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A note on p-adic series. Example 1.

The identity
x+x2+x3+x o =x(1-x)7 x| <1,
has sense in the reals. Replacing x with p (a prime), we have
p+p+p+pt+-=pl—-p)t,
which has no sense in the reals, but has sense in the p-adics because
p+p’+p 4+ +p =p(l—p)" (mod p*Th), k=1

For p = 2 (2-adic), we have 0-20 +1-21 +1.2241.23 ... = -2,
Hence ...11111110 = —2, and —2 + 2 = 0. Indeed

...111111111110 + ...000000000010 = ...000000000000 2-adic.
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A note on p-adic series. Example 2.

Let f(n) = (n+1)72. It is easy to prove that

22 —f(n+x)) = 2((3)x% — 3¢(4)x* +

N—-1
Denote  S(N) = N*>>" f(n).
n=0

Let x = vp. We conjecture the following p-adic identity
S(vp) =S(v) + 2Cp(3)1/3p3 + 4<p(5)1/5p5 +e

Go(k) = 25 = (1 k—p) (mod p).

B n—1 n—1
_ Boipmny1-k ;P n S
Cp(k)_—k_1 (1 k—l) (mod p"), n>2.
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Rational Ramanujan series for 7=
We can write the rational Ramanujan-like series as

T (s)n Y o= xn VD™
ZR Z H (1)n kz_:oakn 2z :T,

n=0 \i=0

where zj is a rational, ag, a1, ..., am, are positive rationals, and x the
discriminant of a certain quadratic field (imaginary or real), which
is an integer. Below, we show an example

= (1)), () a1t
Z 2 e 2q2n ~2on sin A0 (436800 +20632n° 443400 +466n4-21) =

n=

conjectured by Jim Cullen, and recently proved by Kam Cheong Au,
using the WZ method.
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Bilateral Ramanujan series 5

We define

> > _inx TT COSTX — COS TSk
= (Z R(n) — Z R(n+x)> e H T
n=0

n=—o0 Sk

If s, is in the Ramanujan series then 1 — s also is. As the function
f(x) is periodic and holomorphic it admits a Fourier expansion. In
addition f(x) = O(eQmH)“)“’"(X)‘, and so it terminates at k = m:

flx)= Y—F"= X Z ay(cos 2mkx — 1) + By sin 2mkx) ,
k=1

where ay and [y are the coefficients. We will denote the extended
series to the right and to the left by

o0

=Y R(n+x), R=)=D R(-n+x).
n=0 n=1
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Getting the parameters

As the bilateral identity holds for all values of x, we can use it to get
approximations of the m + 1 values of ay, the m values of oy and
the m values of B. For that aim we construct a linear system of
3m + 1 equations. Unfortunately, as we cannot solve the system in
an exact way due to the infinite series, we only get approximations.
Later, we will see that the p-adic mate of the bilateral series comes
in our help allowing to obtain the exact values. Unfortunately we
could not prove the p-adic version, and so it is a conjecture up to
now. The sum to the left is equal to

Re(~) = 2m+12 H 1) Zak (—n -+ x)k-2m=1 gontx

n110 -

If the values of x that we take are very small then the sum to the
left is very small as well, and we can ignore it.
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Bilateral series expansion

Developping the sum to the left side, we have
—1)ym
ZRn) ZRn—i—x VASRILOS
r(z)?m

; 1—cosmsy  ~— _
x el cos2mkx — 1 sin 27k
ls_k[coswx—coswsk kz_:l(ak( mThx — 1) + Sy sin 21kx)

+ (A4 Bx+ Cx® + - )x®™ x| < 1.

We conjecture that A is of the form A = rL,(m + 1), where r is a
rational number.
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Archimedean and p-adic

Denote
o (TT WL\ S (17600 ) =,
S =N (.H (s,-)y> 2 (.H (1)n> 2 k',
i=0 n=0 \i=0 k=0
We have
nz_% R(n) = \/(;:RmX = \/(r_(z)),zsf, (Ramanujan series).

If Ry(—) is the extended series to the left, we have
X"MR (=) = rLy(m + 1)x™ 4 Bx™F2

p-adic mate theorem (G.): For v =1,2,3,---:, we have
S(yp) = (ij> S(V)'f‘er,p(m—f‘1)Vm+1pm+1+Bpl/m+2pm+2+' »
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Proof of the p-adic mate theorem (G.)

Denote
S(X) = XMz (H 1)X> (ZR(n)— 3 R(n+X)> .
:0 ’ X n=0 n=-—00 P

The function g(x) = S(xp)/S(x) is periodic of period x = 1 and
holomorphic. Hence, it admits a p-adic Fourier expansion

S(xp) <x> " |
=|=]+ ak(cos, 2mkx — 1) + Bi sing 2mkx) .
S(X) p ;—( ( P ) P )
Replacing x with v =1,2,3, ..., we see that

S(yp) = (ij> S(V)'f‘er,p(m—f‘1)Vm+1pm+1+Bpl/m+2pm+2+'--
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Supercongruences for rational Ramanujan series 10
The p-adic mate theorem (G.) implies the following supercongru-

ences for v = 1,2, 3, ... conjectured in 2008 for » = 1 by Wadim
Zudilin:

S(vp) = S(v) <>;§> (mod p™1), v =1,2,3,...,

and also the following supercongruences for v = 1,2,3,..., conjec-
tured for v = 1 in 2018 by Yue Zhao:

S(vp) = (i) SW) + rLy p(m+ 1™ p™ L (mod p™ ).

Other theorems (G.): Let h(v) = S(vp). We have

(1) h(1va) = h(v1)h(va) mod p™ 1, ged(vi,10) =1,
(2) S(1p)S(v2) = S(v2p)S(11) mod p™ 1.
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Example 1

11

Let
—1\ 7 (1)®
sy =2 () é%
We have

8
ZR =3

the extended series to the left

N1 (1y®
(2)
: E: 1 4n 20n +8n+1),

(Ramanujan series),

xR (=) =7-2%¢(3)x* + Bx* + Cx° + - - -,

and the p-adic expansions

S(vp) = S(v) +7-2°¢,(3)0°
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Example 1. Part 2. 12

We can combine S, and Sy, for eliminating the first term. We get

512
S(p) — 5=-5(2p) = O(p%),
99
In a smilar way, we obtain
1701 1197
= 145(2p) = — 4
55 O (P) +145(2p) = o0+ O(p%),

972S(p) + 1024S5(2p) = 1170 — 1701¢,(3)p° + O(p°).

and

1767133000 324010496000 717225984

10873020 ~P)+ 1600788249 ~\*P) ~ 1534825 > P)
163208757248
- LSBT S (4p) = ().

96994275

Jests Guillera Goyanes, University of Zaragoza, (SPAIN) Bilateral rational Ramanujan series and their p-adic mates



Example 2. 13

Let

8
N-1 /1 1 2 1 5 n
> 2 (2)n (3)n((]3-))?r71 (6) (6) (5418” +693n+29) <80]:;> .
We have

128 . .
ZR \[, (Ramanujan series),

The extended series to the left
x 2Ry (—) = 42000L5(3)x> + Bx* + Cx° + - - -,
and the p-adic expansions

5
S(vp) = <p> S(v) + 42000Ls ,1°p> + Bpv*p* +
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Example 3. 14

a1\ (1)]
S =+ () B0, 0

v

2 (D)I(L), (3), 43680n* + 20632n° + 434002 + 466n + 21
1)9 212n :

o0 oll

Z R(n) = —, (Ramanujan series),
7r

n=0

The extended series to the left
x*R(=) = —95232¢(5)x® + BxO + - - -,
and the following p-adic expansions:
S(vp) = S(v) — 95232C,(5)r°p° + BpOp0 + - |
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Example 4.

Boris Gourevitch's series: Let

2 n=0

N3\ 7Y 17N1 l
S(N):<64> i Zi

We have

15

() (168n°+-76n*+14n+1).

- 2
Z R(n) = % (Ramanujan series).

n=0
The extended series to the left

X 3R (=) = 1536L_4(4)x* + Bx® + -+,

and the following p-adic identities:

4
S(Vp) = (P) 5(1/) + 1536L747p(4)114p4 + pr5p5 4+
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Example 5. 16

Let
5 n
U(n) _ (%)n (%)n (%)n (%)n (%)n _55
(1) %
N_4 N—-1
V) U 5532n +5600n3 + 2275n% + 42n + 30)
n=0

The Ramanujan series Ry(+) is divergent because |zp| > 1, but
convergent by analytic continuation. We have Ro(+) = 1280/7*.
The Ramanujan series Ry(—) is convergent and equal to

o

Z 1 5532n* — 5600n° 4+ 227502 — 42n + 30
U(n) n°

The following p-adic identities hold:

= —380928((5).

S(vp) = S(v) — 380928, (5)v°p° + BprPp® + - -
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BACKWARDS 17

For computational motives, we redefine S(N) as
2m N—-1 /2m m
1 i)n n
- )5 ) s
v "/ k=0

i=0 n=0 \j=0
By doing it, Zudilin’s conjecture generalized reads as

S(vp) = <i§> S(v)p™ (mod p®™1), v =1,2,3,...,
and the symmetric p-adic theorem (G.) as
S(vp)S(1) — S(v)S(p) =0 (mod p>™1), v =1,2,3,....

In next examples using these kind of supercongruences, we recover
the parameters a, of the corresponding rational Ramanujan series.
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Examples using

Zudilin’s supercongruences generalized
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Example 1 19

We want to see that there is a series of the following form:

001
22

n=0 "

n

30+31n+32n2) t‘og7 x=1,

where ag, a1, a, tp are positive integers. Indeed, using the Wilf-
Zeilberger (WZ method) we proved that ag = 1,a; = 8,a, = 20.
Here, from

S(vp)—SW)p? =0 (mod p°), v=1,2,3,...,
and taking p =11, and v = 1,2, we get the linear system

103175a0 + 126304a; + 812132, =0 (mod 11°),
23608ag + 21777a; + 223192, =0 (mod 11°).
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Example 1 (Continuation) 20

Let ag = t. From the above equations, we obtain

66812987t — 954912252, =0 (mod 11*%),
35044211t — 95491225a; =0 (mod 11%).

Solving the equations taking into account that the inverse (mod 11%)
of 95491225 is 12252, we obtain

ap = —14621t (mod 11*) = 20t,
a; = —14633t (mod 11*) = 8t,

Hence, the solutions are of the following form:

ag=1t, a =8t, ap=20t.
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Example 2 21

We want to know if there is a series of the following form:

3 (3)n (3)s (3), (3), (3), (1)

(1)3 48"

n

(ao +ain+ 32n2) =1y

Y

n=0

with x = 1, and where ag, a1, a», to are positive integers. Using the
PSLQ algorithm we conjecture that ag = 5,a; = 63, a; = 252 and
to = 48. Here, from

S(vp)—SW)p? =0 (mod p°), v=1,2,3,...,
and taking p = 13, and v = 1,2, we get the linear system

155250a; + 1838a, + 32749030 = 0 (mod 13°),
304350a; 4 3292244, + 6767439 =0 (mod 13°).
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Example 2 (Continuation) 22

Let ag = 5t. From the above equations, we obtain

26628a; + 7535t =0 (mod 13%),
26628a, + 1579t =0 (mod 13%).

As the inverse (mod 13%) of 26628 is 9279, we obtain

ap = —28309t (mod 13*%) = 252t,
a; = —28498t (mod 13%) = 63t,

Hence, the solutions are: ag = 5t, a; = 63t, a» = 252t.
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Example 3 23

We want to know if there is a series of the following form:

00 1\7 n
3 1
2 Ei;%’ (m) (a0 +a1n -+ a2n” + a3n®) = to
n

n=0

]

7T3 9 X:_47

where ag, a1, az, as, tp are positive integers. Using the PSLQ algo-

rithm, we conjecture that ag = 1,a; = 14,a, = 76, a3 = 168 and
to = 16. Here, from

S(vp) — S(v) (‘I;‘) P =0 (modp’) v=102,...,

and taking p =11, and v = 1,2, 3, we get the equations

2078533a;+9963171a,411695266a3+16073136a0 = 0 (mod 117),
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Example 3 (Continuation) 24

12453192a; + 988367a, + 388303343 4 1408691329 =0 (mod 117),
17113786a; + 2247378a, + 4011161a3 4 701279629 =0  (mod 117).

Let ag = t. From the above equations, we obtain

78543854 + 34292502, + 19159030t = 0 (mod 11%),
3851936a; + 89618982, + 5481146t =0 (mod 11%).

Solving the equations, we obtain

ap = —11965t (mod 11%) = 14¢,
ap = —1255t (mod 11*) = 76t,
a3 = —14473t (mod 11*) = 168t.
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Examples using the

symmetric p-adic theorem (G.)
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Example 1 26

We want to know if there is a series of the following form:

o (1 1 3 —
Z (2)”5‘1‘2;(4)"71'”(30 +ain) = to\/?, X =-3,

n=0 n

where ag and aj are positive integers, and tg is a rational. Using the
theory of modular functions it was proved that agp = 3 and a; = 40.
Here, we will prove it from the theorem

S(vp)S(1) = S(v)S(p) =0 (mod p3), v=1,2,3,....

For that aim, we let ap = 3t, take p = 23, and use the equations
for v = 1,2, namely

4163a% + 9108a1t + 740635 =0 (mod 233),
7682a% + 2185a;t + 740623 =0 (mod 233).
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Example 1 (Continuation) 27

Substracting both equations and dividing by a;, we obtain
8648a; + 6923t (mod 23°%).
Simplifying by 23, we get
376a; + 301t (mod 232).

The inverse of 376 (mod 232) is 325. Therefore, multiplying by 325,
we see that
a1+ 489t =0 (mod 23?).

Hence
ap = —489t = 40t (mod 23?),

and the solution is ag = 3t and a; = 40¢t.
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Example 2 28

We want to know if there is a series of the following form:

), (3),

1\7
- (E)n(% n 1 2 3 4N
Z 5 12n(ao+aln+agn +azn® + agn”) =
n=0 (1)I7 2

VX
to——
T

where x is the character (an integer), ax are positive integers, and
tp is a rational. In 2010, Jim Cullen using PSLQ conjectured that
ag = 21,a; = 466, ap = 4340, a3 = 20632, a; = 43680 with xy =1
and ty = 2048. Here, we will prove it from the theorem

S(vp)S(1) = S(¥)S(p) =0 (mod p%), v=1,2,3,....

Indeed, let p =7 (a prime), and ap = 3t, a; = 466t, a, = 4340¢t,
and a3 = 20632t.
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Example 2 (Continuation) 29

Taking v = 2,3, we get the equations

2378530643 + 35827295a4t + 20891591t =0 (mod 7°),
255524443 + 35104587a4t + 18959962t = 0 (mod 7°).

From the above system we can eliminate a2, and we obtain
410780a4 + 2955113t =0 (mod 78).

The inverse of 410780 (mod 78) is 531586, and finally we obtain
ag = —5721121t = 43680t (mod 78),

which is the correct integer value of ay.
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| am very grateful to Wadim Zudilin for sharing several important
ideas on the p adics, and very specially for advising me to replace x
with p,2p,3p, ..., and not only with p.

THANK YOU.
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