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Voting Theory

What is voting theory?
Question
Let B be a set of ballots and O be a set of outcomes. What is a
voting system?

Example
B and O are both a set of candidates A for governor. Use the
usual plurality vote.

Example
B is the set of linear orders L(A) and O is the power set of A
(allowing for ties), where the procedure is instant-runoff voting,
Borda count, or something else.

In both of these cases, note that we really just consider how many
people vote for each ballot.
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Voting Theory

What is voting theory?
Principle
Let B be a set of ballots and O be a set of outcomes. We can
think of (anonymous) voting as functions from the set of profiles
on B (elements of Q|B|) to (the power set of) O.

Example
O is the set of 2-person committees to organize this seminar series,
and B is the set of possible 3-person groups of faculty and
graduate students at Rutgers. (Any procedure.)

Example
If A is the set of all programming languages, let B be the set of
ballots ranking your top five favorites, and O be the set of full
linear orders L(A). (Any procedure.)
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Voting Theory

What is voting theory?

We should think of voting theory as the mathematical study of
functions which aggregate preferences in some meaningful (to
humans) way. But there are many things along these lines beyond
just political voting systems, from Netflix movie suggestions to
allocation of economic resources in a company – or teaching
resources in a department!
Our goal in this talk is as follows:

Briefly explain how representation theory connects to voting.
Introduce a novel outcome, cyclic orders, and some
ballots/procedures related to this.
Discuss experimental work done by my students on this, as
well as theoretical results.
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Linear Voting

Many (but certainly not all) voting systems can be profitably
thought of as linear transformations on Q-vector spaces.

Example
Let A be the set of candidates for governor, with B = A = O.
Then if we assign one point to each candidate for each ballot they
receive, summing these we obtain a vector of points in Q|O|, from
which the argmax gives the winner.

Example
Let A be as above, but B is a set of approval ballots, where a
voter can mark as many ‘approved’ candidates as they wish. Now
use the same procedure as above.

For a given O there could be different ballots B, and vice versa.
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Linear Voting

Famous Example
Let A be the set of candidates for Holy Roman Emperor, and B be
the set of full rankings L(A). Assign one point for the candidate
at the bottom of a voter’s ranking, two points for the next one, up
through n = |A| points for their top-ranked candidate. Then take
the argmax of the summation outcome vector.

If we order ballots for A = {A,B,C} as A � B � C , A � C � B,
C � A � B, C � B � A, B � C � A, B � A � C , then the
following matrix assigns points in this system.

M =

3 3 2 1 1 2
2 1 1 2 3 3
1 2 3 3 2 1


With p = (2, 1, 0, 0, 0, 1)T we get Mp = (10, 8, 5)T and A is the
winner.
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Linear Voting

Famous Example
Let A be the set of candidates for Holy Roman Emperor, and B be
the set of full rankings L(A). Assign one point for the candidate
at the bottom of a voter’s ranking, two points for the next one, up
through n = |A| points for their top-ranked candidate. Then take
the argmax of the summation outcome vector.

This method is due to Nicolas Cusanus (15th century) and J.-C.
Borda (18th century), and is usually called the Borda Count. There
are many other similar points-based systems – you may have used
one yourself in voting in a professional society, for Parliament if
you are from Nauru or Slovenia, or for the Eurovision song contest.
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Bringing in Groups

It should be clear that A has an action of the symmetry group Sn.
Note that Sn can be applied, by extension, to both the set of
ballots B as well as the outcomes O.
Further, by linearity, we can let Sn act on the set of profiles as
well as the outcome vectors.

Even the matrix seems very symmetric.

M =

3 3 2 1 1 2
2 1 1 2 3 3
1 2 3 3 2 1
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Bringing in Groups

So it would make sense to ask whether the voting system itself
behaves nicely under this symmetry.

Example
Let’s use the permutation σ = (AB), which changes
p = (2, 1, 0, 0, 0, 1)T to σp = (1, 0, 0, 0, 1, 2)T . Then with M as
before:

M =

3 3 2 1 1 2
2 1 1 2 3 3
1 2 3 3 2 1


we get Mp = (8, 10, 5)T and B is the winner.

It turns out that this M is invariant under S3, in the sense that if
we uniformly change the names of the candidates on everyone’s
ballot, the outcome is also changed by exactly this permutation.
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Bringing in Groups

In the linear context, this group invariance is identical to a famous
voting theory criterion.

Fact
Given a choice procedure F on profiles p on B, if

σ(F (p)) = F (σ(p)) for all σ and p ,

under the action of Sn, then we say the procedure is neutral.

Technical note: For a given profile or outcome, we must define
σ(p)[x ] = p[σ−1x ].
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Representations and Voting

Now comes the real firepower. Summarizing the properties:
The sets of profiles P and vote totals Q are acted on by Sn

Our voting function F is a linear procedure (e.g. points-based
voting rule) over Q
σ(F (p)) = F (σ(p))

Fact
So we can say that P and Q are QSn-modules, or representations.
Further, we can say that F is a QSn-module homomorphism.

We can now invoke standard facts about representations.
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Representations and Voting

Fact
Every (finitely generated) QSn-module decomposes (in a
computable way) as a direct sum of a finite set of irreducible
QSn-submodules. This decomposition is unique up to multiple
copies of isomorphic submodules.

Fact
For any QSn-module homomorphism F : M → N and an
irreducible submodule U ⊆ M, either F (U) = 0, or U ' F (U) ⊆ N
is an isomorphism (in fact, multiplication by a constant).

(The latter is essentially the famous Schur’s Lemma with the note
that Q is a splitting field for Sn.)
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Representations and Voting

Suppose B = L(A) and O = A. Then P is the n!-dimensional
regular representation of Sn (over Q) and Q ' S(n) ⊕ S(n−1,1) (a
permutation representation).

Example

For n = 3, we have P ' Q6 ' S(3) ⊕ S(2,1)⊕2
⊕ S(1,1,1) and

Q ' Q3 ' S(3) ⊕ S(2,1).

Example, details
S(3) is just the space spanned by (1, 1, 1, 1, 1, 1)T .
A typical S(2,1) profile vector is one with one voter for each ranking
with A in first place and ‘negative one voters’ for each ranking
with A in last place; the outcome S(2,1) vectors are similar, such as
two points for A and ‘negative one points’ for B and C .
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Representations and Voting

If our function is from some huge representation to
Q ' S(n) ⊕ S(n−1,1), then everything in the profile space that isn’t
one of these irreducible submodules must be killed.
Example, continued

For n = 3, we have P = S(3) ⊕ S(2,1)⊕2
⊕ S(1,1,1), so any system

will kill half of the S(2,1) and all of the S(1,1,1)

Fact
The S(1,1,1) component is responsible for all pairwise-voting
paradoxes (Saari many papers, Daugherty et al. (2009)), and so
they are impossible in such methods.
Among all such systems, the Borda Count keeps the most
‘voting-relevant’ S(2,1) piece (Daugherty et al. (2009); see also
Crisman (2014) for a different interpretation).
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Gaming at the Table

Let’s introduce what we’d like to analyze with these tools. Suppose
we are seating four professional poker players at their table.

JN AH K-D MM

As with many combined games of skill and chance, the order of
seating matters a great deal, especially if there are many rounds of
play, with an equal number of times being the starting player.
Notice that it’s only the relative
order that matters, at least in
the long run. These two orders
are equivalent.
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Cyclic Orders

Formally, we can say the following.

Definition
The set of permutations on a finite set A = {A,B,C , · · · } has the
equivalence relation where A � B � C � D is identified with
B � C � D � A, and so forth (under the (right) action of the
cyclic group of order n).
The set of equivalence classes is called the set of cyclic orders on
A. If we have n candidates, we may call the set of cyclic orders
COn.

There are (n − 1)! cyclic orders on a set with n elements, and we
denote them for convenience as ABCDA or ABCD, depending on
context.
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Gaming at the Table

How does voting connect? Suppose the spectators are making side
bets and are allowed to vote on their favorite order!

1 2 3

4 5 6

There are many similar settings where this could be useful!
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Cyclic Orders

Cyclic Orders for n = 4
Here are the cyclic orders for n = 4, A = {A,B,C ,D}.

1

A C

BD 2

A D

BC 3

A B

CD

4

A D

CB 5

A B

DC 6

A C

DB

Note the ordering of the cyclic orders: ACBD(A), ADBC(A),
ABCD(A), ADCB(A), ABDC(A), ACDB(A).
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Your ballot is a cyclic order

The most obvious ballot is to ask each voter for just one cyclic
order.
Here are a few of many possible choice procedures from that ballot
set, all of which implicitly pick the argmax of points received.

One point for the cyclic order on your ballot, and one point
for its reversal (e.g. ABCDA and ADCBA)
One point for the cyclic order on your ballot and minus one
point for its reversal – if the direction really matters
Two points for the cyclic order on your ballot and one point
for its reversal – order and adjacency both matter
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Your ballot is a cyclic order

In this case, we can think of such procedures in a very simple way.

Organize the points into a matrix M.
Let a profile be considered as a column vector, e.g.
p = (2, 1, 0, 0, 0, 1)T .

(Recall the explicit order ACBD, ADBC , ABCD, ADCB,
ABDC , ACDB.)

Compute the vector Mp for resulting point totals.
The final choice (or choices, if ties) is the argmax of the vector Mp.
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Your ballot is a cyclic order

Example
Here is the matrix in question for the procedure, ‘Two points for
the cyclic order on your ballot and one point for its reversal’:

M =



2 1 0 0 0 0
1 2 0 0 0 0
0 0 2 1 0 0
0 0 1 2 0 0
0 0 0 0 2 1
0 0 0 0 1 2


With p = (2, 1, 0, 0, 0, 1)T we get Mp = (5, 4, 0, 0, 1, 2)T .
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Points-based voting rules, again

This whole setting is nothing more than the previous points-based
voting rules, but now with both B = O = COn the set of cyclic
orders! The matrix is a fancy way of organizing information such
as, ‘If you voted for ABCD, you give two points to ABCD but one
point to ADCB.’

Further, there is once again a (left) group action on B = O.

Example (n = 3)
The permutation σ = (ABC) leaves the cyclic order ABCA
invariant.
But (AB) applied to ABCA would be BACB = ACBA, which is
certainly different.

Time to see what the representation theory tells us about the
systems.
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Back to Cyclic Orders

Decomposition for n = 4
The space of profiles decomposes into T ⊕ U ⊕ V , where

T has basis {(1, 1, 1, 1, 1, 1)T}
U has basis
{(1,−1, 0, 0, 0, 0)T , (0, 0, 1,−1, 0, 0)T , (0, 0, 0, 0, 1,−1)T},
V is the (two-dimensional) span of {(2, 2,−1,−1,−1,−1)T ,
(−1,−1, 2, 2,−1,−1)T , (−1,−1,−1,−1, 2, 2)T}.

(For the cognoscenti: the decomposition is S(4) ⊕ S(2,1,1) ⊕ S(2,2).)

Thus every neutral, points-based voting procedure on this space is
determined by some constants where t → kT t, u → kUu, and
v → kV v , for t ∈ T , u ∈ U, v ∈ V .
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Back to Cyclic Orders

As a result of the previous slide, we have the following fact.

6× 6 matrix form
Every matrix must have the following form to assure neutrality. a b c c c c

b a c c c c
c c a b c c
c c b a c c
c c c c a b
c c c c b a



More facts are now fairly easy to come by.

Theorem
For a ‘Borda-like’ system, the set of profiles which do not impact
the election at all (kernel) is T ⊕ V .
For a ‘vote for one and its reversal’ system, the kernel is U.

There are nice results for n = 5 too, but we will skip them for now.
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Where’s the experimenting?

Let’s take stock.
We’ve connected voting and algebra.
We’ve introduced cyclic orders, and voting on them.
We haven’t seen any experimental work.

(Not strictly true; finding bases with voting-theoretic meaning
required a fair amount of playing around with different
possibilities, and checking whether they were bases of the same
subspaces was computer-aided.)

So let’s see where this enters in the story.
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More interesting ballots

Consider once again the poker-type example.
Could we have a ballot that gives a little more
agency than just picking your favorite order?

Granted that you are betting on one player1, it’s reasonable to say
you would want to put a weak player on their left and a stronger
player on their right.

In this case, we can suggest ballots that look
like A{D,C}, where we interpret this as desiring
A to have D its right, and C to its left. (We
assume play goes clockwise.)

?
?

?

A
CD

1We do not endorse gambling here as such, but such meta-betting is indeed
offered for the final round of the World Series of Poker.
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More interesting ballots

In this case, we can suggest ballots that look like A{D,C}, where
we interpret this as desiring A to have D its right, and C to its left.

We call this a ROLO ballot.
With four agents, ROLO has twenty-four total possible
ballots: {A{D,C},B{C ,D}, . . . ,A{B,C}}
The outcome space should still be the set of six cyclic orders,
and each ballot clearly indicates a preferred outcome
(e.g. A{D,C} would like to see ACBD).
However, we now know more details about why each voter
prefers a particular order!
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More interesting ballots

A simple thing to do would be to grant, for each voter, one point
to any cyclic order with either of the two desired criteria.

The ROLO(2,1) procedure
The ROLO(2,1) procedure takes a ROLO ballot A{D,C}, and
then gives two points to ACBD, but one point each to ACDB and
ABCD.

Here is the full matrix for ROLO(2,1). 2 2 2 2 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 2 2 2 2 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 1 2 2 2 2 0 0 0 0 0 1 1 0 1 0 1 0
0 1 0 1 0 1 1 0 0 0 0 0 2 2 2 2 1 0 0 1 0 1 0 1
0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 2 2 2 2 0 0 0 0
1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0 2 2 2 2


It’s a handful, but still usable, and very similar theorems about
decomposition of the profile and outcome spaces can be had. But
...
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Finding Ties

Before, I mentioned spaces in the kernel of these procedures. But
in reality, we do not have ‘negative voters’!

We can investigate what nonnegative integer profiles lead to
complete ties between all six possible cyclic orders. The highly
symmetric nature of the matrix makes it easy to pick out examples.
But representation theory cannot answer directly what all of them
must be, since it only deals with vector spaces. Here,
experimentation was crucial – particularly for students who didn’t
yet know any group theory to be able to essentially reconstruct the
action of the symmetric group, without knowing that was what
they were doing!
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Finding Ties

Raw data:

34 / 40 Crisman et al. Voting on Cyclic Orders



Finding Ties

Organizing data by permutations:
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Finding Ties

Graphically organizing data:
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Finding Ties

Analyzing data:

There are still
dimensions
missing! There
is still a lot
of room for
research into
what form all
complete ties
must take,
though my
students have
moved on to
other pursuits.
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Number Five is Alive

Cyclic Orders for n = 5
For A = {A,B,C ,D,E} we have the following 24 options:

{ABCDEA,AEDCBA,ABCEDA,ADECBA,ABDCEA,AECDBA,
ABDECA,ACEDBA,ABECDA,ADCEBA,ABEDCA,ACDEBA,
ACBDEA,AEDBCA,ACDBEA,AEBDCA,ACEBDA,ADBECA,
ADBCEA,AECBDA,AEBCDA,ADCBEA,ACBEDA,ADEBCA}

For n = 5, characters help decompose the space as

T5 ⊕ S ⊕ H1 ⊕ H2 ⊕ J2

where each of these subspaces is irreducible (of dimensions) 1, 1,
5, 5, and 6 (squared), respectively. These spaces do have meaning
in terms of the voting profiles.
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Number Five is Alive
Every procedure comes from this 24× 24 matrix

a b c d c d e f e f d c c d e f g h e f c d f e
b a d c d c f e f e c d d c f e h g f e d c e f
c d a b e f d c c d e f f e g h e f c d e f c d
d c b a f e c d d c f e e f h g f e d c f e d c
c d e f a b c d d c e f e f d c e f c d f e h g
d c f e b a d c c d f e f e c d f e d c e f g h
e f d c c d a b e f c d c d f e d c f e h g f e
f e c d d c b a f e d c d c e f c d e f g h e f
e f c d d c e f a b c d h g e f d c f e d c e f
f e d c c d f e b a d c g h f e c d e f d c f e
d c e f e f c d c d a b f e d c f e h g f e c d
c d f e f e d c d c b a e f c d e f g h e f d c
c d f e e f c d g h f e a b c d e f d c f e c d
d c e f f e d c h g e f b a d c f e c d e f d c
e f h g d c f e e f d c c d a b d c e f d c e f
f e g h c d e f f e c d d c b a c d f e c d f e
h g e f e f d c d c f e e f d c a b d c e f c d
g h f e f e c d c d e f f e c d b a c d f e d c
e f c d c d f e f e g h d c e f d c a b d c f e
f e d c d c e f e f h g c d f e c d b a c d e f
c d e f f e g h c d f e f e d c e f d c a b d c
d c f e e f h g d c e f e f c d f e c d b a c d
f e c d g h f e e f c d c d e f c d f e d c a b
e f d c h g e f f e d c d c f e d c e f c d b a
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