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The arithmetic tableau

In the sequel, we remove the 1’s since they are not proper divisors.



Example: m = 12 (composite)

The SW diagonal hits the lattice points corresponding to proper divisors:
(line 2=6), (line 3=4), (line 4=3), (line 6=2).



Example: m = 17 (prime)

The SW diagonal starting from 17 hits no lattice points.

This is the visual signature of a prime in the tableau.



A heuristic idea: The Divisor Mass Ratio

Consider the total divisor mass up to N :

s(N) =
∑

m≤N

τ(m).

We define the Divisor Mass Ratio (as N → ∞):

R(N) = N

s(N) .

▶ Heuristic interpretation: a gauge of how sparse proper divisors are
in the arithmetic tableau; it mimics the probability of avoiding a
proper-divisor hit when randomly sampling a filled cell in the
triangular grid below (here N = 31).



The heuristic interpretation of R(N)



The Central Question

Because “avoiding any proper divisor from {1, . . . , N}” intuitively feels
like “hitting a prime,” we compare the Divisor Mass Ratio to the Prime
Density on {1, . . . , N}:

Π(N) = π(N)
N

.

Question: Does the proxy predict the prime density?

R(N) = N∑
m≤N τ(m) ∼ π(N)

N
= Π(N) ?



Baseline check: The Prime Number Theorem

Classical asymptotics:
▶ Divisor Side (Dirichlet’s divisor sum):

∑
m≤N τ(m) ∼ N log N .

R(N) ∼ N

N log N
= 1

log N
.

▶ Prime Side (PNT):
Π(N) ∼ 1

log N
.

Hence, R(N) ∼ Π(N). Is this just a coincidence, or a structural link?



Test Case: Arithmetic Progressions (APs)

Let u(k) = ak + b with gcd(a, b) = 1. Let su(n) =
∑n

k=1 τ(u(k)) be the
divisor mass for the first n terms and Ru(n) = n/su(n).
▶ Divisor Side: Rigorous analysis shows

su(n) ∼ φ(a)
a

n log n.

▶ Hence
Ru(n) ∼ a

φ(a) · 1
log n

.

▶ Prime Side (PNT in AP):

Πu(n) = πu(n)
n

∼ a

φ(a) · 1
log n

.

Therefore we have again Ru(n) ∼ Πu(n).



Test Case: Residue Slices
Fix M and a subset of invertible classes C ⊆ (Z/MZ)×. Let Un be the first n
integers lying in C.

▶ Divisor side:

su(n) ∼ #C
M

n log n ⇒ Ru(n) = n

su(n) ∼ M

#C
· 1

log n
.

▶ Prime side:

Πu(n) = πu(n)
n

∼ M

φ(M) · 1
log n

.

Conclusion. Πu(n) ∼ #C
φ(M)︸ ︷︷ ︸

=:w (constant)

Ru(n). In particular, if

C = (Z/MZ)× then the proxy matches exactly.



Other balanced families

Examples where the first-order match persists i.e. Ru(n) ∼ Πu(n).
▶ u(k) = ⌊αk⌋, α > 1 irrational (Beatty sequence).
▶ u(k) = k + ⌊

√
k⌋.

▶ Mild inhomogeneities with bounded gaps and stable residue
statistics.



Admissibility and growth

We restrict the scope to sequences u(k) satisfying:
▶ Admissibility: No fixed prime divides all large values.
▶ Moderate growth: Linear or polynomial growth.
▶ Regularity: Stable distribution in invertible classes mod some M .



Conjecture 1: Balanced Continuity

Conjecture A (Balanced Continuity): For admissible, regular

sequences of moderate growth with stable local properties, the prime
density equals the divisor mass ratio asymptotically.

Πu(n) ∼ Ru(n).

πu(n)
n

∼ n

su(n) .



Stable Continuity: Shifted primes u(k) = pk + 2

We examine the density of primes in the sequence of shifted primes
(related to Twin Primes).
▶ Divisor Side (Titchmarsh Divisor Problem):

su(n) =
∑
k≤n

τ(pk + 2) ∼ C3 n log n.

Proxy: Ru(n) ∼ 1/(C3 log n).
▶ Prime Side (Hardy-Littlewood):

Πu(n) ∼ K3

log n
, K3 = 2 Ctwin.

The scale is correct, but the constants differ. Πu(n) ∼ L · Ru(n). The
multiplier is L = K3/C3 (Stable, Biased case).



Stable Continuity: Quadratic values u(k) = k2 + 1

Related to Landau’s 4th problem.
▶ Divisor Side (Hooley, McKee):

su(n) =
∑
k≤n

τ(k2 + 1) ∼ C4 n log n.

C4 > 0 is explicit (Euler product).
▶ Prime Side (Bateman–Horn):

Πu(n) ∼ K4

log n
.

Again a stable, bounded multiplier L = K4/C4.



Conjecture 2: Stable Continuity

Conjecture B (Stable Continuity): For admissible sequences

corresponding to stable configurations (e.g., fixed polynomials), there
exists a constant L > 0 such that

Πu(n) ∼ L · Ru(n).

If L = 1, it is balanced (Conjecture A). If L ̸= 1, it is stable (biased).



Oscillatory Continuity: Goldbach Slices (Divisor Side)

We examine the family UN = {N − p : p ≤ N, p prime}. Let N = 2n.
The length is ν = π(N).
Divisor Side (Goldbach Divisor Problem): The divisor mass
S(N) =

∑
p≤N τ(N − p) is known rigorously:

S(N) ∼ C5(N) N.

C5(N) oscillates based on the factorization of N :

C5(N) = C0
∏
p|N

(p − 1)2

p2 − p + 1 , C0 = ζ(2)ζ(3)
ζ(6) .

Proxy: R(N) = π(N)
S(N) ∼ 1

C5(N) log N .



Goldbach Slices: Prime Side and the factor w(N)

Prime Side (Hardy-Littlewood): The prime count G(N) is
conjectured:

G(N) ∼ S(N) N

(log N)2 .

Prime Density: Π(N) = G(N)
π(N) ∼ S(N)

log N .
The Continuity Factor w(N):

Π(N) ∼ w(N) · R(N).

w(N) ∼ S(N) · C5(N).

w(N) oscillates but is rigorously bounded.



Goldbach: plot of w(N)



Oscillatory Continuity: Inhomogeneous Squares

Family Un = {n + k2 : 1 ≤ k ≤ n}.
▶ Divisor mass involves a parameter-dependent local factor C6(n).
▶ Prime side (Bateman-Horn) involves a parameter-dependent

singular series K6(n).

The ratio w(n) = K6(n)/C6(n) is bounded but oscillatory.

Plot of w(n) for n + k2.



Conjecture 3: Oscillatory Continuity

Conjecture C (Oscillatory/General Continuity): For parametrised

admissible families Un of moderate growth,

ΠU (n) ∼ w(n) · RU (n),

with w(n) strictly bounded away from 0 and ∞, but not necessarily
convergent.

0 < lim inf w(n) ≤ lim sup w(n) < ∞.



A Domination Principle (k = 2)

Even without knowing w(n), we propose a weaker principle.
Conjecture D (Domination, k = 2): For large n:

ΠU (n) ≥ (RU (n))2
.

πU (n)
ν

≥
( ν

sU (n)

)2
.

Consequence: If the divisor mass grows typically, sU (n) ∼ C ν log ν,
then πU (n) ≫ ν/(log ν)2 → ∞. This forces infinitely many primes.



Domination Principle (general k)

Conjecture D (General Domination): More generally, for some integer
k ≥ 2 and large n:

ΠU (n) ≥ (RU (n))k
.

This parallels the structure of m-tuple conjectures. It provides a path to
proving infinitude without exact constants.



What is proved vs conjectured

▶ Divisor side (Provable): Asymptotics for the divisor mass s(n)
(including constants) can often be established rigorously (Dirichlet,
APs, Titchmarsh, Goldbach Divisor Problem).

▶ Prime side (Often Conjectural): PNT/AP are theorems, but HL,
BH, and Goldbach are conjectures.

▶ The Link: The comparison (Conjectures A, B, C, D) is heuristic but
demonstrably consistent with known results and explicit constants.



Takeaways

▶ A simple Divisor Mass Ratio (RU ) predicts prime frequencies (ΠU )
at first order.

▶ The geometry of the arithmetic tableau explains the 1/ log scale.
▶ Three regimes: Balanced (constants match), Stable (bounded

multiplier L), Oscillatory (bounded w(n)).
▶ The proxy is robust because the divisor mass is often rigorously

computable.
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Thanks

Thank you for your attention.

Happy to take questions.


