when $\mathcal{J} \neq \emptyset$
- **Q**: How long does it take before something is correct? How many correct indices? On average?
- A: Surprisingly, CSInd(d) for all d is the same...

Inductive Strategy Example

Derangement	S[n] := [2, 3, 4, 1]	S[n] := [2, 1, 4, 3]
	$\gamma_2 = [4, 1, 2, 3]$	$\gamma_2 = [2, 1, 4, 3]$
[2, 1, 4, 3]	{2,4}	$\{1, 2, 3, 4\}$
[2, 3, 4, 1]	Ø	$\{1, 3\}$
[2, 4, 1, 3]	{4}	$\{1,4\}$
[3, 1, 4, 2]	{2}	{2,3}
[3, 4, 1, 2]	Ø	Ø
[3, 4, 2, 1]	{3}	Ø
[4, 1, 2, 3]	$\{1, 2, 3, 4\}$	{2,4}
[4, 3, 1, 2]	{1}	Ø
[4, 3, 2, 1]	$\{1, 3\}$	Ø
Total	12	12
Average	4/3	4/3

Claim. Average over $\pi \in Der(n)$ of $|\mathcal{J}_2| = \frac{n}{n-1}$

One (Mandatory) Proof

Claim. For any $d \in Der(n)$, $\sum_{\pi \in D_n} |\{i \mid \pi(i) = \delta(i)\}| = \frac{n}{n-1} \cdot D_n$ \bigstar Note: $\delta = d^{-1} = (S[n])^{-1} = \gamma_2$

Proof.

Equivalent to counting matching entries. Recall $D_n = (n-1)(D_{n-1} + D_{n-2})$.

$$\sum_{\pi \in D_n} |\{i \mid \pi(i) = \delta(i)\}| = \sum_{i=1}^n |\{\pi \in D_n \mid \pi(i) = \delta(i)\}|$$
$$= \sum_{i=1}^n (D_{n-1} + D_{n-2})$$
$$= n \cdot (D_{n-1} + D_{n-2})$$
$$= n \cdot \left(\frac{D_n}{n-1}\right)$$

What's Next?

- Relationships between components?
- Duplicated information \implies BAD! Example: $S[4] = [2, 1, 4, 3], \pi = 3421$

$$\begin{array}{ll} \gamma_1 = [1,2,3,4] & \mathcal{J}_1 = \emptyset \\ \gamma_2 = [2,1,4,3] & \mathcal{J}_2 = \emptyset \\ \gamma_3 = [1,2,3,4] & \mathcal{J}_3 = \emptyset \\ \gamma_4 = [2,1,4,3] & \mathcal{J}_4 = \emptyset \\ \vdots & \vdots \end{array}$$

Generating Function Observations:

- All strategies have the same coeffs for x (duh) and x^2
- $coeff(f_{CS}(x), 3)$ is maximum over all strategies

BLUESTSTRANDCHANTSTHANKS

Rutgers University