Searching for sequences: Irrationality beyond Apery

Frank Calegari (with Vesselin Dimitrov and Yunqing Tang)

Why Grothendieck and computers are best of friends

A criteria for irrationality

Rational numbers are poorly approximated by rational numbers different from themselves.

If $\alpha = a/b \in \mathbf{Q}$, and $\alpha \neq p/q$; $\left| \alpha - \frac{p}{q} \right| = \left| \frac{a}{b} - \frac{p}{q} \right| = \left| \frac{aq - bp}{bq} \right| \ge \frac{1}{bq}$.

If $lpha \in \mathbf{R}$ and there exists a sequence $p/q \in \mathbf{Q}$ with $q
ightarrow \infty$ and

$$0 < \left| \alpha - \frac{p}{q} \right| = o\left(\frac{1}{q} \right)$$

then $\alpha \notin \mathbf{Q}$.

$$\mathsf{Dirichet}: \alpha \in \mathbf{R} \setminus \mathbf{Q}, \ \exists \ p,q \gg 1 \ \mathsf{with} \ \mathsf{0} < \left| \alpha - \frac{p}{q} \right| \leq \frac{1}{q^2}.$$

A tricky example

Let

$$I(n) = \int_0^1 \left(\frac{t(1-t)}{(1+t)}\right)^n \frac{dt}{1+t}$$

If you expand out the numerator, you can write this as an integral combination of the following integrals:

$$\int_{0}^{1} (1+t)^{k-1} dt \in \frac{\mathbf{Z}}{2^{n}k}, k = -n, \dots, -1, 1, \dots, n$$
$$\int_{0}^{1} \frac{1}{1+t} dt = \log 2,$$
Hence $I(n) \in \mathbf{Z} \log 2 + \frac{\mathbf{Z}}{2^{n}[1, 2, \dots, n]}.$ Actually $I(n) \in \mathbf{Z} \log 2 + \frac{\mathbf{Z}}{[1, 2, \dots, n]}.$

A tricky example

$$I(n) \in \mathbf{Z} \log 2 + \frac{\mathbf{Z}}{[1, 2, \dots, n]} = \frac{q_n \cdot \log 2 - p_n}{[1, 2, \dots, n]}.$$

$$0 < I(n) = \int_0^1 \left(\frac{t(1-t)}{(1+t)}\right)^n \frac{dt}{1+t} \le \max \left|\frac{t(1-t)}{(1+t)}\right|_{t\in[0,1]}^n$$

$$= (3 - 2\sqrt{2})^n$$

$$0 < \left|\log 2 - \frac{p_n}{q_n}\right| < \frac{1}{q_n} \cdot (3 - 2\sqrt{2})^n \cdot [1, 2, \dots, n]$$

$$< \frac{1}{q_n} (3 - 2\sqrt{2})^n \cdot e^{n(1+\varepsilon)}$$

$$\ll \frac{1}{q_n} \left(\frac{2.71829}{5.82842}\right)^n = o(1/q_n).$$

An easier example

$$A(x) = 1 + x + 2x^{2} + 3x^{3} + 5x^{4} + \dots = \sum F_{n}x^{n},$$

$$B(x) = x + x^{2} + 2x^{3} + \dots \sum F_{n-1}x^{n}.$$

$$A(x) = \frac{1}{1 - x - x^{2}} = \frac{1}{(1 - \phi x)(1 + \phi^{-1}x)}.$$

Claim: $\phi = \lim_{n \to \infty} F_n / F_{n-1}$ is irrational.

- We want to prove that $F_n \phi F_{n-1}$ is small o(1) suffices.
- We want $A(x) \phi B(x)$ to have radius of convergence R > 1.

$$A(x) - \phi B(x) = \frac{(1 - \phi x)}{(1 - \phi x)(1 + \phi^{-1}x)} = \frac{1}{1 + \phi^{-1}x} \notin \mathbf{C}[x]$$

has radius of convergence $|\phi| = 1.618 \ldots > 1$.

A general framework

If
$$A(x) = \sum a_n x^n$$
 and $B(x) = \sum b_n x^n$ are power series with:
(a) We have $a_n[1, 2, ..., n]^m \in \mathbb{Z}$ and $b_n[1, 2, ..., n]^m \in \mathbb{Z}$,
(c) $P(x) = B(x) - \eta A(x)$ has radius of convergence at least R ,
(c) $R > e^m$,
(c) $P(x)$ is not a polynomial,

Then $\eta \notin \mathbf{Q}$.

Goal is to find A(x) and B(x) and η with

 $\log R > m$.

A tricky example

$$A(x) = \frac{1}{1 - x - 2x^2 + x^3} = 1 + x + 3x^2 + 4x^3 + 9x^4 + 14x^5 + \dots$$
$$A(x) = \frac{1}{(1 + 2\cos(2\pi/7)x)(1 + 2\cos(4\pi/7)x)(1 + 2\cos(8\pi/7)x)}.$$
$$A(x) = \frac{1}{(x + 0.8019\dots)(x - 2.246\dots)(x - 0.554\dots)}.$$

A(x) has radius of convergence $|2\cos(8\pi/7)|^{-1} = 0.5549...$

 $A(x) + 2\cos(8\pi/7)xA(x)$

has radius of convergence $(2\cos(2\pi/7))^{-1} = 0.8019...$ We failed!

Conformal Radius

If $0\in \Omega\subset \boldsymbol{\mathsf{C}}$ is a simply connected open region, there exists:

$$arphi: D(0,1)\simeq \Omega, \qquad arphi(0)=0, \qquad arphi$$
 a biholomorphism

 $c(\Omega) := |\varphi'(0)|$ is called the conformal radius of Ω If $\Omega = D(0, R)$, then $\varphi(z) = Rz$ and $c(\Omega) = R$.

If
$$\Omega = \mathbf{C} \setminus [\beta, \infty)$$
, then $\varphi(z) = \frac{4\beta z}{(1+z)^2}$ and $c(\Omega) = 4\beta$.

Theorem: (Pólya) Let $P(x) \in \mathbb{Z}[[x]]$ analytically continue to a region Ω with $c(\Omega) > 1$. Then $P(x) \in \mathbb{Q}[x]$.

A general framework, updated

If
$$A(x) = \sum a_n x^n$$
 and $B(x) = \sum b_n x^n$ are power series with:

- We have $a_n \in \mathbf{Z}$ and $b_n \in \mathbf{Z}$,
- $P(x) = B(x) \eta A(x)$ has radius of convergence at least R > 1,
- $P(x) = B(x) \eta A(x)$ is holomorphic on Ω with $c(\Omega) > 1$,
- P(x) is not a polynomial (not in $\mathbf{C}[x]$),

• P(x) is not a rational function (not in C(x)),

Then $\eta \notin \mathbf{Q}$.

 $c(\mathbf{C} \setminus [(2\cos(2\pi/7))^{-1}, \infty) = 4 \cdot 0.8019 \ldots = 3.207 \ldots > 1,$

BUT $A(x) + 2\cos(8\pi/7)xA(x)$ is in **C**(x), so can't apply Pólya

Making Pólya's theorem more explicit

Theorem: (Pólya) Let $P(x) \in \mathbb{Z}[[x]]$ analytically continue to $\mathbb{C} \setminus [\beta, \infty)$ with $\beta > \phi = 0.618...$ Then $P(x) \in \mathbb{Q}[x, (1-x)^{-1}]$.

Proof idea: To prove that P(x) on D(0, R > 1) is a polynomial, consider

$$\frac{1}{2\pi i}\oint \frac{P(x)}{x^{m+1}}dx=a_m.$$

For P(x) on $\mathbf{C} \setminus [\beta, \infty)$, consider

$$\frac{1}{2\pi i} \oint \frac{P(x)}{x^{m+1}} \left(\frac{1}{x^2} - \frac{1}{x}\right)^n dx = a_{m+2n} - \binom{n}{1} a_{m+2n-1} + \binom{n}{2} a_{m+2n-2} \dots \in \mathbf{Z},$$

$$\left|\frac{1}{x^2}-\frac{1}{x}\right|<1, \quad x\in\partial\Omega.$$

This leads to the irrationality of $2\cos(8\pi/7)$.

Non-explicit approximations

The last argument proves $2\cos(8\pi/7) \notin \mathbf{Q}$.

$$\frac{(1-x)^{10}(1-\eta x)}{1-x-2x^2+x^3} = \dots + (521132859 - 289206918\eta)x^{27} + \dots$$

 $|521132859 + 289206918(2\cos(8\pi/7))| = 0.0000155...$

Denominators

Here is a function with denominators and good analytic properties:

$$P(x) = -\log(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

P(x) has radius of convergence 1 for each prime p. P(x) analytically continues to $\Omega = \mathbf{C} \setminus [1, \infty)$ (and more) with $c(\Omega) = 4 > e$.

P(x) is transcendental so certainly not in $\mathbf{Q}(x)$.

What is the analogue of Pólya's theorem in this context?

A general framework, updated

If
$$A(x) = \sum a_n x^n$$
 and $B(x) = \sum b_n x^n$ are power series with:

1 We have
$$a_n[1,2,\ldots,n]^m \in \mathbf{Z}$$
 and $b_n[1,2,\ldots,n]^m \in \mathbf{Z}$,

• $P(x) = B(x) - \eta A(x)$ has radius of convergence at least $R > e^m$,

- Solution There exists φ : D(0,1) → C with φ(0) = 0 and P(φ(z)) with P(x) = B(x) ηA(x) holomorphic and |φ'(0)| > e^m,
- P(x) is not a polynomial,
- **9** P(x) is not a holonomic function,

Then $\eta \notin \mathbf{Q}$.

The examples which turn up in Apéry and otherwise are ALWAYS holonomic

Need to more precisely quantify the holonomy.

Denominators

Theorem: (CDT) Arithmetic holonomy bound. Fix $m \in \mathbf{N}$, and fix $\varphi : \overline{D(0,1)} \to \mathbf{C}$ with $\varphi(0) = 0$. Let $\mathcal{H}(\varphi, m)$ be the $\mathbf{Q}(x)$ vector space generated by

 $P(x) = \sum_{n=1}^{\infty} a_n x^n, \ a_n [1, 2, \dots, n]^m \in \mathbf{Z}$

such that $P(\varphi(x))$ is holomorphic on D(0,1).

Assume that $\log |\varphi'(0)| > m$, equivalently $|\varphi'(0)| > e^m$.

$$\dim \mathcal{H}(\varphi, m) \leq \frac{\displaystyle \iint_{|z|=|y|=1} \log |\varphi(z) - \varphi(y)| d\mu}{\log |\varphi'(0)| - m^\flat}$$

A general framework, the grubby version

The constant 16 is determined from the ODE but is hard to estimate.

The cleanest scenario is P(x) has singularities at $0, \alpha, \beta, \infty$ where α is very small.

If P(x) extends to $\mathbf{C} \setminus [\beta, \infty)$ you get at least $\log |4\beta|$.

$L(2, \chi_{-3})$ is irrational

$$B(x) - L(2, \chi_{-3})A(x) = \sum_{n=0}^{\infty} x^n \iint_{[0,1]^2} \frac{9^n s^n t^n (1-s^3)^n (1-t^3)^n}{(1+st+s^2t^2)^{2n+1}} ds dt,$$

 $A(x) \in \mathbf{Z}[[x]], B(x)$ has denominators of type $[1, 2, ..., n]^2$. Holonomic, singularities at 0, $\alpha = 1/9$, $\beta = 1$, and ∞ .

Apery's argument would require the inequality $\log 1 > 2$.

Our starting point is $\log 16 > 2$.

We get
$$P(x)$$
, $P'(x)$, $P(x/(x-1))$, $P'(x/(x-1))$ on
 $\mathbf{P}^1 \setminus \{0, -1/8, 1/9, 1, \infty\}.$

Conclusion

Theorem: (CDT) Assume $L(2, \chi_{-3}) \in \mathbf{Q}$. Consider $P(x) = \sum a_n x^n$ with

- **1** $[1, 2, \ldots, n]^2 a_n \in \mathbf{Z},$
- 2 P(x) converges on |x| < 1.
- P(x) analytically continues on any path from 0 in C \ {−1/8, 1/9, 1, 0}.

Then these generate a $\mathbf{Q}(x)$ -vector space of dimension at most 8.

If a linear relationship exists we have four such functions. Are there others?

1,
$$\log(1-x)$$
, $\log(1-x)^2$, $\operatorname{Li}_2(x) = \sum \frac{x^n}{n^2}$.
 $_3F_2\left[\frac{1/2}{3/2}, \frac{1}{3/2}; \frac{1}{4} \cdot \left(x + \frac{x}{x-1}\right)\right] \sim \frac{1}{\sqrt{1-x}} \int \frac{\log(1-x)}{x\sqrt{1-x}} dx$

We are done! (fine print).

Zagier's List

Case	β	α	C	c_1	c_2	
Α	8	-1	$\frac{2}{\pi\sqrt{3}}$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{4}\zeta(2) = 0.4112335\dots$
\mathbf{C}	9	1	$\frac{3\sqrt{3}}{4\pi}$	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{2}L_{-3}(2) = 0.3906512\dots$
D	ϕ^5	$-\phi^{-5}$	$\frac{\phi^{5/2}}{2\pi\sqrt[4]{5}}$	$\frac{1}{\phi\sqrt{5}}$	$\frac{\phi}{\sqrt{5}}$	$rac{1}{5}\zeta(2)=0.3289868\dots$
\mathbf{E}	8	4	$\frac{2}{\pi}$	0	1	$\frac{1}{2}L_{-4}(2) = 0.4579827\dots$
\mathbf{F}	9	8	$\frac{3\sqrt{3}}{\pi}$	-2	3	$\frac{5}{8}L_{-3}(2) = 0.4883140\dots$

If you use D, β = φ⁵, you get Apéry's proof that ζ(2) ∉ Q;
If you use C, β = 1, you get our proof;
If you use E, β = 1/4, but log |16β| - 2 < 0.

Where to look

One wants to find ODE's $\mathcal{L} = 0$ (or holonomic sequences a_n, b_n) such that:

- The denominators grow at most exponentially e^{nR},
- 2 If β is the first singularity of $P(x) = B(x) \zeta A(x)$ then $\log |16\beta| > R$,
- Oesirable: the local monodromy is unipotent,
- Looking at sequences of integrals I(n) is too special,
- Continued fractions are a red herring,

For example, search for \mathcal{L} with degree at most 4 and at most 5 singularities all with unipotent monodromy and denominator type $[1, 2, ..., n]^4$.