# Recent applications concerning WZ theory 

John M. Campbell<br>Dalhousie University

Thu., Nov. 16, 2023, 5:00pm

## Recent applications concerning WZ theory

- Numerical analysis
$\square$ Series accelerations
$\square$ Improved numerical algorithms for the calculation of universal constants
- Computer algebra
$\square$ Applications toward practical problems associated with current CAS software
- Special functions
$\square$ Generalizations of and new techniques related to Ramanujan's hypergeometric series
- Combinatorics
$\square$ New techniques that may be applied to finite sums that naturally arise within combinatorics but that are inevaluable with current CAS software


## A practical problem

J. M. Campbell, Nested radicals obtained via the Wilf-Zeilberger method and related results, Maple Trans. 3 no. 3 (2023), Article 16011.

Numerically computing $\sqrt[r]{z}$ or $\sqrt[r]{q}$ is straightforward for $z \in \mathbb{Z}$ and $q \in \mathbb{Q}$.
The situation becomes much more difficult for nested radicals.

$$
10 \sqrt{2-\sqrt{2}}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}\left[\begin{array}{c}
-\frac{5}{8},-\frac{3}{8}, \frac{3}{8}, \frac{5}{8} \\
\frac{1}{2}, \frac{1}{2}, 1, \frac{3}{2}
\end{array}\right]_{n}\left(64 n^{2}+5\right)
$$

## A practical problem

How could we obtain fast-converging, rational, hypergeometric series for nested radicals such as $\sqrt{2-\sqrt{2}}$ ?

The repeated differentiation of compositions such as $\sqrt{2-\sqrt{1+x}}$ becomes more and more unwieldy.

Similarly, the generalized binomial theorem would not provide a rational expansion, and similarly for expansions of trigonometric expressions according to $\sin \left(\frac{\pi}{8}\right)=\frac{\sqrt{2-\sqrt{2}}}{2}$.

$$
\frac{14 \sqrt{2+\sqrt{2}}}{3}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}\left[\begin{array}{c}
-\frac{7}{8},-\frac{1}{8}, \frac{1}{8}, \frac{7}{8} \\
\frac{1}{2}, \frac{1}{2}, 1, \frac{3}{2}
\end{array}\right]_{n}\left(192 n^{2}+7\right)
$$

## Ramanujan-inspired series

Ramamnujan's series of convergence rate $\frac{1}{4}$ :

$$
\begin{aligned}
& \frac{4}{\pi}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\
1,1,1
\end{array}\right]_{n}(6 n+1), \\
& \frac{8}{\pi}=\sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n}\left[\begin{array}{c}
\frac{1}{4}, \frac{1}{2}, \frac{3}{4} \\
1,1,1
\end{array}\right]_{n}(20 n+3) .
\end{aligned}
$$

New formulas of the same convergence rate:

$$
\begin{aligned}
& 84 \sqrt{2-\sqrt{2+\sqrt{2}}}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}\left[\begin{array}{c}
-\frac{9}{16},-\frac{7}{16}, \frac{7}{16}, \frac{9}{16} \\
\frac{1}{2}, \frac{1}{2}, 1, \frac{3}{2}
\end{array}\right]_{n}\left(256 n^{2}+21\right), \\
& 64 \sqrt{2+\sqrt{2+\sqrt{2}}}=\sum_{n=0}^{\infty}\left(\frac{1}{4}\right)^{n}\left[\begin{array}{c}
-\frac{1}{16}, \frac{1}{16}, \frac{15}{16}, \frac{17}{16} \\
\frac{1}{2}, 1, \frac{3}{2}, \frac{3}{2}
\end{array}\right]_{n}\left(768 n^{2}+512 n+127\right) .
\end{aligned}
$$

## A WZ-based series acceleration method

$$
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k)
$$

Guillera's trick:

$$
\sum_{n=0}^{\infty}(G(n, k+1)-G(n, k))=\lim _{n \rightarrow \infty} F(n+1, k)-F(0, k)
$$

Let $(F, G)$ be a WZ pair, and suppose that

$$
\lim _{n \rightarrow \infty} F(n+1, k)=0
$$

for all $k$. From Guillera's trick, we obtain that

$$
-F(0, k)=\sum_{n=0}^{\infty}(G(n, k+1)-G(n, k))
$$

## A WZ-based series acceleration method

We set the variable $k$ as $b$, and then as $b+1$, and then as $b+2$, and so forth. Adding the identities that result from this, a telescoping argument gives us that

$$
-\sum_{n=0}^{m} F(0, b+n)=\sum_{n=0}^{\infty}(G(n, b+m+1)-G(n, b))
$$

If possible, we would want to argue that $\lim _{m \rightarrow \infty} \sum_{n=0}^{\infty} G(n, b+m+1)$ may be simplified in closed form:

$$
-\sum_{n=0}^{\infty} F(0, b+n)=\text { constant }-\sum_{n=0}^{\infty} G(n, b)
$$

We apply a "shifted" version of the above acceleration method, starting with the variant

$$
F(n+p+1, k)-F(n+p, k)=G(n+p, k+1)-G(n+p, k)
$$

for a free parameter $p$.

## Series acceleration identities

Gauss's hypergeometric theorem:

$$
\begin{gathered}
{ }_{2} F_{1}\left[\begin{array}{c|c}
a, b & 1 \\
c &
\end{array}\right]=\Gamma\left[\begin{array}{c}
c, c-a-b \\
c-a, c-b
\end{array}\right] \\
F(n, k)=\frac{(c+n-1)!(c+n)!(-n-1)_{k}(-n)_{k}}{(c-1)!k!(c+2 n)!(c)_{k}} \\
R(n, k)=\frac{k(c+k-1)\left(c k-2 c n-3 c+2 k n+2 k-3 n^{2}-7 n-4\right)}{(c+2 n+1)(c+2 n+2)(k-n-2)(k-n-1)}, \\
G(n, k)=F(n, k) R(n, k)
\end{gathered}
$$

## Series acceleration identities

## Theorem

For $G(n, k)$ as specified,

$$
-\Gamma\left[\begin{array}{c}
k-p-1, k-p, c+p, c+p+1 \\
k+1, c+k,-p-1,-p, c+2 p+1
\end{array}\right]{ }_{3} F_{2}\left[\begin{array}{c|c}
1, k-p-1, k-p & 1 \\
k+1, c+k & 1
\end{array}\right]
$$

equals

$$
\lim _{m \rightarrow \infty} \sum_{n=0}^{\infty} G(n+p, k+m)-\sum_{n=0}^{\infty} G(n+p, k)
$$

if the above limit exists and all of the above sums are convergent.

## Series acceleration identities

$$
\begin{aligned}
& \pi^{2}=\frac{128}{156279375} \sum_{n=0}^{\infty}\left(-\frac{1}{27}\right)^{n}\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, 1,1, \frac{3}{2}, \frac{3}{2}, 2, \frac{5}{2} \\
\frac{7}{4}, \frac{11}{6}, \frac{13}{6}, \frac{9}{4}, \frac{9}{4}, \frac{11}{4}, \frac{11}{4}, \frac{13}{4}
\end{array}\right]_{n} \\
&\left(1605632 n^{8}+17633280 n^{7}+83231232 n^{6}+\right. \\
& 220523520 n^{5}+358672608 n^{4}+366633840 n^{3}+ \\
&\left.229955938 n^{2}+80885565 n+12211200\right) . \\
& \sqrt[3]{2}=\frac{1}{2952069120} \sum_{n=0}^{\infty}\left(-\frac{1}{27}\right)^{n}\left[\begin{array}{l}
\frac{5}{12}, \frac{2}{3}, \frac{11}{12}, \frac{11}{12}, \frac{7}{6}, \frac{7}{6}, \frac{17}{12}, \frac{13}{6}, \frac{11}{6}, \frac{25}{12}, \frac{7}{3}, \frac{7}{3}, \frac{7}{3}, \frac{17}{6}
\end{array}\right]_{n} . \\
&\left(2550030336 n^{8}+22995809280 n^{7}+89131529088 n^{6}+\right. \\
& 193824175104 n^{5}+258432859368 n^{4}+216141735204 n^{3}+ \\
&\left.110617505702 n^{2}+31637635223 n+3867273410\right) .
\end{aligned}
$$

## Series acceleration identities

J. M. Campbell, On Guillera's ${ }_{7} F_{6}\left(\frac{27}{64}\right)$-series for $1 / \pi^{2}$, Bull. Aust. Math. Soc. 108 no. 3 (2023), 464-471.

How can the following series due to Guillera be generalized?

$$
\begin{aligned}
\frac{48}{\pi^{2}} & =\sum_{k=0}^{\infty}\left(\frac{27}{64}\right)^{k}\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{3} \\
1,1,1,1,1
\end{array}\right]_{k}\left(74 k^{2}+27 k+3\right), \\
\frac{16 \pi^{2}}{3} & =\sum_{k=0}^{\infty}\left(\frac{27}{64}\right)^{k}\left[\begin{array}{c}
1,1,1, \frac{5}{6}, \frac{7}{6} \\
\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}
\end{array}\right]_{k}\left(74 k^{2}+101 k+35\right) .
\end{aligned}
$$

## A "strange" computer-discovered identity

S. B. Ekhad, Forty "strange" computer-discovered [and computer-proved (of course!)] hypergeometric series evaluations, (2004).

$$
\begin{gathered}
{ }_{2} F_{1}\left[\left.\begin{array}{c}
-n,-4 n-\frac{1}{2} \\
-3 n
\end{array} \right\rvert\,-1\right]=\left(\frac{64}{27}\right)^{n}\left[\begin{array}{c}
\frac{3}{8}, \frac{5}{8} \\
\frac{1}{3}, \frac{2}{3}
\end{array}\right]_{n} \\
F(n, k)=\frac{\pi 2^{-6 n} \sec \left(\frac{\pi}{8}\right) \Gamma\left(4 n+\frac{3}{2}\right) \Gamma(3 n-k+1)}{\Gamma(k+1) \Gamma\left(n+\frac{3}{8}\right) \Gamma\left(n+\frac{5}{8}\right) \Gamma(n-k+1) \Gamma\left(4 n-k+\frac{3}{2}\right)} .
\end{gathered}
$$

## New ${ }_{p} F_{q}\left(\frac{27}{64}\right)$-series

J. M. Campbell, On Guillera's ${ }_{7} F_{6}\left(\frac{27}{64}\right)$-series for $1 / \pi^{2}$, Bull. Aust. Math. Soc. 108 no. 3 (2023), 464-471.

$$
\begin{aligned}
& 3 \sqrt{2}=\sum_{k=0}^{\infty}\left(\frac{27}{64}\right)^{k}\left[\begin{array}{c}
-\frac{1}{6},-\frac{1}{8}, \frac{1}{8}, \frac{1}{6} \\
\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1
\end{array}\right]_{k}\left(592 k^{2}-154 k+3\right) \\
& 16 \sqrt{2}=\sum_{k=0}^{\infty}\left(\frac{27}{64}\right)^{k}\left[\begin{array}{c}
-\frac{1}{6}, \frac{1}{6}, \frac{3}{8}, \frac{5}{8} \\
\frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}
\end{array}\right]_{k}\left(1184 k^{3}+876 k^{2}+216 k+29\right)
\end{aligned}
$$

## Series acceleration identities

P. Levrie and J. Campbell, Series acceleration formulas obtained from experimentally discovered hypergeometric recursions, Discrete Math. Theor. Comput. Sci. 24 no. 2 (2023), dmtcs:9557.

$$
h(x, y)=r_{1}(x, y)+r_{2}(x, y) h(x, y+1)
$$

summand $(x, y, k)$ : summand of $h(x, y)$

$$
\begin{aligned}
\sum_{k=0}^{\infty} \operatorname{summand}(x, y, k)= & \sum_{j=0}^{m-1}\left(\prod_{i=0}^{j-1} r_{2}(x, y+i)\right) r_{1}(x, y+j)+ \\
& \left(\prod_{i=0}^{m-1} r_{2}(x, y+i)\right) \sum_{k=0}^{\infty} \operatorname{summand}(x, y+m, k)
\end{aligned}
$$

## Generalizing Guillera's formula

Celebrated results due to Guillera include:

$$
\begin{aligned}
& \frac{1}{\pi^{2}}=\frac{1}{8} \sum_{n=0}^{\infty}\left(-2^{-12}\right)^{n}\binom{2 n}{n}^{5}\left(20 n^{2}+8 n+1\right) \\
& \frac{128}{\pi^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\binom{2 n}{n}^{5}}{2^{20 n}}\left(820 n^{2}+180 n+13\right)
\end{aligned}
$$

These can be generalized through recursions for:

$$
\begin{gathered}
s(x, y)=\left(x+\frac{y-1}{2}\right) \cdot{ }_{5} F_{4}\left[\left.\begin{array}{c}
x, x, x, x, x+\frac{y+1}{2}, 1 \\
x+y, x+y, x+y, x+y, x+\frac{y-1}{2}
\end{array} \right\rvert\, 1\right] \\
s\left(\frac{1}{2}, \frac{3}{2}\right)=4-\frac{32}{\pi^{2}}
\end{gathered}
$$

## Solution to a problem due to Chu and Kiliç

In a 2021 article in the Rocky Mountain Journal of Mathematics, Chu and Kiliç included a conjectured evaluation for

$$
\sum_{k=0}^{n}(-1)^{k}\binom{2 n-2 k}{n-k}\binom{n+k}{2 k} C_{k}
$$

and left it as an open problem to prove a closed-form evaluation for this sum.

Amazingly, current implementations of the WZ method cannot be used to obtain WZ proofs of the Chu-Kiliç formula!

## Solution to a problem due to Chu and Kiliç

$$
\begin{array}{r}
\operatorname{sun}\left(\frac{(-1)^{k} \cdot \operatorname{binomial}(2 \cdot n-2 \cdot k, n-k) \cdot \operatorname{binomial}(n+k, 2 \cdot k) \cdot \operatorname{binomial}(2 \cdot k, k)}{k+1}, k=0 \ldots n\right) \\
\frac{2^{2 n} \Gamma\left(n+\frac{1}{2}\right) \operatorname{hypergeom}\left(\left[-n_{2}-n, n+1\right],\left[2,-n+\frac{1}{2}\right], \frac{1}{4}\right)}{\sqrt{\pi} \Gamma(n+1)}
\end{array}
$$

Chu and Kiliç (2021) experimentally discovered that it seems that for each of the residue classes for $n \bmod 6$, the binomial sum under consideration appears to reduce to a closed-form, hypergeometric expression.

## Solution to a problem due to Chu and Kiliç

$$
\begin{aligned}
& f:=\frac{(-1)^{k}\binom{12 n+2-2 k}{6 n+1-k}\binom{6 n+1+k}{2 k}\binom{2 k}{k}(3 n+1)(6 n+1)}{(k+1)(8 n+1)\binom{8 n}{4 n}\binom{4 n}{2 n}} \\
& \operatorname{seq}\left(\operatorname{sum}\left(f, k=0 \ldots 6^{*} n+1\right), n=0 \ldots 10\right)
\end{aligned}
$$

with(SumTools[Hypergeometric]) :

$$
r:=1
$$

$$
r:=1
$$

WZpair $:=W Z M e t h o d\left(f, r, n, k,{ }^{\prime}\right.$ cert') :
Error, (in SumTools:-Hypergeometric:-WZMethod) WZ method fails

## Solution to a problem due to Chu and Kiliç

```
WZpair := WZMethod(f,r,r, , , 'cert'):
Error, (in SumTools:-Hypergeometric:-WZMethod) WZ method fails
```

"Why" does the Maple implementation of the WZ method fail, here?

In theory, there "should" be a WZ proof certificate for the finite hypergeometric sum that evaluates to a constant.

How could the Maple implementation of the WZ method be improved or corrected to deal with this problem? What's going wrong, here?

## Solution to a problem due to Chu and Kiliç

```
WZpair':= WZMethod}(f,r,n,k,'cert') :
Error, (in SumTools:-Hypergeometric:-WZMethod) wZ method fails
```

Interestingly, the Maple implementation of Zeilberger's algorithm, as opposed to the WZ method, can be used to formulate a full solution to the problem proposed by Chu and Kiliç.
J. M. Campbell, Solution to a problem due to Chu and Kiliç, Integers 22 (2022), \#A46.

## A "cubic" WZ method

J. M. Campbell, A WZ proof for a Ramanujan-like series involving cubed binomial coefficients, J. Difference Equ. Appl. 27 no. 10 (2021), 1507-1511.

$$
\begin{gathered}
F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k) \\
\sum_{k=0}^{\infty}(F(n+1, k)-F(n, k))^{3}= \\
-3 \sum_{k=0}^{\infty}\left(G^{2}(n, k+1) G(n, k)-G(n, k+1) G^{2}(n, k)\right)
\end{gathered}
$$

## A "cubic" WZ method

Set $F(n, k)=\frac{\binom{n}{k}}{2^{n}}$ and $G(n, k)=-\frac{\binom{n}{k}}{2^{n+1}}$. Differentiate the "cubic" WZ identity and set $n=-\frac{1}{2}$.

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{C_{k}^{3} O_{k}(4 k+3)\left(4 k^{2}+6 k+3\right)}{(-64)^{k}}= \\
& 8-\frac{8}{\pi}-\frac{64 \sqrt{2} \pi}{\Gamma^{2}\left(\frac{1}{8}\right) \Gamma^{2}\left(\frac{3}{8}\right)}-\frac{3 \Gamma^{2}\left(\frac{1}{8}\right) \Gamma^{2}\left(\frac{3}{8}\right)}{4 \sqrt{2} \pi^{3}}
\end{aligned}
$$

This recalls Guillera's evaluation of the Ramanujan-like series

$$
\sum_{n=0}^{\infty}\left(-\frac{1}{64}\right)^{n}\binom{2 n}{n}^{3}(4 n+1) H_{n}=\frac{1}{6 \sqrt{2} \pi}\left(\frac{\Gamma\left(\frac{1}{8}\right) \Gamma\left(\frac{3}{8}\right)}{\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)}\right)^{2}-\frac{4 \ln (2)}{\pi}
$$

## WZ proofs of Ramanujan's series

J. M. Campbell and P. Levrie, Further WZ-based methods for proving and generalizing Ramanujan's series, J. Difference Equ. Appl. 29 no. 3 (2023), 366-376.

$$
\begin{aligned}
\frac{16}{\pi} & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{12 n}\binom{2 n}{n}^{3}(42 n+5) \\
\frac{4}{\pi} & =\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{8 n}\binom{2 n}{n}^{3}(6 n+1)
\end{aligned}
$$

Writing $v(x)=\sum_{n=1}^{\infty} \frac{(x)_{n}^{2}}{(2 x+1)_{n}^{2}}$,

$$
v(x)=\frac{(21 x+13) x^{2}}{2^{3}(2 x+1)^{3}}+\frac{x^{2}(x+1)}{2^{3}(2 x+1)^{3}} v(x+1)
$$

## WZ proofs of Ramanujan's series

$v\left(\frac{1}{2}\right)=\frac{16}{\pi}-5$ is immediate from a classical formula of Forsyth.
The recursion for $v$ may be proved through the WZ method, and repeated applications of this recursion has the effect of accelerating Forsyth's series. This gives us a completely different WZ proof compared to that in Guillera's seminal 2002 article, which relied on

$$
G(n, k)=\frac{(-1)^{n}(-1)^{k}}{2^{10 n} 2^{2 k}}(20 n+2 k+3) \frac{\binom{2 k}{k}^{2}\binom{2 n}{n}^{2}\binom{4 n-2 k}{2 n-k}}{\binom{2 n}{k}\binom{n+k}{n}}
$$

and

$$
\sum_{n=0}^{\infty} G(n, 0)=\sum_{n=0}^{\infty} H(n, 0)
$$

where $H(n, k)=F(n+1, n+k)+G(n, n+k)$.

## Zeilberger's computer proof of Ramanujan's formula

S. B. Ekhad and D. Zeilberger, A WZ proof of Ramanujan's formula for $\pi$, in Geometry, Analysis and Mechanics, World Sci. Publ., River Edge, NJ, 1994, pp. 107-108.

$$
\frac{\Gamma\left(n+\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}\right) \Gamma(n+1)}=\sum_{k=0}^{n}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{2}(-n)_{k}}{(k!)^{2}\left(n+\frac{3}{2}\right)_{k}}
$$

Zeilberger used a WZ proof of the above identity to prove Ramanujan's famous formula

$$
\frac{2}{\pi}=\sum_{n=0}^{\infty}\left(-\frac{1}{64}\right)^{n}\binom{2 n}{n}^{3}(4 n+1)
$$

## Zeilberger's computer proof of Ramanujan's formula

How can we obtain similar results, using variants of the below identity used by Zeilberger?

$$
\frac{\Gamma\left(n+\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}\right) \Gamma(n+1)}=\sum_{k=0}^{n}(-1)^{k}(4 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{2}(-n)_{k}}{(k!)^{2}\left(n+\frac{3}{2}\right)_{k}}
$$

By removing the $(-1)^{k}$ factor, and by again applying the $W Z$ method with respect to the resultant sum, we can prove

$$
\sum_{k=0}^{\infty}\left(\frac{1}{16}\right)^{k}\binom{2 k}{k}^{2} \frac{1}{4 k+3}=\frac{2}{\pi}-\frac{2 \Gamma^{2}\left(\frac{3}{4}\right)}{\Gamma^{2}\left(\frac{1}{4}\right)}
$$

and a similar approach can be used to prove a similar formula due to Ramanujan.

## Physics-based applications of WZ theory

$H_{n}(x)$ : The $n^{\text {th }}$ Hermite polynomial
The eigenfunctions of the quantum harmonic oscillator:

$$
\begin{gathered}
\psi_{n}(x)=\frac{1}{\sqrt{2^{n} n!\sqrt{\pi}}} e^{-x^{2} / 2} H_{n}(x) \\
\psi_{2 n}(0)=\frac{H_{2 n}(0)}{\sqrt{2^{2 n}(2 n)!\sqrt{\pi}}}
\end{gathered}
$$

Fassari et al. (2021) explored how the series

$$
S=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\psi_{2 n}^{4}(0)}{n}
$$

may be applied in relation to the quantum harmonic oscillator

$$
S=\frac{1}{2} \sum_{n=1}^{\infty} \frac{\psi_{2 n}^{4}(0)}{2 n}=\frac{2}{\pi^{2}}(\pi \ln 2-2 G)
$$

## Physics-based applications of WZ theory

J. M. Campbell, On the even-indexed eigenfunctions of the quantum harmonic oscillator, Rep. Math. Phys. 92 no. 2 (2023), 197-207. By the Dixon summation theorem,

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)(n-k)!(n+k+1)!}=\left(\frac{4^{n} n!}{(2 n+1)!}\right)^{2} \\
F(n, k)=\frac{\text { summand }}{\text { rhs }} \\
\sum_{n=0}^{\infty}(F(n+1, r)-F(n, r))=\sum_{n=0}^{\infty} G(n, r+1)-\sum_{n=0}^{\infty} G(n, r) \\
\sum_{n=0}^{\infty}(F(n+1, r+1)-F(n, r+1))=\sum_{n=0}^{\infty} G(n, r+2)-\sum_{n=0}^{\infty} G(n, r+1)
\end{gathered}
$$

## Under Review

How can we obtain two-term recurrences

$$
p_{1}(n) F(n+r, k)+p_{2}(n) F(n, k)=G(n, k+1)-G(n, k)
$$

from Zeilberger's algorithm, and in such a way so as to obtain series accelerations, using the same or a similar recursive approach as before?

$$
\begin{aligned}
\frac{279936}{5 \pi}=\sum_{j=0}^{\infty}\left(\frac{4}{27}\right)^{j} & {\left[\begin{array}{c}
\frac{1}{6}, \frac{7}{12}, \frac{5}{6}, \frac{11}{12}, \frac{13}{12}, \frac{17}{12} \\
1, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}, 2,2
\end{array}\right]_{j} } \\
& \left(59616 j^{4}+184032 j^{3}+206748 j^{2}+99324 j+17017\right)
\end{aligned}
$$

## Under Review

$$
\begin{aligned}
& 3360 \sqrt[3]{2}=\sum_{j=0}^{\infty}\left(\frac{4}{27}\right)^{j}\left[\begin{array}{l}
\frac{7}{12}, \frac{2}{3}, \frac{5}{6}, \frac{13}{12}, \frac{7}{6}, \frac{4}{3} \\
\frac{1}{2}, 1, \frac{13}{9}, \frac{3}{2}, \frac{16}{9}, \frac{19}{9}
\end{array}\right]_{j} \\
&\left(14904 j^{4}+38772 j^{3}+34434 j^{2}+12039 j+1330\right)
\end{aligned}
$$

$$
\frac{17414258688}{77 \pi}=\sum_{j=0}^{\infty}\left(\frac{27}{256}\right)^{j}\left[\begin{array}{c}
\frac{1}{6}, \frac{13}{18}, \frac{5}{6}, \frac{17}{18}, \frac{19}{18}, \frac{23}{18}, \frac{25}{18}, \frac{29}{18} \\
1, \frac{3}{2}, \frac{5}{3}, \frac{7}{4}, 2,2, \frac{9}{4}, \frac{7}{3}
\end{array}\right]_{j}
$$

$$
\left(96158016 j^{6}+566590464 j^{5}+1373338800 j^{4}+1751461056 j^{3}\right.
$$

$$
\left.+1238515308 j^{2}+459977904 j+70018325\right) .
$$

