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A note on p-adic series. Example 1. 2

The identity

x + x2 + x3 + x4 + · · · = x(1− x)−1, |x | < 1,

has sense in the reals. Replacing x with p (a prime), we have

p + p2 + p3 + p4 + · · · = p(1− p)−1,

which has no sense in the reals, but has sense in the p-adics because

p + p2 + p3 + · · ·+ pk ≡ p(1− p)−1 (mod pk+1), k ≥ 1.

For p = 2 (2-adic), we have 0 ·20 + 1 ·21 + 1 ·22 + 1 ·23 + · · · = −2.
Hence ...11111110 = −2, and −2 + 2 = 0. Indeed

...111111111110 + ...000000000010 = ...000000000000 2-adic.
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A note on p-adic series. Example 2. 3

Let f (n) = (n + 1)−2. It is easy to prove that

x2
∞∑
n=0

(f (n)− f (n + x)) = 2ζ(3)x3 − 3ζ(4)x4 + · · · .

Denote S(N) = N2
N−1∑
n=0

f (n).

Let x = νp. We conjecture the following p-adic identity

S(νp) = S(ν) + 2ζp(3)ν3p3 + 4ζp(5)ν5p5 + · · · ,

ζp(k) ≡
Bp−k
k

= ζ(1 + k − p) (mod p),

ζp(k) ≡
Bpn−1(p−1)+1−k

k − 1

(
1− pn−1

k − 1

)
(mod pn), n ≥ 2.
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Rational Ramanujan series for π−m 4

We can write the rational Ramanujan-like series as

∞∑
n=0

R(n) =
∞∑
n=0

(
2m∏
i=0

(si )n
(1)n

)
m∑

k=0

akn
kzn0 =

√
(−1)mχ

πm
,

where z0 is a rational, a0, a1, ..., am are positive rationals, and χ the
discriminant of a certain quadratic field (imaginary or real), which
is an integer. Below, we show an example

∞∑
n=0

(
1
2

)7

n

(
1
4

)
n

(
3
4

)
n

(1)9
n 212n

(43680n4+20632n3+4340n2+466n+21) =
211

π4
.

conjectured by Jim Cullen, and recently proved by Kam Cheong Au,
using the WZ method.
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Bilateral Ramanujan series 5

We define

f (x) =

( ∞∑
n=0

R(n)−
∞∑

n=−∞
R(n + x)

)
e−iπx

∏
sk

cosπx − cosπsk
1− cosπsk

.

If sk is in the Ramanujan series then 1− sk also is. As the function
f (x) is periodic and holomorphic it admits a Fourier expansion. In
addition f (x) = O(e(2m+1)π)|Im(x)|, and so it terminates at k = m:

f (x) =

√
(−1)mχ

πm

m∑
k=1

(αk(cos 2πkx − 1) + βk sin 2πkx) ,

where αk and βk are the coefficients. We will denote the extended
series to the right and to the left by

Rx(+) =
∞∑
n=0

R(n + x), Rx(−) =
∞∑
n=1

R(−n + x).
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Getting the parameters 6

As the bilateral identity holds for all values of x , we can use it to get
approximations of the m + 1 values of ak , the m values of αk and
the m values of βk . For that aim we construct a linear system of
3m + 1 equations. Unfortunately, as we cannot solve the system in
an exact way due to the infinite series, we only get approximations.
Later, we will see that the p-adic mate of the bilateral series comes
in our help allowing to obtain the exact values. Unfortunately we
could not prove the p-adic version, and so it is a conjecture up to
now. The sum to the left is equal to

Rx(−) = x2m+1
∞∑
n=1

(
2m∏
i=0

(1)n−x
(si )n−x

)
m∑

k=0

ak(−n + x)k−2m−1 z−n+x
0 .

If the values of x that we take are very small then the sum to the
left is very small as well, and we can ignore it.
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Bilateral series expansion 7

Developping the sum to the left side, we have

∞∑
n=0

R(n)−
∞∑
n=0

R(n + x) =

√
(−1)mχ

Γ( 1
2 )2m

× e iπx
∏
sk

1− cosπsk
cosπx − cosπsk

m∑
k=1

(αk(cos 2πkx − 1) + βk sin 2πkx)

+ (A + Bx + Cx2 + · · · )x2m+1, |x | < 1.

We conjecture that A is of the form A = rLχ(m + 1), where r is a
rational number.
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Archimedean and p-adic 8

Denote

S(N) = N−mz−ν0

(
2m∏
i=0

(1)ν
(si )ν

)
N−1∑
n=0

(
2m∏
i=0

(si )n
(1)n

)
m∑

k=0

akn
kzn0 ,

We have

∞∑
n=0

R(n) =

√
(−1)mχ

πm
=

√
(−1)mχ

Γ
(

1
2

)4m
, (Ramanujan series).

If Rx(−) is the extended series to the left, we have

x−mRx(−) = rLχ(m + 1)xm+1 + Bxm+2 + · · · .

p-adic mate theorem (G.): For ν = 1, 2, 3, · · · :, we have

S(νp) =

(
χ

p

)
S(ν)+rLχ,p(m+1)νm+1pm+1 +Bpν

m+2pm+2 +· · · .
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Proof of the p-adic mate theorem (G.) 9

Denote

S(X ) = X−mz−x0

(
2m∏
i=0

(1)x
(si )x

)( ∞∑
n=0

R(n)−
∞∑

n=−∞
R(n + X )

)
p

.

The function g(x) = S(xp)/S(x) is periodic of period x = 1 and
holomorphic. Hence, it admits a p-adic Fourier expansion

S(xp)

S(x)
=

(
χ

p

)
+

m∑
k=1

(αk(cosp 2πkx − 1) + βk sinp 2πkx) .

Replacing x with ν = 1, 2, 3, . . . , we see that

S(νp) =

(
χ

p

)
S(ν)+rLχ,p(m+1)νm+1pm+1 +Bpν

m+2pm+2 +· · · .
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Supercongruences for rational Ramanujan series 10

The p-adic mate theorem (G.) implies the following supercongru-
ences for ν = 1, 2, 3, . . . conjectured in 2008 for ν = 1 by Wadim
Zudilin:

S(νp) = S(ν)

(
χ

p

)
(mod pm+1), ν = 1, 2, 3, . . . ,

and also the following supercongruences for ν = 1, 2, 3, . . . , conjec-
tured for ν = 1 in 2018 by Yue Zhao:

S(νp) ≡
(
χ

p

)
S(ν) + rLχ,p(m + 1)νm+1pm+1 (mod pm+2).

Other theorems (G.): Let h(ν) = S(νp). We have

(1) h(ν1ν2) ≡ h(ν1)h(ν2) mod pm+1, gcd(ν1, ν2) = 1,

(2) S(ν1p)S(ν2) ≡ S(ν2p)S(ν1) mod pm+1.
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Example 1 11

Let

S(N) = N−2

(
−1

4

)−ν (1)5
ν

( 1
2 )5

ν

N−1∑
n=0

(
1
2

)5

n

(1)5
n

(−1)n

4n
(20n2 + 8n + 1),

We have
∞∑
n=0

R(n) =
8

π2
, (Ramanujan series),

the extended series to the left

x−2Rx(−) = 7 · 26ζ(3)x3 + Bx4 + Cx5 + · · · ,

and the p-adic expansions

S(νp) = S(ν) + 7 · 26 ζp(3)ν3p3 + Bpν
4p4 + Cpν

5p5 + · · · .

Jesús Guillera Goyanes, University of Zaragoza, (SPAIN) Bilateral rational Ramanujan series and their p-adic mates



Example 1. Part 2. 12

We can combine Sp and S2p for eliminating the first term. We get

S(p)− 512

99
S(2p) = O(p3),

In a smilar way, we obtain

1701

256
S(p) + 14S(2p) =

1197

128
+O(p4),

972S(p) + 1024S(2p) = 1170− 1701ζp(3)p3 +O(p5).

and

1767133000

19873929
S(p) +

324010496000

1609788249
S(2p)− 717225984

1524825
S(3p)

− 163208757248

96994275
S(4p) = O(p5).
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Example 2. 13

Let

S(N) = N−2

(
−1

803

)−ν (1)5
ν(

1
2

)
ν

(
1
3

)
ν

(
2
3

)
ν

(
1
6

)
ν

(
5
6

)
ν

×
N−1∑
n=0

(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(
1
6

)
n

(
5
6

)
n

(1)5
n

(5418n2 + 693n + 29)

(
−1

803

)n

.

We have
∞∑
n=0

R(n) =
128
√

5

π2
, (Ramanujan series),

The extended series to the left

x−2Rx(−) = 42000L5(3)x3 + Bx4 + Cx5 + · · · ,
and the p-adic expansions

S(νp) =

(
5

p

)
S(ν) + 42000L5,pν

3p3 + Bpν
4p4 + · · · .
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Example 3. 14

S(N) = N−4

(
1

212

)−ν (1)9
ν(

1
2

)7

ν

(
1
4

)
ν

(
3
4

)
ν

×
N−1∑
n=0

(
1
2

)7

n

(
1
4

)
n

(
3
4

)
n

(1)9
n

43680n4 + 20632n3 + 4340n2 + 466n + 21

212n
.

we have
∞∑
n=0

R(n) =
211

π4
, (Ramanujan series),

The extended series to the left

x−4Rx(−) = −95232ζ(5)x5 + Bx6 + · · · ,

and the following p-adic expansions:

S(νp) = S(ν)− 95232ζp(5)ν5p5 + Bpν
6p6 + · · · .
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Example 4. 15

Boris Gourevitch’s series: Let

S(N) =

(
N−3

64

)−ν
(1)7

ν(
1
2

)7

ν

N−1∑
n=0

(
1
2

)7

n

(1)7
n

(
1

64

)n

(168n3+76n2+14n+1).

We have
∞∑
n=0

R(n) =
32

π3
(Ramanujan series).

The extended series to the left

x−3Rx(−) = 1536L−4(4) x4 + Bx5 + · · · ,

and the following p-adic identities:

S(νp) =

(
−4

p

)
S(ν) + 1536L−4,p(4)ν4p4 + BPν

5p5 + · · · .
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Example 5. 16

Let

U(n) =

(
1
2

)5

n

(
1
5

)
n

(
2
5

)
n

(
3
5

)
n

(
4
5

)
n

(1)9
n

(
−55

45

)n

.

S(N) =
N−4

U(ν)

N−1∑
n=0

U(n)(5532n4 + 5600n3 + 2275n2 + 42n + 30).

The Ramanujan series R0(+) is divergent because |z0| > 1, but
convergent by analytic continuation. We have R0(+) = 1280/π4.
The Ramanujan series R0(−) is convergent and equal to

∞∑
n=1

1

U(n)

5532n4 − 5600n3 + 2275n2 − 42n + 30

n9
= −380928ζ(5).

The following p-adic identities hold:

S(νp) = S(ν)− 380928ζp(5)ν5p5 + BPν
6p6 + · · · .
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BACKWARDS 17

For computational motives, we redefine S(N) as

S(N) =

(
2m∏
i=0

(1)ν
(si )ν

)
N−1∑
n=0

(
2m∏
i=0

(si )n
(1)n

)
m∑

k=0

akn
kzn0 .

By doing it, Zudilin’s conjecture generalized reads as

S(νp) ≡
(
χ

p

)
S(ν)pm (mod p2m+1), ν = 1, 2, 3, . . . ,

and the symmetric p-adic theorem (G.) as

S(νp)S(1)− S(ν)S(p) ≡ 0 (mod p2m+1), ν = 1, 2, 3, . . . .

In next examples using these kind of supercongruences, we recover
the parameters ak of the corresponding rational Ramanujan series.
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Examples using

Zudilin’s supercongruences generalized
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Example 1 19

We want to see that there is a series of the following form:

∞∑
n=0

(
1
2

)5

n

(1)5
n

(−1)n

4n
(a0 + a1n + a2n

2) = t0

√
χ

π2
, χ = 1,

where a0, a1, a2, t0 are positive integers. Indeed, using the Wilf-
Zeilberger (WZ method) we proved that a0 = 1, a1 = 8, a2 = 20.
Here, from

S(νp)− S(ν)p2 ≡ 0 (mod p5), ν = 1, 2, 3, . . . ,

and taking p = 11, and ν = 1, 2, we get the linear system

103175a0 + 126304a1 + 81213a2 ≡ 0 (mod 115),

23608a0 + 21777a1 + 22319a2 ≡ 0 (mod 115).
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Example 1 (Continuation) 20

Let a0 = t. From the above equations, we obtain

−66812987t − 95491225a2 ≡ 0 (mod 114),

−35044211t − 95491225a1 ≡ 0 (mod 114).

Solving the equations taking into account that the inverse (mod 114)
of 95491225 is 12252, we obtain

a2 = −14621t (mod 114) = 20t,

a1 = −14633t (mod 114) = 8t,

Hence, the solutions are of the following form:

a0 = t, a1 = 8t, a2 = 20t.
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Example 2 21

We want to know if there is a series of the following form:

∞∑
n=0

(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(
1
4

)
n

(
3
4

)
n

(1)5
n

(−1)n

48n
(a0 + a1n + a2n

2) = t0

√
χ

π2
,

with χ = 1, and where a0, a1, a2, t0 are positive integers. Using the
PSLQ algorithm we conjecture that a0 = 5, a1 = 63, a2 = 252 and
t0 = 48. Here, from

S(νp)− S(ν)p2 ≡ 0 (mod p5), ν = 1, 2, 3, . . . ,

and taking p = 13, and ν = 1, 2, we get the linear system

155250a1 + 1838a2 + 327490a0 ≡ 0 (mod 135),

304350a1 + 329224a2 + 67674a0 ≡ 0 (mod 135).
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Example 2 (Continuation) 22

Let a0 = 5t. From the above equations, we obtain

26628a1 + 7535t ≡ 0 (mod 134),

26628a2 + 1579t ≡ 0 (mod 134).

As the inverse (mod 134) of 26628 is 9279, we obtain

a2 = −28309t (mod 134) = 252t,

a1 = −28498t (mod 134) = 63t,

Hence, the solutions are: a0 = 5t, a1 = 63t, a2 = 252t.
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Example 3 23

We want to know if there is a series of the following form:

∞∑
n=0

(
1
2

)7

n

(1)7
n

(
1

64

)n

(a0 + a1n + a2n
2 + a3n

3) = t0

√
−χ
π3

, χ = −4,

where a0, a1, a2, a3, t0 are positive integers. Using the PSLQ algo-
rithm, we conjecture that a0 = 1, a1 = 14, a2 = 76, a3 = 168 and
t0 = 16. Here, from

S(νp)− S(ν)

(
−4

p

)
p3 ≡ 0, (mod p7) ν = 1, 2, . . . ,

and taking p = 11, and ν = 1, 2, 3, we get the equations

2078533a1+9963171a2+11695266a3+16073136a0 ≡ 0 (mod 117),
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Example 3 (Continuation) 24

12453192a1 + 988367a2 + 3883033a3 + 14086913a0 ≡ 0 (mod 117),

17113786a1 + 2247378a2 + 4011161a3 + 7012796a0 ≡ 0 (mod 117).

Let a0 = t. From the above equations, we obtain

7854385a1 + 3429250a2 + 19159030t ≡ 0 (mod 114),

3851936a1 + 8961898a2 + 5481146t ≡ 0 (mod 114).

Solving the equations, we obtain

a1 = −11965t (mod 114) = 14t,

a2 = −1255t (mod 114) = 76t,

a3 = −14473t (mod 114) = 168t.
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Examples using the

symmetric p-adic theorem (G.)
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Example 1 26

We want to know if there is a series of the following form:

∞∑
n=0

(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(1)5
n

1

74n
(a0 + a1n) = t0

√
−χ
π

, χ = −3,

where a0 and a1 are positive integers, and t0 is a rational. Using the
theory of modular functions it was proved that a0 = 3 and a1 = 40.
Here, we will prove it from the theorem

S(νp)S(1)− S(ν)S(p) ≡ 0 (mod p3), ν = 1, 2, 3, . . . .

For that aim, we let a0 = 3t, take p = 23, and use the equations
for ν = 1, 2, namely

4163a2
1 + 9108a1t + 7406a2

0 ≡ 0 (mod 233),

7682a2
1 + 2185a1t + 7406a2

0 ≡ 0 (mod 233).
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Example 1 (Continuation) 27

Substracting both equations and dividing by a1, we obtain

8648a1 + 6923t (mod 233).

Simplifying by 23, we get

376a1 + 301t (mod 232).

The inverse of 376 (mod 232) is 325. Therefore, multiplying by 325,
we see that

a1 + 489t = 0 (mod 232).

Hence
a1 = −489t = 40t (mod 232),

and the solution is a0 = 3t and a1 = 40t.
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Example 2 28

We want to know if there is a series of the following form:

∞∑
n=0

(
1
2

)7

n

(
1
4

)
n

(
3
4

)
n

(1)9
n

1

212n
(a0 + a1n + a2n

2 + a3n
3 + a4n

4) = t0

√
χ

π4
,

where χ is the character (an integer), ak are positive integers, and
t0 is a rational. In 2010, Jim Cullen using PSLQ conjectured that
a0 = 21, a1 = 466, a2 = 4340, a3 = 20632, a4 = 43680 with χ = 1
and t0 = 2048. Here, we will prove it from the theorem

S(νp)S(1)− S(ν)S(p) ≡ 0 (mod p9), ν = 1, 2, 3, . . . .

Indeed, let p = 7 (a prime), and a0 = 3t, a1 = 466t, a2 = 4340t,
and a3 = 20632t.
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Example 2 (Continuation) 29

Taking ν = 2, 3, we get the equations

23785306a2
4 + 35827295a4t + 20891591t2 ≡ 0 (mod 79),

2555244a2
4 + 35104587a4t + 18959962t2 ≡ 0 (mod 79).

From the above system we can eliminate a2
4, and we obtain

410780a4 + 2955113t ≡ 0 (mod 78).

The inverse of 410780 (mod 78) is 531586, and finally we obtain

a4 = −5721121t = 43680t (mod 78),

which is the correct integer value of a4.
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I am very grateful to Wadim Zudilin for sharing several important
ideas on the p adics, and very specially for advising me to replace x
with p, 2p, 3p, . . . , and not only with p.

THANK YOU.
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