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Def. Planar map = connected graph embedded on the sphere

Rooted map

= map with marked corner

Easier to draw in the plane (choosing root-face to be the outer face)

A - A




Counting planar maps
e Nice counting formulas [Tutte'62,63]

arbitrary maps n edges simple quadrangulations n faces
2.3n n 2 ( 3n )
(n—i—2)(n—|—1)(n> n(n+1)\n—1
bipartite maps n edges loopless triangulations 2n faces
3.2n—1 2n PACU (3n>
(n—|—2)(n—|—1)(n> (n+1)(2n+1)\n



Counting planar maps
e Nice counting formulas [Tutte'62,63]

arbitrary maps n edges simple quadrangulations n faces
2.3n n 2 ( 3n )
(n—i—2)(n—|—1)(n> n(n+1)\n—1
bipartite maps n edges loopless triangulations 2n faces
3.2n—1 2n PACU (3n>
(n—|—2)(n—|—1)(n> (n+1)(2n+1)\n

e Counting methods:

- recursive decomposition & solving functional equations

[Tutte’'63],[Bousquet-Mélou& Jehanne’06],[Eynard’15],. ..

- matrix integrals (Feynman diagrams ~ maps)
['t Hooft'74], [Brézin et al'78],...

- bijections (with models of trees that are easy to count)
[Schaeffer'97],[Bouttier-Di Francesco-Guitter’'02],. ..
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Rk: new asympt. behaviours when considering decorated maps
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3-connected maps
k-connected: needs to delete > k vertices to disconnect

O Py

not 2-connected not 3-connected 3-connected

Interesting family:

e 3-connected planar maps <+ 3-connected planar graphs [Whitney'32]
\> building bricks to count planar graphs (exact & asymptotic)
[Bender,Gao,Wormald'02], [Giménez,Noy'05]

e these are the skeletons of 3d polyhedra [Steinitz'34]

Catalan GF TN

| 1—t C(t)? [Mullin, Schellenberg'68]
) 42 o , g
Enumeration: M(t) = t"1—— (1+2C(6))3  [F. Poulalhon, Schaeffer'05]
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Simple orthogonal polyhedra

simple orthogonal polyhedron = 3d polyhedron such that, at each vertex
three axis-aligned segments meet

P <
: -

\ corner polyhedron (3 non-visible faces)

Rk: boundary forms a cubic (and bipartite) map on the sphere

Q: Which cubic bipartite planar maps admit a realization as
a simple orthogonal polyhedron?
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Characterization of corner polyhedra maps

Every Abounds a face

Enumeration of these “corner triangulations”:
C(t) =>., cnt™ =13 + 3t° + 4t° + 15¢7 + 39¢% + 120tY + - --
has rational expression in terms of Catalan generating function

Rk: C(t) = GF of 3-connected maps with root-vertex of degree 3
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Enumeration of corner polyhedra

= counting plane partitions
by volume

[MacMahon'1896]
[I5:(1— q')"

P, = F# combinatorial types of corner polyhedra of size n
where size = # flats —3

Rk: p,, > ¢, forn>9

Q: e exact counting: formula? recurrence?
e asymptotic estimate?
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Encoding by orientations

polyhedral orientation

= 3 plane bipolar orientations
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e avoids and
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Encoding bipolar orientations by quadrant walks

“Tandem walks” in the quadrant

Plane bipolar orientations

4 step-set
a+1 b-+1 -
d
— g SE U {(—i,),i,j > 0}
n edges length n — 1

face i+1<<>>j+1 - face-step (_ivj)

non-pole vertex <————» SE step



KMSW bijection

From bipolar orientation to tandem walk

S

tree of rightmost
incoming edges
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Specialization to the red bipolar orientations

Characterization:

e bipartite

e avoids - and 5/

- starts at 0, ends on z-axis

- visits only points with x + y even

- no horizontal step starting from e
- no vertical step starting from o

(bimodal effect)
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(P = D .50 an(2,0), with recurrence on a,(%,7))

S Pt =12+ 38 + 415+ 1517 4+ 391" + 122¢7 + 375 ¢ + 12124 + - -



Exact counting: recurrence

By last step removal, obtain recurrence to compute p,,

(P = D .50 an(2,0), with recurrence on a,(%,7))

S Pt =12+ 38 + 415+ 1517 4+ 391" + 122¢7 + 375 ¢ + 12124 + - -

Similarly, can obtain recurrence for p, 3 . = # corner polyhedra with
a blue flats, b red flats, ¢ green flats

> b ezt Pap 0w’ = wow + (uv'w + wwtw® + vrvw?) + 4utviw’

+(uvtw + dutvw? + dutviw® + wow? + dutvw® + wotw?) + - -
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Asymptotic bounds for excursions in quadrant

General method (saddle bound), e.g. for § =
Let S(z,y) =axy ' + 272+ ty + y°

Let a,(i,7) = #S-walks of length n in Z* ending at (4, j)

Then Vz,y > 0, Ei,ng? an(iaj)xiyj = S(z,y)"

[

S(z,y)"

A" with v := minx,y>05($a y)
(here v = 2+/3)

Rk: optimal (z,y) < (z,y)-weighted random S-walk has drift= 0

In particular a5, (0,0)

VAN

x'y’

each step s = (i,7) € S has proba
S(z,y)
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Asymptotic results for corner polyhedra
e Growth rate: lim,, (p,)'/™ = 9/2

e Conjecture: p, ~c(9/2)"n™% where ¢ > ()

a =1+ arccos?E9/16) ~ 4.23

Rk: Conjecture would imply > p,2" not D-finite (since o ¢ Q)

. criterion in [Bostan, Raschel, Salvy’14] —JA
Explanation:

reduction to Denisov and Wachtel'15 “random walks in cones”

P(r>n) ~c n 20
P(7 > n & excursion)
~CT

-3

exit time T

(would need to be extended to bimodal setting)



Relation to some tricolored contact-systems
[Goncalves'19]

every corner triangulation has a unique
tricolored segment-contact representation as

\

Corner polyhedra (types) can be encoded bijectively by such a
topological tricolored contact-system of (smooth) curves

B &




2 ways of counting tricolored contact-systems
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2 ways of counting tricolored contact-systems

Contact-system .
of curves 7 %g\l_ 2%

Stm”g/@ - @\

wyn = 7 weak equivalence classes with 2n regions | = Dp,

Sn = 7 strong equivalence classes with 2n regions




Asymptotic enumeration

Asymptotic estimate Cc7y "' N k
1+

weak strong

g 9/2 16/3
cos(f)|| 9/16 "7 | 22/27 ©

Q ~423¢Q | ~6.08¢Q

(*) up to extending [Denisov-Wachtel] to bimodal setting
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Similar models in 2d with 2 colors

u
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1-bent orthogonal drawing

%
i

2-colored contact-system

rectangulation

strong

weak




Summary on asymptotic enumeration

s

Asymptotic estimate

cy" n—

S\

weak strong weak strong

8 3 27/2 9/2 16/3
cos(f) || 1/2 7/8 9/16 " | 22/27 ©
8 4 ~ 721 ¢Q ~4.23 ¢ Q ~ 6.08 ¢ Q

Baxter (D-finite)

(*) up to extending [Denisov-Wachtel] to bimodal setting
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Extension to models with degeneracies

= _

\ weight v per —|—

— 1\

also counted In

@\ /% weight v per %

Asymptotic exponent a(v) computable a(v) — 0o as v = oo

\ regular grid

behaviour




