
Picking, posing and attacking natural problems in
Discrete Mathematics: from insightful bijections

to black-box help from Machine Learning

Stoyan Dimitrov
Rutgers University

Rutgers Experimental Math Seminar, Jan 23, 2025

What should be the goal of the math researcher? 2

The famous dichotomy:

Problem-solvers
(“Frogs”)

Theory-builders
(“Birds”)

What should be the goal of the math researcher? 2

The famous dichotomy:

Problem-solvers
(“Frogs”)

Theory-builders
(“Birds”)

What should be the goal of the math researcher? 2

The famous dichotomy:

Problem-solvers
(“Frogs”)

Theory-builders
(“Birds”)

Frogs see only the flowers that grow near them. They delight in the
details of particular objects, and they solve problems one at a time.

– Freeman Dyson

What should be the goal of the math researcher? 2

The famous dichotomy:

Problem-solvers
(“Frogs”)

Theory-builders
(“Birds”)

Birds fly high in the air and delight in concepts that unify our think-
ing and bring together diverse problems from different parts of the
landscape.

– Freeman Dyson

What should be the goal of the math researcher? 2

The famous dichotomy:

Problem-solvers
(“Frogs”)

Theory-builders
(“Birds”)

As a combinatorialist, I’m ≈ a prototypical frog

The importance of picking good problems 3

Mathematical research is not
about solving problems; It is
about finding the right problems.

Gian-Carlo Rota,
“Combinatorics: The Rota Way”

To select a problem for your PhD
student is the same as to choose a
bride for one’s son.

Vladimir Arnold,
“Arnold’s problems”

How people ask questions is the
most difficult thing to understand,
in order to mirror intelligence!

Vladimir Vapnik,
“Lex Fridman’s podcast”

∗ In the computer era, attacking problems is easier, so picking good such is even more important!

The importance of picking good problems 3

Mathematical research is not
about solving problems; It is
about finding the right problems.

Gian-Carlo Rota,
“Combinatorics: The Rota Way”

To select a problem for your PhD
student is the same as to choose a
bride for one’s son.

Vladimir Arnold,
“Arnold’s problems”

How people ask questions is the
most difficult thing to understand,
in order to mirror intelligence!

Vladimir Vapnik,
“Lex Fridman’s podcast”

∗ In the computer era, attacking problems is easier, so picking good such is even more important!

Characteristics of a good problem? 4

– natural (with succinct formulation) // but why??

– well-motivated

– surprising, as a fact

– unsolved, yet not too difficult

∗ Pick problems you are very excited/curious about! (why?)

Characteristics of a good problem? 4

– natural (with succinct formulation) // but why??

– well-motivated

– surprising, as a fact

– unsolved, yet not too difficult

∗ Pick problems you are very excited/curious about! (why?)

Sources of problems and ideas 5

⋆ Workshops/Reading groups/Conferences/Seminars.

⋆ Follow the work of your research heroes!

⋆ Read the recent arXiv papers.

⋆ Textbooks on the fundamentals.

Two options: Selecting an existing problem OR Posing your own problem.

Sources of problems and ideas 5

⋆ Workshops/Reading groups/Conferences/Seminars.

⋆ Follow the work of your research heroes!

⋆ Read the recent arXiv papers.

⋆ Textbooks on the fundamentals.

Two options: Selecting an existing problem OR Posing your own problem.

Problem posing is underrated! 6

I am not such a fast runner. If I am one of N people all working on
the same problem, there is a very little chance I’ll win.
Thinking of a new problem in a new area will give me a chance!

– Jim Simons

Some ideas on posing new problems, when having a set of objects
(examples – problems posed by H. Wilf on the set of partitions Pn):

Problem posing is underrated! 6

I am not such a fast runner. If I am one of N people all working on
the same problem, there is a very little chance I’ll win.
Thinking of a new problem in a new area will give me a chance!

– Jim Simons

Some ideas on posing new problems, when having a set of objects
(examples – problems posed by H. Wilf on the set of partitions Pn):

a) Ask something about parts of the objects.

Example: Given m ≥ 0, for how many partitions of n = x1+x2+. . .+xk,
x1 ≥ x2 ≥ . . . ≥ xk, we have m = x2 + x4 + x6 + . . .?

b) Ask something about collections of these objects.

Example: Is it true that for large enough n, an n × p(n) rectangle can be
tiled by the Ferrers diagrams corresponding to all p(n) partitions of n?

Problem posing is underrated! 6

I am not such a fast runner. If I am one of N people all working on
the same problem, there is a very little chance I’ll win.
Thinking of a new problem in a new area will give me a chance!

– Jim Simons

Some ideas on posing new problems, when having a set of objects
(examples – problems posed by H. Wilf on the set of partitions Pn):

c) Ask a probabilistic question about a random object in the family.

Example: What is the probability that a random partition in P2n is the
degree sequence of a simple graph, when n → ∞?

d) Ask something about a graph defined over the set of objects.
Example: Put and edge between the partitions p1 and p2 iff:
increasing a part of p1 by 1 and decreasing another part by 1 gives p2.
Is there a Hamiltonian path in this graph?

Outline 7

I. Enumerative and Algebraic Combinatorics (EAC)

II. Three results on EAC problems motivated by Computer Science tasks:

1. Sorting
2. Searching
3. Random sampling

III. Two results explaining surprising combinatorial observations.

- - - - - - - - - -

IV. Future work
– Reinforcement learning for mathematical conjectures.

Enumerative and Algebraic Combinatorics (EAC) 8

Enumerative Combinatorics. What is it all about?:

Counting things that are difficult to count!

Algebraic Combinatorics:

Studies combinatorial structures using algebraic techniques.

Founding of EAC 9

Prior to 1960, EAC was considered to be a set of ad-hoc problems without a
unifying theory!

Gian-Carlo Rota had a major contribution to the change.

Main topics developed by Rota (and students):

– partially ordered sets
– matroid theory
– symmetric functions
– finite operator calculus

EAC and TCS 10

Nowadays, EAC has gained traction, because of its applications to
Theoretical Computer Science.

Here is a quote from Institute of Advanced Study’s website (2025):

The tight connection between Discrete Mathematics and Theo-
retical Computer Science, and the rapid development of the latter
in recent years, led to an increased interest in Combinatorial tech-
niques.... There are already well developed enumeration methods,
some of which are based on deep algebraic tools.

1. Application to sorting 11

Background: Avoiding patterns in permutations.

· Sn - the set of permutations of size n.

Example: 4172365 ∈ S7.

· Permutation π contains a permutation p as a pattern, if there is a
subsequence λ of π with elements in the same relative order as the
elements of p.
Example: 32514 contains the pattern 231.

32514 contains the pattern 132.

· Otherwise, π avoids p. We will write π ∈ Av(p).
Example: 32514 avoids the pattern 123.

1. Application to sorting 11

Background: Avoiding patterns in permutations.

· Sn - the set of permutations of size n.

Example: 4172365 ∈ S7.

· Permutation π contains a permutation p as a pattern, if there is a
subsequence λ of π with elements in the same relative order as the
elements of p.
Example: 32514 contains the pattern 231.

32514 contains the pattern 132.

· Otherwise, π avoids p. We will write π ∈ Av(p).
Example: 32514 avoids the pattern 123.

1. Application to sorting 11

Background: Avoiding patterns in permutations.

· Sn - the set of permutations of size n.

Example: 4172365 ∈ S7.

· Permutation π contains a permutation p as a pattern, if there is a
subsequence λ of π with elements in the same relative order as the
elements of p.
Example: 32514 contains the pattern 231.

32514 contains the pattern 132.

· Otherwise, π avoids p. We will write π ∈ Av(p).
Example: 32514 avoids the pattern 123.

Data structures as sorting devices 12

Knuth was the first to ask:

“Which input permutations can be sorted with the classical data structures
stack, queue and deque?”

O I

stack

O

I

queue

O I

O I

deque

Example: stack sorting 13

52143

Example: stack sorting 13

21435

Example: stack sorting 13

143
5
2

Example: stack sorting 13

43

5
2
1

Example: stack sorting 13

43
5
21

Example: stack sorting 13

43512

Example: stack sorting 13

3
5
412

Example: stack sorting 13

5
4
312

Example: stack sorting 13

12345

Example: stack sorting 13

12345

Which permutations are stack-sortable?

stack- and deque-sortable permutations 14

Theorem 1 (Knuth, 1968)
π is stack-sortable if and only if π ∈ Av(231).

Theorem 2 (Pratt, 1973)
π is deque-sortable if and only if it avoids certain infinite set of patterns.

But how about sorting by a queue??

stack- and deque-sortable permutations 14

Theorem 1 (Knuth, 1968)
π is stack-sortable if and only if π ∈ Av(231).

Theorem 2 (Pratt, 1973)
π is deque-sortable if and only if it avoids certain infinite set of patterns.

But how about sorting by a queue??

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

213645

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

136452

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

364521

cut

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

364512

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

64512 3

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

645123

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

45123 6

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

5123 64

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

123 645

cut

Sorting by a queue and cuts 15

Trivially, the only queue-sortable permutation is the identity!

But what if we consider a special queue that can do cuts?

Example:

123456

Two results on sorting by cuts 16

Theorem 3 (D., 2022)
The cut-sortable permutations are the 321-avoiding separable permutations,
i.e., those in the set Avn(321, 2413, 3142).

Definition (cost of permutation)

cost(π) := minimum number of times a queue performing cuts has to be
used to sort π.

Theorem 4 (D., 2022)
cost(π) ≤ ⌈ n

2⌉, for any π ∈ Sn.

Conjecture (D., 2022)

By In-shuffles and Monge shuffles, one can sort the same number of
permutations, given that every ’pop’ unloads the entire queue.

Two results on sorting by cuts 16

Theorem 3 (D., 2022)
The cut-sortable permutations are the 321-avoiding separable permutations,
i.e., those in the set Avn(321, 2413, 3142).

Definition (cost of permutation)

cost(π) := minimum number of times a queue performing cuts has to be
used to sort π.

Theorem 4 (D., 2022)
cost(π) ≤ ⌈ n

2⌉, for any π ∈ Sn.

Conjecture (D., 2022)

By In-shuffles and Monge shuffles, one can sort the same number of
permutations, given that every ’pop’ unloads the entire queue.

2. Application to searching 17

Goal: Efficient search for random nodes in plane (ordered) trees.

level 0

level 1

level 2

level 3

Tn := the set of plane trees with n edges.

Example: The trees in T3:

2. Application to searching 17

Goal: Efficient search for random nodes in plane (ordered) trees.

level 0

level 1

level 2

level 3

Tn := the set of plane trees with n edges.

Example: The trees in T3:

The general problem 18

Assume that:

– We are at the root of some unknown T ∈ Tn.

– There is a target node x ∈ T that we want to find.

How to search for x?

BFS and DFS 19

Breadth-first search (BFS) and Depth-first search (DFS) are the two most
popular searching algorithms.
Example: BFS traversal

0

1 2 3

4 5

7

6

8 9

bfsScore(v) := the number of nodes visited before v when using BFS.

BFS and DFS 20

Breadth-first search (BFS) and Depth-first search (DFS) are the two most
popular searching algorithms.
Example: DFS traversal

0

1 5 6

2 4

3

7

8 9

dfsScore(v) := the number of nodes visited before v when using DFS.

Random target 21

Question 1 (Easy)

Is BFS or DFS faster in expectation, if the target x is chosen uniformly at
random among all nodes in Tn?

Answer: The expected bfsScore and dfsScore are the same!

E
x∈T

T∈Tn

(bfsScore(x)) = E
x∈T

T∈Tn

(dfsScore(x)) =
1
n

n(n + 1)
2

=
n + 1

2
.

Random target 21

Question 1 (Easy)

Is BFS or DFS faster in expectation, if the target x is chosen uniformly at
random among all nodes in Tn?

Answer: The expected bfsScore and dfsScore are the same!

E
x∈T

T∈Tn

(bfsScore(x)) = E
x∈T

T∈Tn

(dfsScore(x)) =
1
n

n(n + 1)
2

=
n + 1

2
.

Fixed level target 22

Question 2

Is BFS or DFS faster in expectation, if the target x is chosen uniformly at
random among all nodes at level ℓ in Tn? That is, can we compare

E
x∈lev(T,ℓ)

T∈Tn

(bfsScore(x)) and E
x∈lev(T,ℓ)

T∈Tn

(dfsScore(x))?

Example: n = 3, ℓ = 2.

Fixed level target 22

Question 2

Is BFS or DFS faster in expectation, if the target x is chosen uniformly at
random among all nodes at level ℓ in Tn? That is, can we compare

E
x∈lev(T,ℓ)

T∈Tn

(bfsScore(x)) and E
x∈lev(T,ℓ)

T∈Tn

(dfsScore(x))?

– For small ℓ, BFS should be faster.

– For large ℓ, DFS should be faster.

Where is the threshold?

TotalB and TotalD 23

We have the following fact.

Theorem 5 (Dershowitz and Zaks, 1980)
The total number of nodes in Tn residing on level ℓ is

2ℓ+ 1
2n + 1

(
2n + 1
n − ℓ

)
.

Thus, it suffices to compare

totalB(n, ℓ) :=
∑
T∈Tn

∑
v∈lev(T,ℓ)

bfsScore(v),

and
totalD(n, ℓ) :=

∑
T∈Tn

∑
v∈lev(T,ℓ)

dfsScore(v).

TotalB and TotalD 23

We have the following fact.

Theorem 5 (Dershowitz and Zaks, 1980)
The total number of nodes in Tn residing on level ℓ is

2ℓ+ 1
2n + 1

(
2n + 1
n − ℓ

)
.

Thus, it suffices to compare

totalB(n, ℓ) :=
∑
T∈Tn

∑
v∈lev(T,ℓ)

bfsScore(v),

and
totalD(n, ℓ) :=

∑
T∈Tn

∑
v∈lev(T,ℓ)

dfsScore(v).

totalD 24

We obtained a surprisingly simple formula for totalD(n, ℓ).

Theorem 6 (D., Minchev, Zhuang, 2024)

For every n ≥ 0 and ℓ ∈ [0, n],

totalD(n, ℓ) = ℓ

(
2n

n − ℓ

)
.

To establish that, we used the well-known accordion bijection.
Then, the so-called cycle lemma to show that it suffice to prove that

n∑
j=l

(
2j − l − 1

j − 1

)(
2n − 2j + l + 1

n − j

)
l + 1

2n − 2j + l + 1
=

(
2n

n − l

)
.

The accordion bijection: plane trees and Dyck paths 25

totalB 26

Finding totalB(n, l) is more complicated.

First, we tried to use Generatingfunctionology!

For a given level l, let

Fl = Fl(x, y, z) :=
∑
T∈T

xk(T)ym(T)zn(T),

where

T :=
⊔

n≥0 Tn,
k = k(T) - nb of nodes in T at levels smaller than l,
m = m(T) - nb of nodes in T at level l,
n = n(T) - nb of edges in T .

totalB 26

Finding totalB(n, l) is more complicated.

First, we tried to use Generatingfunctionology!

For a given level l, let

Fl = Fl(x, y, z) :=
∑
T∈T

xk(T)ym(T)zn(T),

where

T :=
⊔

n≥0 Tn,
k = k(T) - nb of nodes in T at levels smaller than l,
m = m(T) - nb of nodes in T at level l,
n = n(T) - nb of edges in T .

totalB 27

We can show that

Bl = Bl(z) :=
∞∑

n=0

totalB(n, l)zn =

[(∂2

∂x∂y
+

1
2
· ∂2

∂y2 +
∂

∂y

)
Fl

]
x=1, y=1

.

It turns out that Fl and Bl can be expressed in terms of the so-called
Fibonacci polynomials

fn(z) :=
⌊n/2⌋∑
k=0

(
n − k

k

)
zk,

and the Catalan generating function

C = C(z) :=
1 −

√
1 − 4z

2z
.

totalB 27

We can show that

Bl = Bl(z) :=
∞∑

n=0

totalB(n, l)zn =

[(∂2

∂x∂y
+

1
2
· ∂2

∂y2 +
∂

∂y

)
Fl

]
x=1, y=1

.

It turns out that Fl and Bl can be expressed in terms of the so-called
Fibonacci polynomials

fn(z) :=
⌊n/2⌋∑
k=0

(
n − k

k

)
zk,

and the Catalan generating function

C = C(z) :=
1 −

√
1 − 4z

2z
.

totalB 28

Theorem 7 (D., Minchev, Zhuang, 2024)

For all l ≥ 1,

Fl(x, y, z) =
fl−1(−xz)− fl−2(−xz)yzC
fl(−xz)− fl−1(−xz)yzC

and

Bl(z) = zlC3l+1
(

zC
d
dz

fl(−z)− d
dz

fl+1(−z)
)
.

totalB 29

Using additional facts and Lagrange inversion, we obtain:

totalB(n, l) =
⌊(l+1)/2⌋∑

k=1

(−1)k−1k

(
l − k + 1

k

)
3l + 1

n − k + 2l + 2

(
2n − 2k + l + 2

n − l − k + 1

)

−
⌊l/2⌋∑
k=1

(−1)k−1k

(
l − k

k

)
3l + 2

n − k + 2l + 2

(
2n − 2k + l + 1

n − l − k

)
.

But, this formula did NOT help us to compare totalB and totalD ...

totalB - attempt 2 30

Utilizing results of Takács (1999), we obtain

Theorem 8 (D., Minchev, Zhuang, 2024)

For every n ≥ 0 and 0 ≤ ℓ ≤ n, we have

totalB(n, ℓ) =
n(2ℓ+ 1)
n + ℓ+ 1

(
2n

n − ℓ

)
−
(

2n
n − 2ℓ− 1

)
− 2

2ℓ∑
j=ℓ+1

(
2n

n − j

)
.

Via asymptotic bounds for
(2n

n−ℓ

)
and

∑2ℓ
j=ℓ+1

(2n
n−j

)
, we obtain

totalB(n, s
√

n)
4n =

2s√
π

e−s2
− 2

(
Φ
(

2s
√

2
)
− Φ

(
s
√

2
))

+O
(

1√
n

)
,

where Φ denotes the c.d.f. of the standard normal distribution.

Comparing totalB and totalD 31

Using the latter Theorem 8, we prove our main result:

Theorem 9 (D., Minchev, Zhuang, 2024)

As n → ∞, totalB(n, ℓ) ≤ totalD(n, ℓ) if and only if ℓ ≤ C
√

n, where
C ≈ 0.789004 is the unique positive root of the equation

xe−x2
− 2

√
π
(
Φ
(

2x
√

2
)
− Φ

(
x
√

2
))

= 0.

Moreover, there is a unique such threshold, for each n ≥ 1.

We also managed to find an asymptotic formula for totalB(n, l), for an
arbitrary Galton-Watson tree with n edges.

Discrepancy 32

We suspected the threshold is close to the average level of a node in Tn.

Theorem 10 (Flajolet and Sedgewick, 2009)

The average level of the nodes among all trees in Tn is 1
2

√
πn + o(1).

However, 1
2

√
π ≈ 0.8862 > 0.789 ≈ C.

3. Application to random sampling 33

Question
How to generate trees (binary/full binary/ordered) uniformly at random?

Catalan numbers 34

The numbers Cn count:

– Ordered trees with n edges.

– Binary trees with n nodes.

– Full binary trees with n + 1 leaves.

[+ more than 200 other combinatorial objects]

Remy’s beautiful algorithm 35

We have

Cn =
1

n + 1

(
2n
n

)
.

This is equivalent to

(n + 2)Cn+1 = 2(2n + 1)Cn.

Remy’s combinatorial proof of this identity gives a simple
random sampling algorithm!

Remy’s beautiful algorithm 36

(n + 2)Cn+1 = 2(2n + 1)Cn.

You have a random full binary tree with 2n + 1 nodes (and n + 1 leaves).
1. Pick a random node v among {1, 2, . . . , 2n+1}.
2. Pick a random direction d = L|R.
3. Move v in direction d and add a leaf in the other direction.

You got a random tree with n + 2 leaves (one of them marked)!

L L R

Remy’s beautiful algorithm 36

(n + 2)Cn+1 = 2(2n + 1)Cn.

You have a random full binary tree with 2n + 1 nodes (and n + 1 leaves).
1. Pick a random node v among {1, 2, . . . , 2n+1}.
2. Pick a random direction d = L|R.
3. Move v in direction d and add a leaf in the other direction.

You got a random tree with n + 2 leaves (one of them marked)!

L L R

Generalization to forests 37

Forest in Fn,k := a list [T1, . . . ,Tk] of k full binary trees with n leaves in total.

Let |Fn,k| = C(k)
n . Catalan himself showed:

C(k)
n =

k
2n + k

(
2n + k

n

)
.

We prove the following in the spirit of Remy:

Theorem 11
For any k ≥ 2 and n ≥ k,

n(n − k)C(k)
n = (2n − k − 1)(2n − k − 2)C(k)

n−1.

This gives a linear time and space algorithm for sampling of forests in Fn,k!

Generalization to forests 37

Forest in Fn,k := a list [T1, . . . ,Tk] of k full binary trees with n leaves in total.

Let |Fn,k| = C(k)
n . Catalan himself showed:

C(k)
n =

k
2n + k

(
2n + k

n

)
.

We prove the following in the spirit of Remy:

Theorem 11
For any k ≥ 2 and n ≥ k,

n(n − k)C(k)
n = (2n − k − 1)(2n − k − 2)C(k)

n−1.

This gives a linear time and space algorithm for sampling of forests in Fn,k!

Generalization to forests 37

Forest in Fn,k := a list [T1, . . . ,Tk] of k full binary trees with n leaves in total.

Let |Fn,k| = C(k)
n . Catalan himself showed:

C(k)
n =

k
2n + k

(
2n + k

n

)
.

We prove the following in the spirit of Remy:

Theorem 11
For any k ≥ 2 and n ≥ k,

n(n − k)C(k)
n = (2n − k − 1)(2n − k − 2)C(k)

n−1.

This gives a linear time and space algorithm for sampling of forests in Fn,k!

Explaining surprising combinatorial observations 38

Another main theme of my research!

Two examples (work with students):

1. Chess tableaux and powers of two.

2. The 4321-avoiding involutions in Sn and
the (n, n + 1, n + 2) - core partitions are equinumerous!

Chess tableaux and powers of two 39

A Standard Young Tableaux (SYT) for λ ⊢ n := a filling with 1, 2, . . . , n of
the Young diagram for λ (s.t., the rows and columns are increasing).

A Chess tableaux := a SYT with alternating parity of the entries.

a Chess tableaux for the partition (6, 4, 1).

Chess Tableaux arise in representation theory and mathematical physics.

Chess tableaux and powers of two 40

Let SYT(λ) := the nb of SYTs for the partition λ.

Let Chess(n) := the nb of Chess tableaux for the partition λ.

Famously, the RSK correspondence implies∑
λ⊢n

SYT(λ)2 = n!

Chow, Eriksson and Fan looked at the values of
∑
λ⊢n

Chess(λ)2.

They noticed that this sum is divisible by unusually high powers of 2:

[The first few values of
∑
λ⊢n

Chess(λ)2]

Chess tableaux and powers of two 40

Let SYT(λ) := the nb of SYTs for the partition λ.

Let Chess(n) := the nb of Chess tableaux for the partition λ.

Famously, the RSK correspondence implies∑
λ⊢n

SYT(λ)2 = n!

Chow, Eriksson and Fan looked at the values of
∑
λ⊢n

Chess(λ)2.

They noticed that this sum is divisible by unusually high powers of 2:

[The first few values of
∑
λ⊢n

Chess(λ)2]

Chess tableaux and powers of two 41

Using a connection between Chess tableaux and certain representation of Lie
algebras, we prove the following.

Theorem 12 (Labelle, D., 2023)
Let a(n) := the nb of triangular numbers between 1 and n
(equivalently, a(n) is the largest integer m such that m(m+1)

2 ≤ n).

Then,
∑
λ⊢n

Chess(λ)2 is divisible by 2n−a(n).

Remark: It is known that 2n−b(n) divides n!, where b(n) is the number of 1s
in the binary representation of n.
Since b(n) ≤ log(n + 1) and a(n) grows as

√
n, the observation of Chow et

al. is not that surprising!

4321-avoiding involutions and core partitions 42

Involution – a permutation p, such that p2 = id
(equivalently, p has cycles lengths 1 or 2).

Example. 4261735 = (14)(2)(36)(57).

4321-avoiding involutions and core partitions 42

Involution – a permutation p, such that p2 = id
(equivalently, p has cycles lengths 1 or 2).

Example. 4261735 = (14)(2)(36)(57).

t-core partition – all of its hook numbers are not divisible by t.

The Young diagram of (4, 2, 2, 1) and the hook number H(1, 1) = 7.

4321-avoiding involutions and core partitions 42

Involution – a permutation p, such that p2 = id
(equivalently, p has cycles lengths 1 or 2).

Example. 4261735 = (14)(2)(36)(57).

t-core partition – all of its hook numbers are not divisible by t.

7
4
3
1

5
2
1

2 1

All hook numbers for the partition (4, 2, 2, 1).

∗ core partitions were used to prove p(5n+4) ≡ 0 mod 5 and other Ramanujan’s congruences.

4321-avoiding involutions and core partitions 43

In(4321) := the set of involutions in Sn avoiding the pattern 4321.

CoreP(n, n + 1, n + 2) := partitions, which are n, n + 1, and n + 2-core.

Previous results show that both |In(4321)| and |CoreP(n, n + 1, n + 2)| are
counted by the Motzkin number Mn.

In 2022, Tewodros Amdeberhan asked for a bijective proof.

4321-avoiding involutions and core partitions 44

We found a direct such bijection [Schleppy, D., 2024].
Example:

0 1 2 3 4 5 6 7 8 9

1

2

The Motzkin path corresponding to π = 215836947 = (12)(35)(48)(6)(79).

The (9, 10, 11)−core partition corresponding to π.

Future work 45

Directions:

– More EAC problems with applications to Computer
Science.

– Explaining more surprising conjectural results on
combinatorial objects.

– Applications of Machine Learning to Combinatorics.

On one exciting Reinforcement Learning idea 46

Reinforcement Learning (RL) := a type of machine learning, where an agent
learns to make decisions in an unknown environment.
[it makes actions, get rewards and tries to maximize the long-term reward]

RL turned out to be extremely successful in games!
Here is little more about that...

Humans vs Computers in games 47

In 1994, a team of scientists created Chinook - a checkers program that beat
the world champion Marion Tinsley (who had 5 loses during 1950–1992)

In 1997, The IBM software Deep Blue defeated the strongest chess player at
that time, Garry Kasparov, by 3.5 to 2.5 points. This was considered a
milestone in the history of AI!

Humans vs Computers in games 48

The next milestone was the game of Go!
In 2016, The Google DeepMind software, AlphaGo, beat Lee Sedol (the
player ranked second in international titles) by 4-1.

In 2017, DeepMind published a paper on AlphaGo Zero - a Go program
training itself by self-play (not using human knowledge).
AlphaGo Zero beat AlphaGo 100 games to 0, after 3 days of training.

Humans vs Computers in games 49

In 2018, DeepMind published a Nature article describing the more general
program AlphaZero! It achieved super-human performance in
Chess, Shogi and Go after a few hours of training.

AlphaZero makes surprising moves and sacrifices. Today’s grandmasters
improve their game by looking at ideas in games played by AlphaZero!

AlphaZero uses the so-called Deep RL (how?).

RL for combinatorial conjectures 50

In 2021, Wagner proposed an exciting idea:

To disprove a conjecture in combinatorics: define the construction of
the corresponding extremal object as a game and use RL to train an

agent to play that game (well).

He disproved several conjectures w/ that idea. Here is an example:

Conjecture (Disproved)

Let G be a connected graph on n ≥ 3 vertices, with largest eigenvalue λ1
and matching number µ. Then

λ1 + µ ≥
√

n − 1 + 1.

RL for combinatorial conjectures 51

The game:

1. Start with the empty graph and a fixed order of the edges.

2. Choose to take or skip each of the edges, given your previous choices.
3. The neural net tries to learn the optimal P(take).

The reward is −(λ1 + µ), obtained at the end of each episode.

The agent included edges 1, 2, 3, 6, and rejected edges 4, 5 (dotted).

My idea – using KAN with Q-learning 52

The most popular RL method is Deep Q-learning (DQN).

However, Wagner does not use DQN since it requires a lot of time to train.

Idea: Use Wagner’s approach with DQN and the novel KAN architecture.

The KAN architecture versus the standard MLP architecture.

My idea – using KAN with Q-learning 52

The most popular RL method is Deep Q-learning (DQN).

However, Wagner does not use DQN since it requires a lot of time to train.

Idea: Use Wagner’s approach with DQN and the novel KAN architecture.

The KAN architecture versus the standard MLP architecture.

Why KAN? 53

Theorem 13 (Kolmogorov-Arnold Representation Theorem)

Any multivariate function can be decomposed into sums and compositions of
univariate functions. That is,

Advantageous to the standard MLP architechture:
– fewer parameters (thus faster to train).

– better interpretability.

Thank You 54

THE END

