Bilateral rational Ramanujan series and their p-adic mates

Jesús Guillera University of Zaragoza (Spain)

EXPERIMENTAL MATHEMATICS SEMINAR
 Rutgers University

February 29, 2024

A note on p-adic series. Example 1.

The identity

$$
x+x^{2}+x^{3}+x^{4}+\cdots=x(1-x)^{-1}, \quad|x|<1
$$

has sense in the reals. Replacing x with p (a prime), we have

$$
p+p^{2}+p^{3}+p^{4}+\cdots=p(1-p)^{-1}
$$

which has no sense in the reals, but has sense in the p-adics because

$$
p+p^{2}+p^{3}+\cdots+p^{k} \equiv p(1-p)^{-1} \quad\left(\bmod p^{k+1}\right), \quad k \geq 1 .
$$

For $p=2$ (2-adic), we have $0 \cdot 2^{0}+1 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3}+\cdots=-2$. Hence ... $11111110=-2$, and $-2+2=0$. Indeed

$$
\ldots 111111111110+\ldots 0000000000010=\ldots 000000000000 \quad \text { 2-adic. }
$$

A note on p-adic series. Example 2.

Let $f(n)=(n+1)^{-2}$. It is easy to prove that

$$
x^{2} \sum_{n=0}^{\infty}(f(n)-f(n+x))=2 \zeta(3) x^{3}-3 \zeta(4) x^{4}+\cdots
$$

Denote $\quad S(N)=N^{2} \sum_{n=0}^{N-1} f(n)$.
Let $x=\nu p$. We conjecture the following p -adic identity

$$
\begin{aligned}
& S(\nu p)=S(\nu)+2 \zeta_{p}(3) \nu^{3} p^{3}+4 \zeta_{p}(5) \nu^{5} p^{5}+\cdots \\
& \quad \zeta_{p}(k) \equiv \frac{B_{p-k}}{k}=\zeta(1+k-p) \quad(\bmod p) \\
& \quad \zeta_{p}(k) \equiv \frac{B_{p^{n-1}(p-1)+1-k}}{k-1}\left(1-\frac{p^{n-1}}{k-1}\right) \quad\left(\bmod p^{n}\right), \quad n \geq 2
\end{aligned}
$$

We can write the rational Ramanujan-like series as

$$
\sum_{n=0}^{\infty} R(n)=\sum_{n=0}^{\infty}\left(\prod_{i=0}^{2 m} \frac{\left(s_{i}\right)_{n}}{(1)_{n}}\right) \sum_{k=0}^{m} a_{k} n^{k} z_{0}^{n}=\frac{\sqrt{(-1)^{m} \chi}}{\pi^{m}}
$$

where z_{0} is a rational, $a_{0}, a_{1}, \ldots, a_{m}$ are positive rationals, and χ the discriminant of a certain quadratic field (imaginary or real), which is an integer. Below, we show an example
$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9} 2^{12 n}}\left(43680 n^{4}+20632 n^{3}+4340 n^{2}+466 n+21\right)=\frac{2^{11}}{\pi^{4}}$.
conjectured by Jim Cullen, and recently proved by Kam Cheong Au, using the WZ method.

Bilateral Ramanujan series

We define

$$
f(x)=\left(\sum_{n=0}^{\infty} R(n)-\sum_{n=-\infty}^{\infty} R(n+x)\right) e^{-i \pi x} \prod_{s_{k}} \frac{\cos \pi x-\cos \pi s_{k}}{1-\cos \pi s_{k}}
$$

If s_{k} is in the Ramanujan series then $1-s_{k}$ also is. As the function $f(x)$ is periodic and holomorphic it admits a Fourier expansion. In addition $f(x)=\mathcal{O}\left(e^{(2 m+1) \pi)|I m(x)|}\right.$, and so it terminates at $k=m$:

$$
f(x)=\frac{\sqrt{(-1)^{m} \chi}}{\pi^{m}} \sum_{k=1}^{m}\left(\alpha_{k}(\cos 2 \pi k x-1)+\beta_{k} \sin 2 \pi k x\right)
$$

where α_{k} and β_{k} are the coefficients. We will denote the extended series to the right and to the left by

$$
R_{x}(+)=\sum_{n=0}^{\infty} R(n+x), \quad R_{x}(-)=\sum_{n=1}^{\infty} R(-n+x) .
$$

Getting the parameters

As the bilateral identity holds for all values of x, we can use it to get approximations of the $m+1$ values of a_{k}, the m values of α_{k} and the m values of β_{k}. For that aim we construct a linear system of $3 m+1$ equations. Unfortunately, as we cannot solve the system in an exact way due to the infinite series, we only get approximations. Later, we will see that the p-adic mate of the bilateral series comes in our help allowing to obtain the exact values. Unfortunately we could not prove the p-adic version, and so it is a conjecture up to now. The sum to the left is equal to

$$
R_{x}(-)=x^{2 m+1} \sum_{n=1}^{\infty}\left(\prod_{i=0}^{2 m} \frac{(1)_{n-x}}{\left(s_{i}\right)_{n-x}}\right) \sum_{k=0}^{m} a_{k}(-n+x)^{k-2 m-1} z_{0}^{-n+x}
$$

If the values of x that we take are very small then the sum to the left is very small as well, and we can ignore it.

Developping the sum to the left side, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} R(n)-\sum_{n=0}^{\infty} R(n+x)=\frac{\sqrt{(-1)^{m} \chi}}{\Gamma\left(\frac{1}{2}\right)^{2 m}} \\
& \times e^{i \pi x} \prod_{s_{k}} \frac{1-\cos \pi s_{k}}{\cos \pi x-\cos \pi s_{k}} \sum_{k=1}^{m}\left(\alpha_{k}(\cos 2 \pi k x-1)+\beta_{k} \sin 2 \pi k x\right) \\
& \quad+\left(A+B x+C x^{2}+\cdots\right) x^{2 m+1}, \quad|x|<1
\end{aligned}
$$

We conjecture that A is of the form $A=r L_{\chi}(m+1)$, where r is a rational number.

Archimedean and p-adic

Denote

$$
S(N)=N^{-m} z_{0}^{-\nu}\left(\prod_{i=0}^{2 m} \frac{(1)_{\nu}}{\left(s_{i}\right)_{\nu}}\right) \sum_{n=0}^{N-1}\left(\prod_{i=0}^{2 m} \frac{\left(s_{i}\right)_{n}}{(1)_{n}}\right) \sum_{k=0}^{m} a_{k} n^{k} z_{0}^{n}
$$

We have

$$
\sum_{n=0}^{\infty} R(n)=\frac{\sqrt{(-1)^{m} \chi}}{\pi^{m}}=\sqrt{\frac{(-1)^{m} \chi}{\Gamma\left(\frac{1}{2}\right)^{4 m}}}, \quad \text { (Ramanujan series). }
$$

If $R_{x}(-)$ is the extended series to the left, we have

$$
x^{-m} R_{x}(-)=r L_{\chi}(m+1) x^{m+1}+B x^{m+2}+\cdots .
$$

p-adic mate theorem (G.): For $\nu=1,2,3, \cdots$, , we have

$$
S(\nu p)=\left(\frac{\chi}{p}\right) S(\nu)+r L_{\chi, p}(m+1) \nu^{m+1} p^{m+1}+B_{p} \nu^{m+2} p^{m+2}+\cdots
$$

Proof of the p-adic mate theorem (G.)

Denote

$$
S(X)=X^{-m} z_{0}^{-x}\left(\prod_{i=0}^{2 m} \frac{(1)_{x}}{\left(s_{i}\right)_{x}}\right)\left(\sum_{n=0}^{\infty} R(n)-\sum_{n=-\infty}^{\infty} R(n+X)\right)_{p}
$$

The function $g(x)=S(x p) / S(x)$ is periodic of period $x=1$ and holomorphic. Hence, it admits a p-adic Fourier expansion

$$
\frac{S(x p)}{S(x)}=\left(\frac{\chi}{p}\right)+\sum_{k=1}^{m}\left(\alpha_{k}\left(\cos _{p} 2 \pi k x-1\right)+\beta_{k} \sin _{p} 2 \pi k x\right) .
$$

Replacing x with $\nu=1,2,3, \ldots$, we see that

$$
S(\nu p)=\left(\frac{\chi}{p}\right) S(\nu)+r L_{\chi, p}(m+1) \nu^{m+1} p^{m+1}+B_{p} \nu^{m+2} p^{m+2}+\cdots .
$$

The p-adic mate theorem (G.) implies the following supercongruences for $\nu=1,2,3, \ldots$ conjectured in 2008 for $\nu=1$ by Wadim Zudilin:

$$
S(\nu p)=S(\nu)\left(\frac{\chi}{p}\right) \quad\left(\bmod p^{m+1}\right), \quad \nu=1,2,3, \ldots,
$$

and also the following supercongruences for $\nu=1,2,3, \ldots$, conjectured for $\nu=1$ in 2018 by Yue Zhao:

$$
S(\nu p) \equiv\left(\frac{\chi}{p}\right) S(\nu)+r L_{\chi, p}(m+1) \nu^{m+1} p^{m+1} \quad\left(\bmod p^{m+2}\right)
$$

Other theorems (G.): Let $h(\nu)=S(\nu p)$. We have
(1) $\quad h\left(\nu_{1} \nu_{2}\right) \equiv h\left(\nu_{1}\right) h\left(\nu_{2}\right) \quad \bmod p^{m+1}, \quad \operatorname{gcd}\left(\nu_{1}, \nu_{2}\right)=1$,
(2) $S\left(\nu_{1} p\right) S\left(\nu_{2}\right) \equiv S\left(\nu_{2} p\right) S\left(\nu_{1}\right) \bmod p^{m+1}$.

Let

$$
S(N)=N^{-2}\left(\frac{-1}{4}\right)^{-\nu} \frac{(1)_{\nu}^{5}}{\left(\frac{1}{2}\right)_{\nu}^{5}} \sum_{n=0}^{N-1} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{4^{n}}\left(20 n^{2}+8 n+1\right)
$$

We have

$$
\sum_{n=0}^{\infty} R(n)=\frac{8}{\pi^{2}}, \quad \text { (Ramanujan series) }
$$

the extended series to the left

$$
x^{-2} R_{x}(-)=7 \cdot 2^{6} \zeta(3) x^{3}+B x^{4}+C x^{5}+\cdots
$$

and the p-adic expansions

$$
S(\nu p)=S(\nu)+7 \cdot 2^{6} \zeta_{p}(3) \nu^{3} p^{3}+B_{p} \nu^{4} p^{4}+C_{p} \nu^{5} p^{5}+\cdots .
$$

We can combine S_{p} and $S_{2 p}$ for eliminating the first term. We get

$$
S(p)-\frac{512}{99} S(2 p)=\mathcal{O}\left(p^{3}\right)
$$

In a smilar way, we obtain

$$
\begin{gathered}
\frac{1701}{256} S(p)+14 S(2 p)=\frac{1197}{128}+\mathcal{O}\left(p^{4}\right) \\
972 S(p)+1024 S(2 p)=1170-1701 \zeta_{p}(3) p^{3}+\mathcal{O}\left(p^{5}\right)
\end{gathered}
$$

and

$$
\begin{array}{r}
\frac{1767133000}{19873929} S(p)+\frac{324010496000}{1609788249} S(2 p)-\frac{717225984}{1524825} S(3 p) \\
-\frac{163208757248}{96994275} S(4 p)=\mathcal{O}\left(p^{5}\right) .
\end{array}
$$

Example 2.

Let

$$
\begin{aligned}
& S(N)=N^{-2}\left(\frac{-1}{80^{3}}\right)^{-\nu} \frac{(1)_{\nu}^{5}}{\left(\frac{1}{2}\right)_{\nu}\left(\frac{1}{3}\right)_{\nu}\left(\frac{2}{3}\right)_{\nu}\left(\frac{1}{6}\right)_{\nu}\left(\frac{5}{6}\right)_{\nu}} \\
& \times \sum_{n=0}^{N-1} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}}{(1)_{n}^{5}}\left(5418 n^{2}+693 n+29\right)\left(\frac{-1}{80^{3}}\right)^{n} .
\end{aligned}
$$

We have

$$
\sum_{n=0}^{\infty} R(n)=\frac{128 \sqrt{5}}{\pi^{2}}, \quad \text { (Ramanujan series) }
$$

The extended series to the left

$$
x^{-2} R_{x}(-)=42000 L_{5}(3) x^{3}+B x^{4}+C x^{5}+\cdots,
$$

and the p-adic expansions

$$
S(\nu p)=\left(\frac{5}{p}\right) S(\nu)+42000 L_{5, p} \nu^{3} p^{3}+B_{p} \nu^{4} p^{4}+\cdots
$$

$$
\begin{aligned}
& S(N)=N^{-4}\left(\frac{1}{2^{12}}\right)^{-\nu} \frac{(1)_{\nu}^{9}}{\left(\frac{1}{2}\right)_{\nu}^{7}\left(\frac{1}{4}\right)_{\nu}\left(\frac{3}{4}\right)_{\nu}} \\
\times & \sum_{n=0}^{N-1} \frac{\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}} \frac{43680 n^{4}+20632 n^{3}+4340 n^{2}+466 n+21}{2^{12 n}}
\end{aligned}
$$

we have

$$
\sum_{n=0}^{\infty} R(n)=\frac{2^{11}}{\pi^{4}}, \quad \text { (Ramanujan series) }
$$

The extended series to the left

$$
x^{-4} R_{x}(-)=-95232 \zeta(5) x^{5}+B x^{6}+\cdots,
$$

and the following p-adic expansions:

$$
S(\nu p)=S(\nu)-95232 \zeta_{p}(5) \nu^{5} p^{5}+B_{p} \nu^{6} p^{6}+\cdots
$$

Boris Gourevitch's series: Let

$$
S(N)=\left(\frac{N^{-3}}{64}\right)^{-\nu} \frac{(1)_{\nu}^{7}}{\left(\frac{1}{2}\right)_{\nu}^{7}} \sum_{n=0}^{N-1} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}}\left(\frac{1}{64}\right)^{n}\left(168 n^{3}+76 n^{2}+14 n+1\right)
$$

We have

$$
\sum_{n=0}^{\infty} R(n)=\frac{32}{\pi^{3}} \quad \text { (Ramanujan series) }
$$

The extended series to the left

$$
x^{-3} R_{x}(-)=1536 L_{-4}(4) x^{4}+B x^{5}+\cdots,
$$

and the following p-adic identities:

$$
S(\nu p)=\left(\frac{-4}{p}\right) S(\nu)+1536 L_{-4, p}(4) \nu^{4} p^{4}+B P \nu^{5} p^{5}+\cdots
$$

Let

$$
\begin{aligned}
U(n) & =\frac{\left(\frac{1}{2}\right)_{n}^{5}\left(\frac{1}{5}\right)_{n}\left(\frac{2}{5}\right)_{n}\left(\frac{3}{5}\right)_{n}\left(\frac{4}{5}\right)_{n}}{(1)_{n}^{9}}\left(\frac{-5^{5}}{4^{5}}\right)^{n} \\
S(N) & =\frac{N^{-4}}{U(\nu)} \sum_{n=0}^{N-1} U(n)\left(5532 n^{4}+5600 n^{3}+2275 n^{2}+42 n+30\right)
\end{aligned}
$$

The Ramanujan series $R_{0}(+)$ is divergent because $\left|z_{0}\right|>1$, but convergent by analytic continuation. We have $R_{0}(+)=1280 / \pi^{4}$. The Ramanujan series $R_{0}(-)$ is convergent and equal to

$$
\sum_{n=1}^{\infty} \frac{1}{U(n)} \frac{5532 n^{4}-5600 n^{3}+2275 n^{2}-42 n+30}{n^{9}}=-380928 \zeta(5)
$$

The following p-adic identities hold:

$$
S(\nu p)=S(\nu)-380928 \zeta_{p}(5) \nu^{5} p^{5}+B p \nu^{6} p^{6}+\cdots
$$

For computational motives, we redefine $S(N)$ as

$$
S(N)=\left(\prod_{i=0}^{2 m} \frac{(1)_{\nu}}{\left(s_{i}\right)_{\nu}}\right) \sum_{n=0}^{N-1}\left(\prod_{i=0}^{2 m} \frac{\left(s_{i}\right)_{n}}{(1)_{n}}\right) \sum_{k=0}^{m} a_{k} n^{k} z_{0}^{n}
$$

By doing it, Zudilin's conjecture generalized reads as

$$
S(\nu p) \equiv\left(\frac{\chi}{p}\right) S(\nu) p^{m} \quad\left(\bmod p^{2 m+1}\right), \quad \nu=1,2,3, \ldots
$$

and the symmetric p-adic theorem (G.) as

$$
S(\nu p) S(1)-S(\nu) S(p) \equiv 0 \quad\left(\bmod p^{2 m+1}\right), \quad \nu=1,2,3, \ldots
$$

In next examples using these kind of supercongruences, we recover the parameters a_{k} of the corresponding rational Ramanujan series.

Examples using

Zudilin's supercongruences generalized

We want to see that there is a series of the following form:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{5}}{(1)_{n}^{5}} \frac{(-1)^{n}}{4^{n}}\left(a_{0}+a_{1} n+a_{2} n^{2}\right)=t_{0} \frac{\sqrt{\chi}}{\pi^{2}}, \quad \chi=1
$$

where $a_{0}, a_{1}, a_{2}, t_{0}$ are positive integers. Indeed, using the WilfZeilberger (WZ method) we proved that $a_{0}=1, a_{1}=8, a_{2}=20$. Here, from

$$
S(\nu p)-S(\nu) p^{2} \equiv 0 \quad\left(\bmod p^{5}\right), \quad \nu=1,2,3, \ldots
$$

and taking $p=11$, and $\nu=1,2$, we get the linear system

$$
\begin{aligned}
103175 a_{0}+126304 a_{1}+81213 a_{2} & \equiv 0 \quad\left(\bmod 11^{5}\right) \\
23608 a_{0}+21777 a_{1}+22319 a_{2} & \equiv 0 \quad\left(\bmod 11^{5}\right)
\end{aligned}
$$

Example 1 (Continuation)

Let $a_{0}=t$. From the above equations, we obtain

$$
\begin{aligned}
& -66812987 t-95491225 a_{2} \equiv 0 \quad\left(\bmod 11^{4}\right), \\
& -35044211 t-95491225 a_{1} \equiv 0 \quad\left(\bmod 11^{4}\right) .
\end{aligned}
$$

Solving the equations taking into account that the inverse $\left(\bmod 11^{4}\right)$ of 95491225 is 12252 , we obtain

$$
\begin{aligned}
& a_{2}=-14621 t \quad\left(\bmod 11^{4}\right)=20 t \\
& a_{1}=-14633 t \quad\left(\bmod 11^{4}\right)=8 t
\end{aligned}
$$

Hence, the solutions are of the following form:

$$
a_{0}=t, \quad a_{1}=8 t, \quad a_{2}=20 t
$$

Example 2

We want to know if there is a series of the following form:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{3}\right)_{n}\left(\frac{2}{3}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{(-1)^{n}}{48^{n}}\left(a_{0}+a_{1} n+a_{2} n^{2}\right)=t_{0} \frac{\sqrt{\chi}}{\pi^{2}}
$$

with $\chi=1$, and where $a_{0}, a_{1}, a_{2}, t_{0}$ are positive integers. Using the PSLQ algorithm we conjecture that $a_{0}=5, a_{1}=63, a_{2}=252$ and $t_{0}=48$. Here, from

$$
S(\nu p)-S(\nu) p^{2} \equiv 0 \quad\left(\bmod p^{5}\right), \quad \nu=1,2,3, \ldots
$$

and taking $p=13$, and $\nu=1,2$, we get the linear system

$$
\begin{aligned}
155250 a_{1}+1838 a_{2}+327490 a_{0} & \equiv 0 \quad\left(\bmod 13^{5}\right) \\
304350 a_{1}+329224 a_{2}+67674 a_{0} & \equiv 0 \quad\left(\bmod 13^{5}\right)
\end{aligned}
$$

Example 2 (Continuation)

Let $a_{0}=5 t$. From the above equations, we obtain

$$
\begin{aligned}
& 26628 a_{1}+7535 t \equiv 0 \quad\left(\bmod 13^{4}\right) \\
& 26628 a_{2}+1579 t \equiv 0 \quad\left(\bmod 13^{4}\right) .
\end{aligned}
$$

As the inverse $\left(\bmod 13^{4}\right)$ of 26628 is 9279 , we obtain

$$
\begin{array}{ll}
a_{2}=-28309 t & \left(\bmod 13^{4}\right)=252 t \\
a_{1}=-28498 t & \left(\bmod 13^{4}\right)=63 t
\end{array}
$$

Hence, the solutions are: $a_{0}=5 t, \quad a_{1}=63 t, \quad a_{2}=252 t$.

We want to know if there is a series of the following form:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}}{(1)_{n}^{7}}\left(\frac{1}{64}\right)^{n}\left(a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}\right)=t_{0} \frac{\sqrt{-\chi}}{\pi^{3}}, \quad \chi=-4
$$

where $a_{0}, a_{1}, a_{2}, a_{3}, t_{0}$ are positive integers. Using the PSLQ algorithm, we conjecture that $a_{0}=1, a_{1}=14, a_{2}=76, a_{3}=168$ and $t_{0}=16$. Here, from

$$
S(\nu p)-S(\nu)\left(\frac{-4}{p}\right) p^{3} \equiv 0, \quad\left(\bmod p^{7}\right) \quad \nu=1,2, \ldots,
$$

and taking $p=11$, and $\nu=1,2,3$, we get the equations

$$
2078533 a_{1}+9963171 a_{2}+11695266 a_{3}+16073136 a_{0} \equiv 0 \quad\left(\bmod 11^{7}\right)
$$

$12453192 a_{1}+988367 a_{2}+3883033 a_{3}+14086913 a_{0} \equiv 0 \quad\left(\bmod 11^{7}\right)$,
$17113786 a_{1}+2247378 a_{2}+4011161 a_{3}+7012796 a_{0} \equiv 0 \quad\left(\bmod 11^{7}\right)$.
Let $a_{0}=t$. From the above equations, we obtain

$$
\begin{aligned}
7854385 a_{1}+3429250 a_{2}+19159030 t & \equiv 0 \quad\left(\bmod 11^{4}\right) \\
3851936 a_{1}+8961898 a_{2}+5481146 t & \equiv 0 \quad\left(\bmod 11^{4}\right)
\end{aligned}
$$

Solving the equations, we obtain

$$
\begin{aligned}
& a_{1}=-11965 t \quad\left(\bmod 11^{4}\right)=14 t \\
& a_{2}=-1255 t \quad\left(\bmod 11^{4}\right)=76 t \\
& a_{3}=-14473 t \quad\left(\bmod 11^{4}\right)=168 t
\end{aligned}
$$

Examples using the

symmetric p -adic theorem (G.)

We want to know if there is a series of the following form:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{5}} \frac{1}{7^{4 n}}\left(a_{0}+a_{1} n\right)=t_{0} \frac{\sqrt{-\chi}}{\pi}, \quad \chi=-3
$$

where a_{0} and a_{1} are positive integers, and t_{0} is a rational. Using the theory of modular functions it was proved that $a_{0}=3$ and $a_{1}=40$. Here, we will prove it from the theorem

$$
S(\nu p) S(1)-S(\nu) S(p) \equiv 0 \quad\left(\bmod p^{3}\right), \quad \nu=1,2,3, \ldots
$$

For that aim, we let $a_{0}=3 t$, take $p=23$, and use the equations for $\nu=1,2$, namely

$$
\begin{array}{ll}
4163 a_{1}^{2}+9108 a_{1} t+7406 a_{0}^{2} \equiv 0 & \left(\bmod 23^{3}\right) \\
7682 a_{1}^{2}+2185 a_{1} t+7406 a_{0}^{2} \equiv 0 & \left(\bmod 23^{3}\right)
\end{array}
$$

Example 1 (Continuation)

Substracting both equations and dividing by a_{1}, we obtain

$$
8648 a_{1}+6923 t \quad\left(\bmod 23^{3}\right)
$$

Simplifying by 23 , we get

$$
376 a_{1}+301 t \quad\left(\bmod 23^{2}\right)
$$

The inverse of $376\left(\bmod 23^{2}\right)$ is 325 . Therefore, multiplying by 325 , we see that

$$
a_{1}+489 t=0 \quad\left(\bmod 23^{2}\right) .
$$

Hence

$$
a_{1}=-489 t=40 t \quad\left(\bmod 23^{2}\right)
$$

and the solution is $a_{0}=3 t$ and $a_{1}=40 t$.

Example 2

We want to know if there is a series of the following form:

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}^{7}\left(\frac{1}{4}\right)_{n}\left(\frac{3}{4}\right)_{n}}{(1)_{n}^{9}} \frac{1}{2^{12 n}}\left(a_{0}+a_{1} n+a_{2} n^{2}+a_{3} n^{3}+a_{4} n^{4}\right)=t_{0} \frac{\sqrt{\chi}}{\pi^{4}}
$$

where χ is the character (an integer), a_{k} are positive integers, and t_{0} is a rational. In 2010, Jim Cullen using PSLQ conjectured that $a_{0}=21, a_{1}=466, a_{2}=4340, a_{3}=20632, a_{4}=43680$ with $\chi=1$ and $t_{0}=2048$. Here, we will prove it from the theorem

$$
S(\nu p) S(1)-S(\nu) S(p) \equiv 0 \quad\left(\bmod p^{9}\right), \quad \nu=1,2,3, \ldots
$$

Indeed, let $p=7$ (a prime), and $a_{0}=3 t, a_{1}=466 t, a_{2}=4340 t$, and $a_{3}=20632 t$.

Example 2 (Continuation)

Taking $\nu=2$, 3 , we get the equations

$$
\begin{aligned}
23785306 a_{4}^{2}+35827295 a_{4} t+20891591 t^{2} & \equiv 0 \quad\left(\bmod 7^{9}\right) \\
2555244 a_{4}^{2}+35104587 a_{4} t+18959962 t^{2} & \equiv 0 \quad\left(\bmod 7^{9}\right)
\end{aligned}
$$

From the above system we can eliminate a_{4}^{2}, and we obtain

$$
410780 a_{4}+2955113 t \equiv 0 \quad\left(\bmod 7^{8}\right)
$$

The inverse of $410780\left(\bmod 7^{8}\right)$ is 531586 , and finally we obtain

$$
a_{4}=-5721121 t=43680 t \quad\left(\bmod 7^{8}\right),
$$

which is the correct integer value of a_{4}.

I am very grateful to Wadim Zudilin for sharing several important ideas on the p adics, and very specially for advising me to replace x with $p, 2 p, 3 p, \ldots$, and not only with p.

THANK YOU.

