Éric Fusy (LIGM, Univ. Gustave Eiffel)
Joint work with Erkan Narmanli and Gilles Schaeffer

Rutgers Experimental Math Seminar, Dec. 12th, 2024

Planar maps
Def. Planar map $=$ connected graph embedded on the sphere

Planar maps
Def. Planar map $=$ connected graph embedded on the sphere

Rooted map
= map with marked corner

Planar maps

Def. Planar map $=$ connected graph embedded on the sphere

Easier to draw in the plane (choosing root-face to be the outer face)

Counting planar maps

• Nice counting formulas [Tutte'62,63]

$$
\frac{2 \cdot 3^n}{(n+2)(n+1)} {2n \choose n}
$$

bipartite maps n edges

$$
\frac{3 \cdot 2^{n-1}}{(n+2)(n+1)} {2n \choose n}
$$

arbitrary maps n edges simple quadrangulations n faces

$$
\frac{2}{n(n+1)} {3n \choose n-1}
$$

loopless triangulations $2n$ faces 2^{n+1} $(n+1)(2n+1)$ $\sqrt{3n}$ \overline{n} \setminus

Counting planar maps

• Nice counting formulas [Tutte'62,63]

$$
\frac{2 \cdot 3^n}{(n+2)(n+1)} {2n \choose n}
$$

bipartite maps n edges $3\cdot2^{n-1}$ $(n+2)(n+1)$ $\sqrt{2n}$ \overline{n} \setminus

arbitrary maps n edges simple quadrangulations n faces

$$
\frac{2}{n(n+1)} {3n \choose n-1}
$$

loopless triangulations $2n$ faces 2^{n+1} $(n+1)(2n+1)$ $\sqrt{3n}$ \overline{n} \setminus

- Counting methods:
	- recursive decomposition & solving functional equations Tutte'63],[Bousquet-Mélou&Jehanne'06],[Eynard'15],...
- matrix integrals (Feynman diagrams \approx maps)
['t Hooft'74], [Brézin et al'78],...
- bijections (with models of trees that are easy to count)
	- matrix integrals (Feynman diagrams \approx maps)

[Schaeffer'97],[Bouttier-Di Francesco-Guitter'02],. . .

Universality for planar maps

• asymptotic behaviour in $c\,\gamma^n\,n^{-5/2}$ (vs correction $n^{-3/2}$ for tree families)

e.g.
$$
m_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} {2n \choose n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}
$$

• generating functions typically algebraic

 $27t - 2 + (54t² - 18t + 1) M(t) + 27t³$ e.g. $M(t)=\sum_{n\geq 1}m_nt^n$ satisfies
 $27\,t-2+\left(54\,t^2-18\,t+1\right)M\left(t\right)+27\,t^3\left(M\left(t\right)\right)^2=0$ $n \geq 1} m_n t^n$ satisfies

Universality for planar maps

 \bullet asymptotic behaviour in $c\, \gamma^n \, n^{-5/2}$ (vs correction $n^{-3/2}$ for tree families)

e.g.
$$
m_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} {2n \choose n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}
$$

• generating functions typically algebraic $27t - 2 + (54t² - 18t + 1) M(t) + 27t³$ e.g. $M(t)=\sum_{n\geq 1}m_nt^n$ satisfies
 $27\,t-2+\left(54\,t^2-18\,t+1\right)M\left(t\right)+27\,t^3\left(M\left(t\right)\right)^2=0$ $n \geq 1} m_n t^n$ satisfies

• for a uniform random map of size n (in a given family) typical distances behave as $n^{1/4} \qquad$ (vs $n^{1/2}$ for tree families) [Chassaing,Schaeffer'04]

universal scaling limit (Brownian map)

[Le Gall'13, Miermont'13]

© Nicolas Curien

Universality for planar maps

 \bullet asymptotic behaviour in $c\, \gamma^n \, n^{-5/2}$ (vs correction $n^{-3/2}$ for tree families)

e.g.
$$
m_n = \frac{2 \cdot 3^n}{(n+2)(n+1)} {2n \choose n} \sim \frac{2}{\sqrt{\pi}} 12^n n^{-5/2}
$$

• generating functions typically algebraic $27t - 2 + (54t² - 18t + 1) M(t) + 27t³$ e.g. $M(t)=\sum_{n\geq 1}m_nt^n$ satisfies
 $27\,t-2+\left(54\,t^2-18\,t+1\right)M\left(t\right)+27\,t^3\left(M\left(t\right)\right)^2=0$ $n \geq 1} m_n t^n$ satisfies

• for a uniform random map of size n (in a given family) typical distances behave as $n^{1/4} \qquad$ (vs $n^{1/2}$ for tree families) [Chassaing,Schaeffer'04]

universal scaling limit (Brownian map)

[Le Gall'13, Miermont'13]

© Nicolas Curien

Rk: new asympt. behaviours when considering decorated maps

 k -connected: needs to delete $\geq k$ vertices to disconnect

not 2-connected not 3-connected 3-connected

 k -connected: needs to delete $\geq k$ vertices to disconnect

not 2-connected not 3-connected 3-connected

Interesting family:

• 3-connected planar maps \leftrightarrow 3-connected planar graphs [Whitney'32] building bricks to count planar graphs (exact & asymptotic) [Bender, Gao, Wormald'02], [Giménez, Noy'05]

 k -connected: needs to delete $\geq k$ vertices to disconnect

not 2-connected not 3-connected 3-connected

Interesting family:

- 3-connected planar maps \leftrightarrow 3-connected planar graphs [Whitney'32] building bricks to count planar graphs (exact & asymptotic)
[Bender, Gao, Wormald'02], [Giménez, Noy'05]
	- these are the skeletons of 3d polyhedra \sim [Steinitz'34]

 k -connected: needs to delete $\geq k$ vertices to disconnect

not 2-connected not 3-connected 3-connected

Interesting family:

• 3-connected planar maps \leftrightarrow 3-connected planar graphs [Whitney'32] building bricks to count planar graphs (exact & asymptotic) Eender,Gao,Wormald'02], [Giménez,Noy'05]
• these are the skeletons of 3d polyhedra [Steinitz'34] Enumeration: $M(t) = t^2 \frac{1-t}{1-t}$ $1 + t$ − $C(t)^2$ $(1+2C(t))^3$ Catalan GF [Mullin, Schellenberg'68] [F, Poulalhon, Schaeffer'05]

simple orthogonal polyhedron $= 3d$ polyhedron such that, at each vertex
three axis-aligned segments meet

simple orthogonal polyhedron $=$ 3d polyhedron such that, at each vertex
three axis-aligned segments meet

Rk: boundary forms a cubic (and bipartite) map on the sphere

simple orthogonal polyhedron $=$ 3d polyhedron such that, at each vertex
three axis-aligned segments meet

Rk: boundary forms a cubic (and bipartite) map on the sphere Q: Which cubic bipartite planar maps admit a realization as a simple orthogonal polyhedron?

simple orthogonal polyhedron $=$ 3d polyhedron such that, at each vertex
three axis-aligned segments meet

Rk: boundary forms a cubic (and bipartite) map on the sphere Q: Which cubic bipartite planar maps admit a realization as corner polyhedron (3 non-visible faces)
orms a cubic (and bipartite) map on the sphere
ic bipartite planar maps admit a realization as
a simple orthogonal polyhedron?

[Eppstein-Mumford'09]

[Eppstein-Mumford'09]

[Eppstein-Mumford'09]

Enumeration of these "corner triangulations": [Dervieux, Poulalhon, Schaeffer'16] $C(t) = \sum_n c_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + 120t^9 + \cdots$ Every
 $\hspace{-.2cm}\underbrace{\hspace{-.2cm}\dots\hspace{-.2cm}\hspace{-.2cm}}_{\textbf{uneration of these "corner triangulations": [Derview, Poulalhon,}\ C(t)=\sum_n c_nt^n=t^3+3t^5+4t^6+15t^7+39t^8+120t^9+\cdots$

has rational expression in terms of Catalan generating function

[Eppstein-Mumford'09]

Enumeration of these "corner triangulations": [Dervieux, Poulalhon, Schaeffer'16] $C(t) = \sum_n c_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + 120t^9 + \cdots$ Every
 $\hspace{-.2cm}\underbrace{\hspace{-.2cm}\dots\hspace{-.2cm}\hspace{-.2cm}}_{\textbf{uneration of these "corner triangulations": [Derview, Poulalhon,}\ C(t)=\sum_n c_nt^n=t^3+3t^5+4t^6+15t^7+39t^8+120t^9+\cdots$

has rational expression in terms of Catalan generating function

Rk: $C(t) =$ GF of 3-connected maps with root-vertex of degree 3

 $p_n = \#$ combinatorial types of corner polyhedra of size n where size $=$ $\#$ flats -3

 \neq counting plane partitions by volume $\prod_{i \geq 1} (1 - q^i)^{-i}$ [MacMahon'1896]

 $p_n = \#$ combinatorial types of corner polyhedra of size n where size $=$ $\#$ flats -3

 $p_n = \#$ combinatorial types of corner polyhedra of size n where size $=$ $\#$ flats -3

Rk: $p_n > c_n$ for $n \ge 9$

 $p_n = \#$ combinatorial types of corner polyhedra of size n

Rk: $p_n > c_n$ for $n \ge 9$

- Q: exact counting: formula? recurrence?
	-

Encoding by orientations

Encoding by orientations

\Rightarrow 3 plane bipolar orientations

One bipolar orientation is sufficient

[F,Narmanli,Schaeffer'23]

Polyhedral orientation can be reconstructed from red bipolar orientation

One bipolar orientation is sufficient

[F,Narmanli,Schaeffer'23]

Polyhedral orientation can be reconstructed from red bipolar orientation

Encoding bipolar orientations by quadrant walks

[Kenyon, Miller, Sheffield, Wilson'15]

Encoding bipolar orientations by quadrant walks

KMSW bijection
From bipolar orientation to tandem walk

tree of rightmost incoming edges

Characterization:

- bipartite
- avoids **A** and

-
-

-
-

-
-

-
-

-
-

-
-
-
-

-
-

-
-
-
-

Exact counting: recurrence

By last step removal, obtain recurrence to compute p_n

 $(p_n = \sum_{i \geq 0} a_n(i, 0)$, with recurrence on $a_n(i, j)$)
 $t^6 + 15t^7 + 39t^8 + 122t^9 + 375t^{10} + 1212t^{11} + \cdots$

 $\sum_{n\geq 1} p_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + 122t^9 + 375t^{10} + 1212t$

Exact counting: recurrence

By last step removal, obtain recurrence to compute p_n

 $(p_n = \sum_{i \geq 0} a_n(i, 0)$, with recurrence on $a_n(i, j)$)
 $t^6 + 15t^7 + 39t^8 + 122t^9 + 375t^{10} + 1212t^{11} + \cdots$

 $\sum_{n\geq 1} p_n t^n = t^3 + 3t^5 + 4t^6 + 15t^7 + 39t^8 + 122t^9 + 375t^{10} + 1212t$

Similarly, can obtain recurrence for $p_{a,b,c} = \#$ corner polyhedra with a blue flats, b red flats, c green flats

$$
\sum_{a,b,c \ge 1} p_{a,b,c} u^a v^b w^c = uvw + (u^2v^2w + uv^2w^2 + u^2vw^2) + 4u^2v^2w^2
$$

+
$$
(u^3v^3w + 4u^3v^2w^2 + 4u^2v^3w^2 + u^3vw^3 + 4u^2v^2w^3 + uv^3w^3) + \cdots
$$

General method (saddle bound), e.g. for $S =$

Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

General method (saddle bound), e.g. for $S =$ Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then $\forall x,y>0$, $\sum_{i,j\in\mathcal{Z}^2}a_n(i,j)x^iy^j=S(x,y)^n$

General method (saddle bound), e.g. for $S =$ Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$
\forall x, y > 0
$$
, $\sum_{i,j \in \mathcal{Z}^2} a_n(i,j) x^i y^j = S(x,y)^n$

In particular $a_n(0,0) \leq S(x,y)^n$ $\leq \gamma^n$ with $\gamma := \min_{x,y>0} S(x,y)$

General method (saddle bound), e.g. for $S =$ Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$
\forall x, y > 0
$$
, $\sum_{i,j \in \mathcal{Z}^2} a_n(i,j) x^i y^j = S(x,y)^n$

In particular $a_n(0,0) \leq S(x,y)^n$ $\leq \gamma^n$ with $\gamma := \min_{x,y>0} S(x,y)$ (here $\gamma = 2\sqrt{3}$)

General method (saddle bound), e.g. for S = Let $S(x,y) = xy^{-1} + x^{-2} + x^{-1}y + y^2$

Let $a_n(i,j) = \#\mathcal{S}$ -walks of length n in \mathbb{Z}^2 ending at (i,j)

Then
$$
\forall x, y > 0
$$
, $\sum_{i,j \in \mathcal{Z}^2} a_n(i,j) x^i y^j = S(x, y)^n$

In particular $a_n(0,0) \leq S(x,y)^n$ $\leq \gamma^n$ with $\gamma := \min_{x,y>0} S(x,y)$ (here $\gamma = 2\sqrt{3}$)

Rk: optimal $(x, y) \leftrightarrow (x, y)$ -weighted random S-walk has drift= 0 each step $s=(i,j)\in\mathcal{S}$ has proba $\quad \frac{x^i y^j}{\widetilde{\sigma}^{\widetilde{\prime}}}$ $S(x,y)$

- Growth rate: $\lim_n (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c \, (9/2)^n \, n^{-\alpha}$ where $c > 0$

$$
\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23
$$

- Growth rate: $\lim_n (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c \, (9/2)^n \, n^{-\alpha}$ where $c > 0$

$$
\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23
$$

Explanation:

reduction to Denisov and Wachtel'15 "random walks in cones"

$$
\mathbb{P}(\tau > n) \sim c' n^{-\frac{\pi}{2\theta}}
$$

$$
\mathbb{P}(\tau > n \&\text{ excursion}) \sim c n^{-1-\frac{\pi}{\theta}}
$$

- Growth rate: $\lim_n (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c \, (9/2)^n \, n^{-\alpha}$ where $c > 0$

$$
\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23
$$

Explanation:

reduction to Denisov and Wachtel'15 "random walks in cones"

(would need to be extended to bimodal setting)

- Growth rate: $\lim_n (p_n)^{1/n} = 9/2$
- Conjecture: $p_n \sim c \, (9/2)^n \, n^{-\alpha}$ where $c > 0$ $\alpha = 1 + \frac{\pi}{\arccos(9/16)} \approx 4.23$

Explanation: $n p_n z^n$ not D-finite (since $\alpha \notin \mathbb{Q}$) criterion in [Bostan, Raschel, Salvy'14] $-$

reduction to Denisov and Wachtel'15 "random walks in cones"

Relation to some tricolored contact-systems [Gonçalves'19]

every **corner triangulation** has a unique

Corner polyhedra (types) can be encoded bijectively by such a tricolored segment-contact representation as

Fraction of the segment-contact representation as

The second of the segmentary of (smooth) curves tricolored contact-system of (smooth) curves

2 ways of counting tricolored contact-systems

2 ways of counting tricolored contact-systems

 $= p_n$

Asymptotic enumeration

Similar models in 2d with 2 colors

Similar models in 2d with 2 colors

Summary on asymptotic enumeration

Extension to models with degeneracies

Extension to models with degeneracies

Asymptotic exponent $\alpha(v)$ computable $\alpha(v) \to \infty$ as $v \to \infty$ regular grid behaviour