

A heuristic link between divisor counts and prime densities in sequences

Benoît Cloitre

Rutgers Experimental Mathematics Seminar

Thu., Sept. 18, 2025

The arithmetic tableau

In the sequel, we remove the 1's since they are not proper divisors.

Example: $m = 12$ (composite)

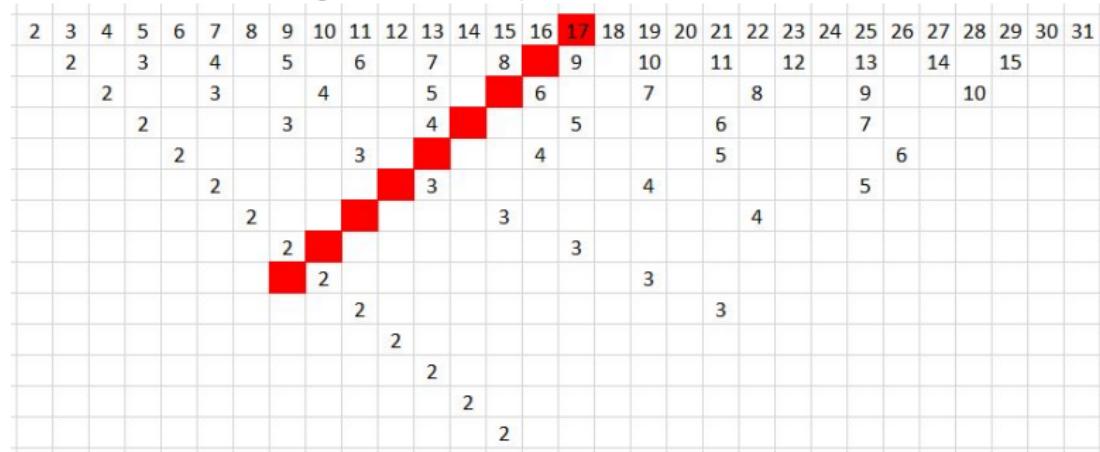
The SW diagonal hits the lattice points corresponding to proper divisors: (line 2=6), (line 3=4), (line 4=3), (line 6=2).

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	15
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	14	15		
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	10
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	7
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	6
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	5
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	4
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	2
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	

Example: $m = 17$ (prime)

The SW diagonal starting from 17 hits no lattice points.

This is the visual signature of a prime in the tableau.



A heuristic idea: The Divisor Mass Ratio

Consider the total divisor mass up to N :

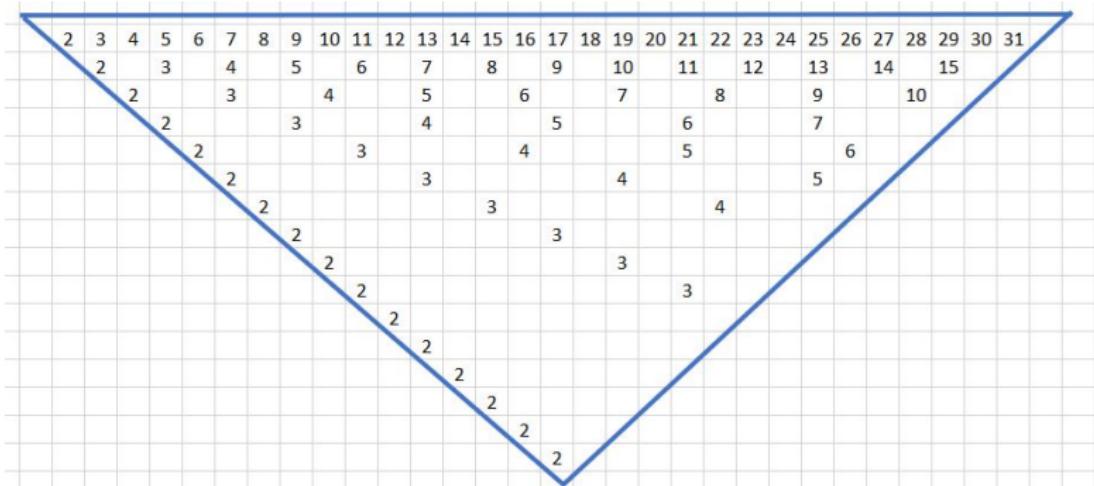
$$s(N) = \sum_{m \leq N} \tau(m).$$

We define the *Divisor Mass Ratio* (as $N \rightarrow \infty$):

$$R(N) = \frac{N}{s(N)}.$$

- ▶ **Heuristic interpretation:** a gauge of how sparse proper divisors are in the arithmetic tableau; it mimics the probability of avoiding a proper-divisor hit when randomly sampling a filled cell in the triangular grid below (here $N = 31$).

The heuristic interpretation of $R(N)$



The Central Question

Because “avoiding any proper divisor from $\{1, \dots, N\}$ ” intuitively feels like “hitting a prime,” we compare the *Divisor Mass Ratio* to the *Prime Density* on $\{1, \dots, N\}$:

$$\Pi(N) = \frac{\pi(N)}{N}.$$

Question: Does the proxy predict the prime density?

$$R(N) = \frac{N}{\sum_{m \leq N} \tau(m)} \sim \frac{\pi(N)}{N} = \Pi(N) \quad ?$$

Baseline check: The Prime Number Theorem

Classical asymptotics:

- ▶ **Divisor Side (Dirichlet's divisor sum):** $\sum_{m \leq N} \tau(m) \sim N \log N$.

$$R(N) \sim \frac{N}{N \log N} = \frac{1}{\log N}.$$

- ▶ **Prime Side (PNT):**

$$\Pi(N) \sim \frac{1}{\log N}.$$

Hence, $R(N) \sim \Pi(N)$. Is this just a coincidence, or a structural link?

Test Case: Arithmetic Progressions (APs)

Let $u(k) = ak + b$ with $\gcd(a, b) = 1$. Let $s_u(n) = \sum_{k=1}^n \tau(u(k))$ be the divisor mass for the first n terms and $R_u(n) = n/s_u(n)$.

- ▶ **Divisor Side:** Rigorous analysis shows

$$s_u(n) \sim \frac{\varphi(a)}{a} n \log n.$$

- ▶ Hence

$$R_u(n) \sim \frac{a}{\varphi(a)} \cdot \frac{1}{\log n}.$$

- ▶ **Prime Side (PNT in AP):**

$$\Pi_u(n) = \frac{\pi_u(n)}{n} \sim \frac{a}{\varphi(a)} \cdot \frac{1}{\log n}.$$

Therefore we have again $R_u(n) \sim \Pi_u(n)$.

Test Case: Residue Slices

Fix M and a subset of invertible classes $\mathcal{C} \subseteq (\mathbb{Z}/M\mathbb{Z})^\times$. Let U_n be the first n integers lying in \mathcal{C} .

► Divisor side:

$$s_u(n) \sim \frac{\#\mathcal{C}}{M} n \log n \quad \Rightarrow \quad R_u(n) = \frac{n}{s_u(n)} \sim \frac{M}{\#\mathcal{C}} \cdot \frac{1}{\log n}.$$

► Prime side:

$$\Pi_u(n) = \frac{\pi_u(n)}{n} \sim \frac{M}{\varphi(M)} \cdot \frac{1}{\log n}.$$

Conclusion. $\Pi_u(n) \sim \underbrace{\frac{\#\mathcal{C}}{\varphi(M)}}_{=:w \text{ (constant)}} R_u(n)$. In particular, if

$\mathcal{C} = (\mathbb{Z}/M\mathbb{Z})^\times$ then the proxy matches exactly.

Other balanced families

Examples where the first-order match persists i.e. $R_u(n) \sim \Pi_u(n)$.

- ▶ $u(k) = \lfloor \alpha k \rfloor$, $\alpha > 1$ irrational (Beatty sequence).
- ▶ $u(k) = k + \lfloor \sqrt{k} \rfloor$.
- ▶ Mild inhomogeneities with bounded gaps and stable residue statistics.

Admissibility and growth

We restrict the scope to sequences $u(k)$ satisfying:

- ▶ **Admissibility:** No fixed prime divides all large values.
- ▶ **Moderate growth:** Linear or polynomial growth.
- ▶ **Regularity:** Stable distribution in invertible classes mod some M .

Conjecture 1: Balanced Continuity

Conjecture A (Balanced Continuity): For admissible, regular sequences of moderate growth with stable local properties, the prime density equals the divisor mass ratio asymptotically.

$$\Pi_u(n) \sim R_u(n).$$

$$\frac{\pi_u(n)}{n} \sim \frac{n}{s_u(n)}.$$

Stable Continuity: Shifted primes $u(k) = p_k + 2$

We examine the density of primes in the sequence of shifted primes (related to Twin Primes).

- ▶ **Divisor Side (Titchmarsh Divisor Problem):**

$$s_u(n) = \sum_{k \leq n} \tau(p_k + 2) \sim C_3 n \log n.$$

Proxy: $R_u(n) \sim 1/(C_3 \log n)$.

- ▶ **Prime Side (Hardy-Littlewood):**

$$\Pi_u(n) \sim \frac{K_3}{\log n}, \quad K_3 = 2 C_{\text{twin}}.$$

The scale is correct, but the constants differ. $\Pi_u(n) \sim L \cdot R_u(n)$. The multiplier is $L = K_3/C_3$ (Stable, Biased case).

Stable Continuity: Quadratic values $u(k) = k^2 + 1$

Related to Landau's 4th problem.

- ▶ **Divisor Side (Hooley, McKee):**

$$s_u(n) = \sum_{k \leq n} \tau(k^2 + 1) \sim C_4 n \log n.$$

$C_4 > 0$ is explicit (Euler product).

- ▶ **Prime Side (Bateman–Horn):**

$$\Pi_u(n) \sim \frac{K_4}{\log n}.$$

Again a stable, bounded multiplier $L = K_4/C_4$.

Conjecture 2: Stable Continuity

Conjecture B (Stable Continuity): For admissible sequences corresponding to stable configurations (e.g., fixed polynomials), there exists a constant $L > 0$ such that

$$\Pi_u(n) \sim L \cdot R_u(n).$$

If $L = 1$, it is balanced (Conjecture A). If $L \neq 1$, it is stable (biased).

Oscillatory Continuity: Goldbach Slices (Divisor Side)

We examine the family $U_N = \{N - p : p \leq N, p \text{ prime}\}$. Let $N = 2n$. The length is $\nu = \pi(N)$.

Divisor Side (Goldbach Divisor Problem): The divisor mass

$S(N) = \sum_{p \leq N} \tau(N - p)$ is known rigorously:

$$S(N) \sim C_5(N) N.$$

$C_5(N)$ oscillates based on the factorization of N :

$$C_5(N) = C_0 \prod_{p|N} \frac{(p-1)^2}{p^2 - p + 1}, \quad C_0 = \frac{\zeta(2)\zeta(3)}{\zeta(6)}.$$

Proxy: $R(N) = \frac{\pi(N)}{S(N)} \sim \frac{1}{C_5(N) \log N}$.

Goldbach Slices: Prime Side and the factor $w(N)$

Prime Side (Hardy-Littlewood): The prime count $G(N)$ is conjectured:

$$G(N) \sim \mathfrak{S}(N) \frac{N}{(\log N)^2}.$$

Prime Density: $\Pi(N) = \frac{G(N)}{\pi(N)} \sim \frac{\mathfrak{S}(N)}{\log N}.$

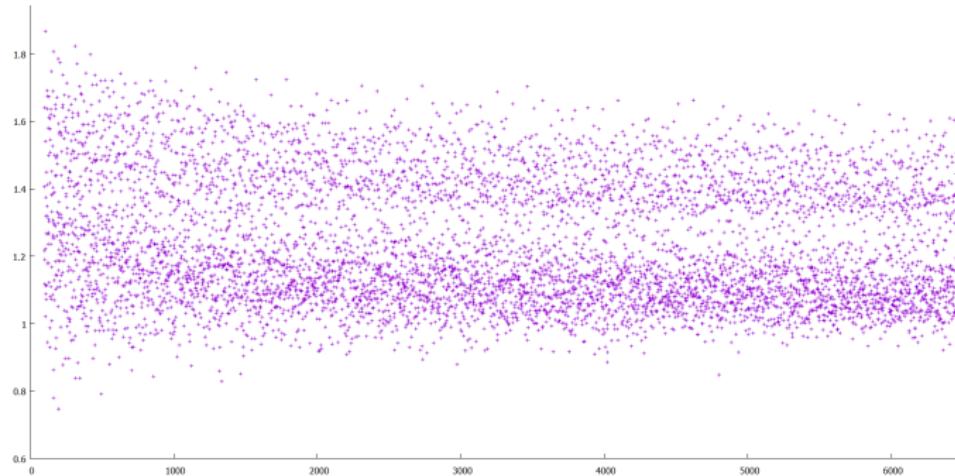
The Continuity Factor $w(N)$:

$$\Pi(N) \sim w(N) \cdot R(N).$$

$$w(N) \sim \mathfrak{S}(N) \cdot C_5(N).$$

$w(N)$ oscillates but is rigorously bounded.

Goldbach: plot of $w(N)$



Oscillatory Continuity: Inhomogeneous Squares

Family $U_n = \{n + k^2 : 1 \leq k \leq n\}$.

- ▶ Divisor mass involves a parameter-dependent local factor $C_6(n)$.
- ▶ Prime side (Bateman-Horn) involves a parameter-dependent singular series $K_6(n)$.

The ratio $w(n) = K_6(n)/C_6(n)$ is bounded but oscillatory.

Plot of $w(n)$ for $n + k^2$.

Conjecture 3: Oscillatory Continuity

Conjecture C (Oscillatory/General Continuity): For parametrised admissible families U_n of moderate growth,

$$\Pi_U(n) \sim w(n) \cdot R_U(n),$$

with $w(n)$ strictly bounded away from 0 and ∞ , but not necessarily convergent.

$$0 < \liminf w(n) \leq \limsup w(n) < \infty.$$

A Domination Principle ($k = 2$)

Even without knowing $w(n)$, we propose a weaker principle.

Conjecture D (Domination, $k = 2$): For large n :

$$\Pi_U(n) \geq (R_U(n))^2.$$

$$\frac{\pi_U(n)}{\nu} \geq \left(\frac{\nu}{s_U(n)} \right)^2.$$

Consequence: If the divisor mass grows typically, $s_U(n) \sim C \nu \log \nu$, then $\pi_U(n) \gg \nu / (\log \nu)^2 \rightarrow \infty$. This forces infinitely many primes.

Domination Principle (general k)

Conjecture D (General Domination): More generally, for some integer $k \geq 2$ and large n :

$$\Pi_U(n) \geq (R_U(n))^k.$$

This parallels the structure of m -tuple conjectures. It provides a path to proving infinitude without exact constants.

What is proved vs conjectured

- ▶ **Divisor side (Provable):** Asymptotics for the divisor mass $s(n)$ (including constants) can often be established rigorously (Dirichlet, APs, Titchmarsh, Goldbach Divisor Problem).
- ▶ **Prime side (Often Conjectural):** PNT/AP are theorems, but HL, BH, and Goldbach are conjectures.
- ▶ **The Link:** The comparison (Conjectures A, B, C, D) is heuristic but demonstrably consistent with known results and explicit constants.

Takeaways

- ▶ A simple Divisor Mass Ratio (R_U) predicts prime frequencies (Π_U) at first order.
- ▶ The geometry of the arithmetic tableau explains the $1/\log$ scale.
- ▶ Three regimes: Balanced (constants match), Stable (bounded multiplier L), Oscillatory (bounded $w(n)$).
- ▶ The proxy is robust because the divisor mass is often rigorously computable.

References (minimal)

Classical Texts: Davenport; Montgomery–Vaughan; Iwaniec–Kowalski; Tenenbaum. **Divisor Problems:** Titchmarsh (1930); Linnik (Dispersion method); Bombieri–Vinogradov; Hooley (Quadratic polynomials). **Prime Conjectures:** Hardy–Littlewood (1923, *Partitio Numerorum*); Bateman–Horn (1962).

Thanks

Thank you for your attention.

Happy to take questions.