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Partially ordered set

A poset P is a set X with a partial order < on X.




Linear extension

A linear extension L is a complete order of

<.

We write e(P) for number
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of P.



How many steps needed to complete a partial order?
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How many steps needed to complete a partial order?

We first compare ¢ and d, and get c < d.
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How many steps needed to complete a partial order?

We then compare d and e, and get d < e.
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How many steps needed to complete a partial order?

We continue with b and ¢, and get ¢ < b.
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How many steps needed to complete a partial order?

Completing the partial order took 3 steps.

©)




Strategy to complete the partial order

At each step, compare x and y that satisfies

1
5—¢ < PlIxsy] < s+c,

where P is uniform on linear extensions of P.

Runtime is ©(log e(P)) steps.
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Conjecture
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Conjecture (Kislitsyn '68, Fredman '75, Linial '84)
For every finite poset that is not completely
ordered, there exists x, y:

1

< Plxxy] < %

(Brightwell-Felsner-Trotter '95)

“This problem remains one of the most intriguing
problems in the combinatorial theory of posets.”




Why s and 27

The upper,lower bound are achieved by this poset:
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What is known so far

Theorem (Kahn-Saks '84)

For every finite poset, there always exists x, y:

3 8
Z < —,
11 = 11

roughly between 0.273 and 0.727.

Plxxy] <

Proof is by applying mixed-volume inequalities to
order polytopes.



What is known so far

Theorem (Brightwell-Felsner-Trotter '95)

For every finite poset, there always exists x, y:
5-V5  _ 5+15
10 - 10
roughly between 0.276 and 0.724.

Plx<sy] <

This bound cannot be improved for infinite posets.



Young diagrams

Elements of P, are cells of Young diagram of shape .

x <y if y lies to the Southeast of x.

Young diagram of shape A = (4,3,1)

We write n for number of cells of Young diagram.



Young diagrams

Linear extensions of P, correspond to standard
Young tableau of the Young diagram.

2156

Linear extensions are counted by hook-length
formulas.



What is known for Young diagrams

Theorem 1 (Olson—Sagan '18)

For Young diagrams, there always exists x, y:

S < Plxxy] < %
>
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What is known for Young diagrams

Theorem 1 (Olson-Sagan '18)
For Young diagrams, there always exists x, y:

2
< Plxsy] < 3

1

We sketch an alternative proof for Young diagrams
using Naruse hook-length formulas.




Hook-length formulas

Number of standard Young tableau of shape A is
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Skew Young diagrams

Skew Young diagram of shape \/p,
A=(5,3,3,1) and p=(2,1).

We write n for number of cells in ),
and m for number of cells in u.



Excited diagrams

At each step, move a black box on SouthEast direction

@ Boxes cannot leave the green diagram,

@ Boxes cannot move if blocked by other boxes.
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Naruse hook-length formulas

Theorem (Naruse '14, Morales-Pak-Panova ’17)
Number of skew Young tableau of shape \/ i is

f)\/ﬂ — fkw Z Hh)\(X)

_excited _ black cells
diagrams B xeB




Naruse hook-length formulas

The number of SYT of shape A\/u is equal to

9l
29705(7-6-5+7-5-2+7-2-3—|—7-6-3 + 4-2-3)

= 1062.

Note: Every term in NHLF is nonnegative.



Proof of Theorem Olson-Sagan

nilx

Plxxn] =

i e e

The i-th jump probability p; is

pi = Plyi < x<yin],

where y; is the i-th element in 1st column.



Proof of Theorem Olson—-Sagan

X

Y2
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1
The i-th jump probability p; is

pi = P[Yi < X #)/iﬂ],

where y; is the i-th element in 1st column.



Proof of Theorem Olson—-Sagan
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1
The i-th jump probability p; is

pi = P[Yi < X %)/i+1],

where y; is the i-th element in 1st column.



Proof of Theorem Olson—-Sagan
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The i-th jump probability p; is

pi = P[Yi < X %)/i+1],

where y; is the i-th element in 1st column.
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Proof of Theorem Olson—-Sagan

X

0 1

o —p P2 p3 Da
The i-th jump probability p; is
pi = Plyi < x <y,

where y; is the i-th element in 1st column.



Linial-type argument

Supppose that py, po, p3, ... are all < %

Plzxy| =

pm—————— O
b = - == =0
LS
L= =

—— P — > — > —r < —

P1 D2 D3 P4 %3

Look at when the probability exceeds % Then

1 2
5z < P[X<Yi+1] < 3



1
Proof of p; < 3
Suppose to the contrary that p; > % Then
° If%gplgg,then
1 2
= < p=Plxsy| < 3

o If pp > % then substitute x <+ y» so p; < %
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@ So we assume p; < %



Skew diagrams enter the scene

It suffices to show p1 > po > p3 > .. ..

# of SYTs of
f')\

pr = P[}ﬁ#x%}/ﬂ =

# of SYTs of
f)\

pp = Plyo<x<sys] =




Skew diagrams enter the scene

It suffices to show p1 > po > p3 > .. ..

f SYTs of
P1:P[Y14X‘x<y2}:#o ) > 9
f SYTs of
P2:P[Y2<X<Y3}= 7* O Y >0

We can now use NHLF.




Proof of p1 > po
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Thus we complete the proof of this theorem.

Theorem (Olson-Sagan ‘18)

There always exists x, y:

1

for poset Py of Young diagram of shape \.




Back to previous example

Comparison probability for this Young diagram is

P[Xﬁy} = 16 ~ 0.4848,

w

which is closer to than
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What we will do next

Previously, we want to find x, y:

2

1
- < Z
- 3

< Plxxy]

Now, we want to find x, y:

1 1
5—5§P[X<y] §§‘|’57



Sorting probability

Sorting probability of a poset P is

6(P) == min |Plx=<y]—Ply=<x]|.

distinct x, y

In particular, there exists x, y:

—@ < Plxxy] <

+ 48
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Kahn-Saks Conjecture

Conjecture (Kahn-Saks '84)

For every finite poset,

0(P) — 0 as width(P) — oo.

Here width(P) is the largest size of anti-chains in P.

Komlds '90 proved such a result for posets with

n .
QioziogTogn) Minimal elements.



Our results



First result

Theorem (C.-Pak-Panova '21)

Let \y > ... > Ay > en. For poset P, of Young

diagram of \,
C

5(P>\) S ﬁ?

for some C = C(d,¢) > 0.

EN



First result

Theorem (C.-Pak-Panova '21)

Let \y > ... > Ay > en. For poset P, of Young

diagram of \,
C

5(P>\) S ﬁ?

for some C = C(d,¢) > 0.

Proof ingredient:
NHLF 4 Random walk intuition



Where is the improvement?

Before: x is 2nd element in 1st row, y is in 1st column.

Intuition: Probability of SRW on Z to visit 0
at 2nd step is of constant order.

Now: x is midpoint of 1st row, y is in 2nd row.

Intuition: Probability of SRW on Z to visit 0
at 5-th step is of the order of \/iﬁ



Sketch of proof
After reductions using Hoeffding's inequality,

SYTs of
() = Z 2 ke A
m

A A
with (1~ (EIj:\/E,...,?d:I:\/E).

Right side is then upper-bounded via NHLF.



Back to first result

Theorem (C.-Pak-Panova '21)

Let \y > ... > Ay > en. For poset Py of Young
diagram of \,

C

P,) < —

P = 7
for some C = C(d,¢) > 0.

Next: better bound for Catalan posets.



Catalan posets, A\ = (3,3)

Young diagram is rectangle with 2 rows and n cells.




Second result

Theorem (C.-Pak-Panova '21)

For Catalan posets with n cells,

5

5(P)\) < Cn +,

IS

for some C > 0.




How good is this bound?

1A
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logé(PA)
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Open Problem
Show that

log 6( P 5
lim sup 0g9(P) = ——; liminf
n—o0 n n—00 n




Where is the improvement?

For each x in 1st row, find y(x) in 2nd row minimizing

0(x,y(x)) == |P[x = y(x)] = Ply(x) < x]|.

Before: x is fixed at midpoint of 1st row,

0(Py) < 6(x,y(x)).

Now: Optimize over all x’s in 1st row,

I(Py) < min  d(x, y(x)).

x in 1st row



Location of the minimizer y(x) for n = 2000

r—y(x) | g oy —

height is of
order /n
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li width is of order n 4'

Semicircle shape is because of Brownian excursion.

Discrete pattern does not vanish in the limit.



Sorting probability §(P) for n = 2000

0.12
(2. u())
. Location of
0.08 §(P) ~ n7% height is of
: order ﬁ
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Choosing x to be slightly left of midpoint gives
smaller sorting probability because of zigzag pattern.



Back to second result
Theorem (C.-Pak-Panova '21)

For Catalan posets with n cells,

5

6(Py) < Cn3,

IS

for some C > 0.

Important: Estimates are not done by NHLF,
but by direct computation.

Better upper bound for general Young diagrams
remain open.



What is next?

Theorem (C.-Pak-Panova '21)

Let \y > ... > Ay > en. For poset P, of Young
diagram of \, there exists x, y:

d(P\) — 0 as n— oo.

Open Problem

Prove same result for other families of posets, e.g.,
k-dimensional Young diagrams and periodic posets.
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