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Graph Decomposition Problem

A decomposition of a graph G is a list [Gk : 0 Æ k < m] of edge disjoint

subgraphs of G i.e.

G =
€

0Æk<m
Gk such that

I
ÿ = E (Gi) fl E (Gj)

for all 0 Æ i < j < m
.

In the example below K4 = G0 fi G1 such that ÿ = E (G0) fl E (G1)

Figure: Decomposition of K4 into copies of P4
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The Kotzig–Ringel–Rosa conjecture

KRR claim:

K2n≠1 cyclically decomposes into edge disjoint copies of any tree on n
“consecutive” vertices.

K2n≠1 =
€

0Æk<2n≠1

‡(k)T‡(≠k)
such that ‡ = id + 1 mod 2n ≠ 1,

ÿ = E
1
‡(i)T‡(≠i)

2
fl E

1
‡(j)T‡(≠j)

2
, 0 Æ i < j < 2n ≠ 1.

Figure: KRR for K11.
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The Ringel Conjecture

Theorem (2020) : Asymptotic Decomposition Result

K2n≠1 decomposes into edge disjoint copies of any tree on n vertices.

By a proof of Richard Montgomery, Alexey Pokrovskiy, Benny Sudakov

and independently by Peter Keevash, Katherine Staden

Figure: Decomposition of K9 into copies of C5
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ITERATES OF FRACTIONAL ORDER 
RUFUS ISAACS 

1. Introduction. The body of this paper is a complete answer to the 
following question: 

Let E be any space whatever. g(x) is a function1 mapping E into E. When 
does there exist a function/(x), of the same type, such that 

(1) / ( / (x) ) = g(x) ( *€£ ) ? 

This problem typifies the general one of iteration. Let gk(x) be the &th 
order iterate of g [i.e. g°(x) = x, gk+1(x) = g(gk(x))]. The iteration problem is 
that of attaching a consistent meaning to this expression for fractional k (in 
the sense of preserving the additive law of exponents). A n / satisfying (1) is 
thus g1/2(x). By ideas similar to those discussed herein, we can find the most 
general g1/m and then by iterating it, the most general iterate of any rational 
order. Without introducing continuity, this is as far as it is possible to go. 
We confine ourselves to the case of k = 1/2 to avoid oppressive detail; the 
generalization to k = 1/m is indicated later. 

The iteration problem has received attention for many years, alone or as 
part of another topic (functional equations, fractional derivatives, the tri-
operational algebra of Menger [1], etc.). Some of these applications require 
subsidiary conditions on the functions (continuity, differentiability, etc.). We 
deal with the general problem without such side conditions; thus our work 
might be called combinatorial. The problem with a side condition such as 
continuity appears highly interesting. 

In all the literature we have encountered, the general problem is approached 
in but one way—through the Abel function. The idea here is to ascertain 
a numerically valued function <t> on E satisfying 

*(g(*)) = *(*) + 1. 
Then iterates of all orders are obtained at once by 

gk(x) = ^ M * ) + *). 
We show later that in a widespread class of cases, a <£ does not exist. Even 
when it does, its inverse may not exist. Yet iterates of some or all fractional 
orders may exist. The non-existence of <j> may hold even when we have 
continuity with respect to both x and &, as we shall show below. 

Received April 12, 1949. 
*If g is not defined for all of E, it suffices that our later criterion hold for some extension of g 

which is. If the range and domain of g are distinct we can thus take E to be their union. 
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·–Induced Edge Labels

Setup:

Let · : Zn ◊ Zn æ Zn i.e. · œ ZZn◊Znn

The labeling of the digraph Gf is ·–Zen if

Zn = {· (i , f (i)) : i œ Zn} .

The digraph Gf is ·–Zen if

n = max
‡œSn

|{· (i , f (i)) : i œ Zn}| .
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·–Induced Edge Labels

Some choices for the function · œ ZZn◊Znn :

The bijectivity choice · (u, v) = v , for all (u, v) œ Zn ◊ Zn.

The harmonious choice · (u, v) = u + v mod n, for all

(u, v) œ Zn ◊ Zn.

The graceful choice · (u, v) = |v ≠ u|, for all (u, v) œ Zn ◊ Zn.

The graceful dual choice ·f (u, v) =

A

u +
q

iœf ≠1({u})\{u}
i
B

mod n, for

all (u, v) œ Zn ◊ Zn.
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Fundamental Problems

Fundamental Problem 1: Given a family of subset Fn ™ ZZnn
parametrized by n, determine a necessary and su�cient condition on a

given · œ ZZn◊Znn to ensure that the graphs of every function f œ Fn is

·–Zen.

Fundamental Problem 2: Given a family of subset Tn ™ ZZn◊Znn
parametrized by n, determine a necessary and su�cient condition on a

given f œ ZZnn to ensure that every choice of · œ Tn the graph f is ·–Zen.
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Listing ·–Zen Labelings

Let ZeL(Gf ) denote the set of digraphs isomorphic to Gf and whose

labeling is ·–Zen. The listing of functional digraph whose labeling is ·–Zen

Q

ca
ˆn

r

kœZn
ˆxk

R

db

Q

a
Ÿ

iœZn

ÿ

jœZn

ai ,j x·(i ,j)

R

b =

Q

cccccca

ÿ

f œ ZZnn
Gf œ ZeL (Gf )

Ÿ

iœZn

ai ,f (i)

R

ddddddb
.

It follows that the listing/enumeration of graphs whose labeling is ·–Zen

amounts to computing a Permanent.
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Listing ·–Zen Graphs

The listing of functional digraph whose labeling is ·–Zen

F· (A) =

Q

ca
ˆn

r

kœZn
ˆxk

R

db

Q

a
ÿ

‡œSn

Ÿ

iœZn

ÿ

jœZn

a‡(i),‡(j)x·(i ,j)

R

b =

ÿ

f œZZnn

|Aut (Gf )| |ZeL (Gf )|
Ÿ

iœZn

ai ,f (i).
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Main results

Let A, X· denote symbolic n ◊ n matrices with entries given by

A [i , j] = ai ,j , X· [i , j] = x·(i ,j), ’ (i , j) œ Zn ◊ Zn

For an instance of the first fundamental problem take the family of

functional trees

Tn =

Ó
f œ ZZn

n : 1 =

---f (n≠1)
(Zn)

---
Ô

.

By Tutte’s Directed Matrix Tree Theorem

tn (A) =
ÿ

iœZn

ai ,i det

Ó
(diag (A1n◊1) ≠ A)i ,i

Ô
=

ÿ

f œTn

Ÿ

iœZn

ai ,f (i).
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Main results

A necessary and su�cient condition

on · which ensures that every member of Tn is ·–Zen is that

xnn≠1

+
ÿ

0<kÆnn≠1

(≠1)
k xnn≠1≠k ÿ

m1+2m2+···+kmk =nn≠1

m1Ø0,...,mk Ø0

Ÿ

0<iÆnn≠1

1
≠tn

1
A¶k 22mi

mi ! imi
,

divides the polynomial

x÷
+

ÿ

0<kÆ÷

(≠1)
k x÷≠k ÿ

m1+2m2+···+kmk =÷
m1Ø0,...,mk Ø0

Ÿ

0<iÆ÷

1
≠F·

1
A¶k 22mi

mi ! imi
,

where ÷ = F· (1n◊n).
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Main results

Strengthening the Kotzig–Ringel–Rosa conjecture

Take · œ ZZn◊Znn such that

· (u, v) = |v ≠ u| , ’ (u, v) œ Zn ◊ Zn.

In this setting the entries of X· œ (Q [x0, · · · , xn≠1])
n◊n

are such that

X· [u, v ] = x|v≠u|, ’ (u, v) œ Zn ◊ Zn.

The strong form of the KRRC asserts that the only solutions g œ ZZnn are

identically constant in

0 =
ÿ

“œSn

ÿ

f œTn

Ÿ

‡œSn

Q

a
Ÿ

iœZn

X·

Ë
i , “g“≠1

(i)
È

≠
Ÿ

iœZn

X·

Ë
i , ‡f ‡≠1

(i)
È
R

b
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Composition Lemma

Theorem: Let Tn =

Ó
g œ ZZnn : 1 =

---g (n≠1)
(Zn)

---
Ô

, given · œ ZZn◊Znn
such that identically constant functions in Tn are ·–Zen and

max
‡œSn

---
Ó

·
1
i , ‡f (2)‡≠1

(i)
2

: i œ Zn
Ô--- Æ max

‡œSn

---
Ó

·
1
i , ‡f ‡≠1

(i)
2

: i œ Zn
Ô--- .

then the graph of any member of Tn is ·–Zen.

Proof: Observe f œ Tn =∆ f (2) œ Tn. For any f œ Tn consider the

Álg (n ≠ 1)Ë–sequence

1
f = f (2

0), f (2
1), · · · , f (2

Álg(n≠1)Ë≠1), f (2
Álg(n≠1)Ë) = constant

2
.

Constants inTn being ·–Zen and repeatedly invoking the inequality yields

that members of the sequence are all ·–Zen.
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