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Old Time Games

The 15 Puzzle (also called Gem Puzzle, Boss Puzzle, Game of Fifteen,
Mystic Square), Taquin (Teasing) in French, is a game dating to 1874.

The 15 Puzzle
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The 14-15 Puzzle (Sam Loyd, 1880s)

Sam Loyd: Solve the puzzle and win $1000!!!
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Solution to the 15 Puzzle

It’s not hard to see that the set of reachable configurations is given by
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Solution to the 15 Puzzle

It’s not hard to see that the set of reachable configurations is given by

parity of permutation = parity of taxicab distance of the 16.

Optimal solutions can vary from 0 to 80 single-tile moves.
There are 17 configurations that require 80 moves!
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The 14-15 Puzzle (Sam Loyd, 1880s)

Sam Loyd: Solve the puzzle and win $1000... (or maybe not! :P)
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Some Motivating Problems

Jeu de Taquin

Origin of our Young tableau reconstruction problem:

1 Reconstruction problem of partitions of n from k-minors

2 Recovery of characters of Sn by restriction to subgroups
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Definition of Partition

For n ∈ Z>0, a partition of n is a weakly decreasing finite sequence

λ = (λ1, . . . , λm)

of positive integers such that
∑

i λi = n. We call n the size of λ.

For example,
λ = (5, 5, 4, 2, 1, 1)

is a partition of size 18.
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Definition of Young Diagram

The Young diagram of shape λ is a left-aligned array of cells with λi boxes
in the ith row, counting from the top.

As an example, the Young diagram of shape (5, 5, 4, 2, 1, 1) is:

Young diagram of shape (5, 5, 4, 2, 1, 1)
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Definition of Standard Young Tableau

Let λ be a partition of n. A standard Young tableau of shape λ (and size n)
is obtained from the Young diagram of λ by

1 filling the n cells with distinct elements of [1, n] = {1, 2, 3, . . . , n}
2 so that entries in each row and column are strictly increasing.

We write YT(n) for the set of standard Young tableaux of size n.

1 2 3 4 5

6 7 8 9 18

10 11 12 17

13 16

14

15

A standard Young tableau of shape (5, 5, 4, 2, 1, 1)
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Definition of Outer Corner

Given a tableau T ∈ YT(n), an outer corner (OC for short) is a cell of T
which is both the right end of a row and the bottom end of a column of T .

1 2 3 4 5

6 7 8 9 18

10 11 12 17

13 16

14

15
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Definition of Outer Corner

Given a tableau T ∈ YT(n), an outer corner (OC for short) is a cell of T
which is both the right end of a row and the bottom end of a column of T .

1 2 3 4 5

6 7 8 9 18

10 11 12 17

13 16

14

15

The OCs are 15, 16, 17, and 18
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Why All The Fuss?

There are many scenarios and variants where:

1 Young diagrams (shapes) ↔ irreducible representations

2 standard Young tableau (filled shapes) ↔ basis elements

Cleanest example is

irreducible representations of Sn ↔ partitions of n.
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Reconstruction from Restriction?

The branching law for restricting from

Sn → Sn−1

is given by all possible ways of removing an OC.

→ + +

Restriction from S9 → S8

Question: When does the restriction determine the original representation?

Erickson, Herden, Meddaugh, Sepanski, . . . (Baylor)Young Tableaux Via Minors February 2025 15 / 35



Reconstruction from Restriction?

The branching law for restricting from

Sn → Sn−1

is given by all possible ways of removing an OC.

→ + +

Restriction from S9 → S8

Question: When does the restriction determine the original representation?

Erickson, Herden, Meddaugh, Sepanski, . . . (Baylor)Young Tableaux Via Minors February 2025 15 / 35



Deleting a Cell

There is a natural way of deleting cells from a tableau, T , using the
process known as jeu de taquin, introduced by Schützenberger in 1977.
If m is the deleted cell, write T −m for the result.

To describe the process, begin by deleting m, leaving an empty space.
Next, iterate the following procedure until it terminates:

if there exists a cell either directly to the right or directly below the
empty space, slide the cell with the smaller entry into the position of
the empty space.

This terminates when there are no cells directly to the right or below the
current empty space. Finally:

subtract 1 from each entry larger than m.
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Jeu de Taquin Example

T = 1 2 3 4 5

6 7 8 9 16

10 11 12 15

13 14

: 1 2 3 4 5

6 7 9 16

10 11 12 15

13 14

→

1 2 3 4 5

6 7 9 16

10 11 12 15

13 14

→ 1 2 3 4 5

6 7 9 15 16

10 11 12

13 14

→ 1 2 3 4 5

6 7 8 14 15

9 10 11

12 13

T − 8 via jeu de taquin
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The Reconstructibility Question

For T ∈ YT(n), a k-minor of T is a tableau formed by iteratively deleting
k cells from T via jeu de taquin. We write Mk(T ) for the set of all
k-minors of T and mMk(T ) for the multiset of all k-minors of T .

The problem is this: given k, what are the values of n such that every
tableau of size n can be reconstructed from its set/multiset of k-minors?

Known results:

Monks (2009): the shape of T ∈ YT(n) can be recovered from the
shapes of the tableaux in Mk(T ) when

n ≥ k2 + 2k .

Cain, Lehtonen (2022): for k = 1, every tableau of size n can be
reconstructed from its set of 1-minors when n ≥ 5.
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Our Main Results

Theorem

Let n ∈ Z>0 and T ∈ YT(n). Then M2(T ) determines T when n ≥ 8.

This is sharp:

1 2 5 7

3 4 6

1 3 5 7

2 4 6

Tableaux with identical sets M2(T )

Theorem

Let T ∈ YT(n). The multiset mMk(T ) determines T when

n >
k3 + 2k2

ln 2
+

k2

2
+ 2k − 1 +

ln 2

12
(k + 2)

as a cubic lower bound.
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Removal of Boxes

Let T ∈ YT(n). Write
Rn T

for the tableau in YT(n − 1) obtained by removing the cell with label n
from T .

More generally for d ∈ [1, n], write R[d ,n] T for the tableau

Rd(Rd+1(. . . (Rn T ) . . .)).

Lemma

Let n, k ∈ Z>0, let d ∈ [k + 1, n], and let T ∈ YT(n). Then

Mk(R[d ,n] T ) = R[d−k,n−k]Mk(T ).
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Many Entries Determined by Removal of Boxes

Lemma

Let T ∈ YT(n). If
n ≥ k2 + 2k + 1,

then the location inTof each entry in [(k + 1)2,n] is determined by Mk(T ).

Idea: recall the shape of T is determined by the shapes in Mk(T ) when
n ≥ k2 + 2k. When n − 1 ≥ k2 + 2k , the shape of Rn T is determined by
Mk(Rn T ) which, in turn, is the same as Rn−k Mk(T ).
Since taking the complement of the shape of Rn T in the shape of T gives
us the location of n in T , it follows that Mk(T ) determines the location of
n when n ≥ k2 + 2k + 1 . . .
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General Multiset Reconstruction Lower Bound

Theorem

Let T ∈ YT(n). The multiset mMk(T ) determines T when

n >
k3 + 2k2

ln 2
+

k2

2
+ 2k − 1 +

ln 2

12
(k + 2)

as a cubic lower bound.

Idea: it remains to find the location of 1, 2, . . . , k2 + 2k. For m in this
range, its location may be identified as the most frequent location of m in
the multiset of k-minors when there are enough larger elements, i.e.,(

n −m

k

)
>

1

2

(
n

k

)
.
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Conjectural Multiset Bound

Conjecture

Let T ∈ YT(n), where
n ≥ k + 4.

Then mMk(T ) determines T .

Recall

Theorem

Let n ∈ Z>0 and T ∈ YT(n). Then M2(T ) determines T when n ≥ 8.
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Improved Location of n

We know the location of n when n ≥ k2 + 2k + 1. In fact, we need a bit
more.

Lemma

Let k ≥ 2 and T ∈ YT(n). Then Mk(T ) determines the location of n
when

n ≥ k2 + 2k .

This result proceeds in stages.
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At Most One Small OC

Lemma

Let T ∈ YT(n) with OCs c1, . . . , cℓ. Suppose |Out(cj)| ≤ k for at most
one OC. Then the location of n is recoverable from Mk(T ).

If c is an OC of T , we define its outer area, denoted by Out(c), to be the
collection of all cells of T that are to the right of c or below c .

c

Out(c)
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At Most One Small OC

Idea: if c contains entry n, there exist tableaux in Mk(T ) where c survives
with entry n − k.

c

Out(c)
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Only One With Multiple Small OCs

If at least two OCs cj have |Out(cj)| ≤ k , it turns out that the
configuration for T is very limited, at least when n ≥ k2 +2k , which is the
lower bound for recovering the shape of T from the shapes of Mk(T ).

Lemma

Let T ∈ YT(n) with OCs c1, . . . , cℓ. Suppose |Out(cj)| ≤ k for at least
two OCs. Then |T | ≤ k2 + 2k . Equality holds if and only if T has shape
((k + 1)k , k), i.e., the shape of a (k + 1)× (k + 1) square with the
lower-right cell removed.

Largest shape with multiple OCs such that |Out(cj)| ≤ k, where k = 3
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Algorithm for Multiple Small OCs

d

c

−→
d

c

d

c

−→

d

c
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Determination of n for the Bad Shape

Theorem

Let k ≥ 2, n = (k + 1)2 − 1, and T ∈ YT(n) with shape ((k + 1)k , k).
Then Mk(T ) determines the location of n.

?

?

?
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Down to 8

Recall that we want to show:

Theorem

Let T ∈ YT(n). Then M2(T ) determines T when n ≥ 8.

Idea: we know that M2(T ) determines the shape of T and location of
[9, n]. Thus, only the location of [1, 8] remains to be determined. As

M2(R[9,n]T ) = R[7,n−2]M2(T ),

it suffices to show the following:

Lemma

Let T ∈ YT(8). Then M2(T ) determines T .
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Down to 6

We can significantly reduce the number of cases to check using a more
refined determination of shape:

Lemma (Monks, 09)

Let T ∈ YT(n). Then M2(T ) determines the shape of T if n cannot be
expressed as n = (a+ 1)b + c − 1 for a, b, c ∈ Z>0 satisfying

a ≤ c ≤ 2 and b + (c mod a) ≤ 2.

From this, we see the shape of T is recoverable from M2(T ) when n = 6.
Therefore M2(R[7,8]T ) determines the shape of

T ′ = R[7,8]T .

Since 7 and 8 are in the complement of T ′ and the location of 8 is known,
the location of 7 in T is also determined.
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6 and Below... and Its 6 Cases!

Thus it remains to show that M2(T ) determines T ′ = R[7,8]T . Recall that
the 2-minors of T ′ are M2(T

′) = R[5,6]M2(T ).

Up to symmetry, there are 6 shapes of T ′ to consider:

1 (6)

2 (5, 1)

3 (4, 1, 1)

4 (4, 2)

5 (3, 3)

6 (3, 2, 1)

The first three can be done simultaneously, while the last three must be
analyzed individually.
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Conjectural General Bound

Conjecture

Let k ≥ 2. Let T ∈ YT(n), where n ≥ k2 + 2k.Then Mk(T ) determines T .
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The End

Thank you!

Sam Loyd: Find the 5-pointed star!
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