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Why Grothendieck and computers are best of friends



Approximations of real numbers

A criteria for irrationality

Rational numbers are poorly approximated by rational numbers different
from themselves.
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Approximations of real numbers

A tricky example

Let
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∫ 1
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If you expand out the numerator, you can write this as an integral
combination of the following integrals:∫ 1

0
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Hence I (n) ∈ Z log 2 +
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2n[1, 2, . . . , n]
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.



Approximations of real numbers

A tricky example
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Approximations of real numbers

An easier example

A(x) = 1 + x + 2x2 + 3x3 + 5x4 + . . . =
∑

Fnx
n,

B(x) = x + x2 + 2x3 + . . .
∑

Fn−1x
n.

A(x) =
1

1− x − x2
=

1

(1− ϕx)(1 + ϕ−1x)
.

Claim: ϕ = limn→∞ Fn/Fn−1 is irrational.

We want to prove that Fn − ϕFn−1 is small — o(1) suffices.

We want A(x)− ϕB(x) to have radius of convergence R > 1.

A(x)− ϕB(x) =
(1− ϕx)

(1− ϕx)(1 + ϕ−1x)
=

1

1 + ϕ−1x
/∈ C[x ]

has radius of convergence |ϕ| = 1.618 . . . > 1.



Approximations of real numbers

A general framework

If A(x) =
∑

anx
n and B(x) =

∑
bnx

n are power series with:

1 We have an[1, 2, . . . , n]
m ∈ Z and bn[1, 2, . . . , n]

m ∈ Z,

2 P(x) = B(x)− ηA(x) has radius of convergence at least R,

3 R > em,

4 P(x) is not a polynomial,

Then η /∈ Q.

Goal is to find A(x) and B(x) and η with

logR > m.



Approximations of real numbers

A tricky example

A(x) =
1

1− x − 2x2 + x3
= 1 + x + 3x2 + 4x3 + 9x4 + 14x5 + . . .

A(x) =
1

(1 + 2 cos(2π/7)x)(1 + 2 cos(4π/7)x)(1 + 2 cos(8π/7)x)
.

A(x) =
1

(x + 0.8019 . . .)(x − 2.246 . . .)(x − 0.554 . . .)
.

A(x) has radius of convergence |2 cos(8π/7)|−1 = 0.5549 . . ..

A(x) + 2 cos(8π/7)xA(x)

has radius of convergence (2 cos(2π/7))−1 = 0.8019 . . .. We failed!



Pólya’s Theorem

Conformal Radius

If 0 ∈ Ω ⊂ C is a simply connected open region, there exists:

φ : D(0, 1) ≃ Ω, φ(0) = 0, φ a biholomorphism

c(Ω) := |φ′(0)| is called the conformal radius of Ω

If Ω = D(0,R), then φ(z) = Rz and c(Ω) = R.

If Ω = C \ [β,∞), then φ(z) =
4βz

(1 + z)2
and c(Ω) = 4β.

Theorem: (Pólya) Let P(x) ∈ Z[[x ]] analytically continue to a region Ω
with c(Ω) > 1. Then P(x) ∈ Q[x ].



Pólya’s Theorem

A general framework, updated

If A(x) =
∑

anx
n and B(x) =

∑
bnx

n are power series with:

1 We have an ∈ Z and bn ∈ Z,

2 P(x) = B(x)− ηA(x) has radius of convergence at least R > 1,

3 P(x) = B(x)− ηA(x) is holomorphic on Ω with c(Ω) > 1,

4 P(x) is not a polynomial (not in C[x ]),

5 P(x) is not a rational function (not in C(x)),

Then η /∈ Q.

c(C \ [(2 cos(2π/7))−1,∞) = 4 · 0.8019 . . . = 3.207 . . . > 1,

BUT A(x) + 2 cos(8π/7)xA(x) is in C(x), so can’t apply Pólya



Pólya’s Theorem, upgraded

Making Pólya’s theorem more explicit

Theorem: (Pólya) Let P(x) ∈ Z[[x ]] analytically continue to C \ [β,∞)
with β > ϕ = 0.618 . . .. Then P(x) ∈ Q[x , (1− x)−1].

Proof idea: To prove that P(x) on D(0,R > 1) is a polynomial, consider

1

2πi

∮
P(x)

xm+1
dx = am.

For P(x) on C \ [β,∞), consider

1

2πi

∮
P(x)

xm+1

(
1

x2
− 1

x

)n

dx = am+2n−
(
n

1

)
am+2n−1+

(
n

2

)
am+2n−2 . . . ∈ Z,

∣∣∣∣ 1x2 − 1

x

∣∣∣∣ < 1, x ∈ ∂Ω.

This leads to the irrationality of 2 cos(8π/7).



Pólya’s Theorem, upgraded

Non-explicit approximations

The last argument proves 2 cos(8π/7) /∈ Q.

(1− x)10(1− ηx)

1− x − 2x2 + x3
= . . .+ (521132859− 289206918η)x27 + . . .

|521132859 + 289206918(2 cos(8π/7)| = 0.0000155 . . .



Denominators

Denominators

Here is a function with denominators and good analytic properties:

P(x) = − log(1− x) = x +
x2

2
+

x3

3
+ . . .

P(x) has radius of convergence 1 for each prime p.

P(x) analytically continues to Ω = C \ [1,∞) (and more)
with c(Ω) = 4 > e.

P(x) is transcendental so certainly not in Q(x).

What is the analogue of Pólya’s theorem in this context?



Denominators

A general framework, updated

If A(x) =
∑

anx
n and B(x) =

∑
bnx

n are power series with:

1 We have an[1, 2, . . . , n]
m ∈ Z and bn[1, 2, . . . , n]

m ∈ Z,

2 P(x) = B(x)− ηA(x) has radius of convergence at least R > em,

3 There exists φ : D(0, 1) → C with φ(0) = 0 and P(φ(z))
with P(x) = B(x)− ηA(x) holomorphic and |φ′(0)| > em,

4 P(x) is not a polynomial,

5 P(x) is not a holonomic function,

Then η /∈ Q.

The examples which turn up in Apéry and otherwise are ALWAYS
holonomic

Need to more precisely quantify the holonomy.



Denominators

Denominators

Theorem: (CDT) Arithmetic holonomy bound. Fix m ∈ N, and fix
φ : D(0, 1) → C with φ(0) = 0.

Let H(φ,m) be the Q(x) vector space generated by

P(x) =
∞∑
n=1

anx
n, an[1, 2, . . . , n]

m ∈ Z

such that P(φ(x)) is holomorphic on D(0, 1).

Assume that log |φ′(0)| > m, equivalently |φ′(0)| > em.

dimH(φ,m) ≤

∫∫
|z|=|y |=1

log |φ(z)− φ(y)|dµ

log |φ′(0)| −m♭



Denominators

A general framework, the grubby version

If A(x) =
∑

anx
n and B(x) =

∑
bnx

n are power series with:

1 We have an[1, 2, . . . , n]
m ∈ Z and bn[1, 2, . . . , n]

m ∈ Z,

2 A(x) and B(x) are holonomic functions,

3 P(x) = B(x)− ηA(x) converges as far as the singularity β ∈ C.

If log |β| > m, you win by Apéry.

If log |16β| < m, you go home.

If log |16β| > m, you come to me.

The constant 16 is determined from the ODE but is hard to estimate.

The cleanest scenario is P(x) has singularities at 0, α, β,∞ where α is
very small.

If P(x) extends to C \ [β,∞) you get at least log |4β|.



Denominators

L(2, χ−3) is irrational

B(x)− L(2, χ−3)A(x) =
∞∑
n=0

xn
∫∫

[0,1]2

9nsntn(1− s3)n(1− t3)n

(1 + st + s2t2)2n+1
dsdt,

A(x) ∈ Z[[x ]], B(x) has denominators of type [1, 2, . . . , n]2.

Holonomic, singularities at 0, α = 1/9, β = 1, and ∞.

Apery’s argument would require the inequality log 1 > 2.

Our starting point is log 16 > 2.

We get P(x), P ′(x), P(x/(x − 1)), P ′(x/(x − 1)) on
P1 \ {0,−1/8, 1/9, 1,∞}.



Denominators

Conclusion

Theorem: (CDT) Assume L(2, χ−3) ∈ Q. Consider P(x) =
∑

anx
n with

1 [1, 2, . . . , n]2an ∈ Z,

2 P(x) converges on |x | < 1.

3 P(x) analytically continues on any path from 0
in C \ {−1/8, 1/9, 1, 0}.

Then these generate a Q(x)-vector space of dimension at most 8.

If a linear relationship exists we have four such functions. Are there others?

1, log(1− x), log(1− x)2,Li2(x) =
∑ xn

n2
.

3F2

[
1/2 1 1

3/2 3/2
;
1

4
·
(
x +

x

x − 1

)]
∼ 1√

1− x

∫
log(1− x)

x
√
1− x

dx

We are done! (fine print).



Denominators

Zagier’s List

1 If you use D, β = ϕ5, you get Apéry’s proof that ζ(2) /∈ Q;

2 If you use C, β = 1, you get our proof;

3 If you use E, β = 1/4, but log |16β| − 2 < 0.



Denominators

Where to look

One wants to find ODE’s L = 0 (or holonomic sequences an, bn) such that:

1 The denominators grow at most exponentially enR ,

2 If β is the first singularity of P(x) = B(x)− ζA(x) then log |16β| > R,

3 Desirable: the local monodromy is unipotent,

4 Looking at sequences of integrals I (n) is too special,

5 Continued fractions are a red herring,

For example, search for L with degree at most 4 and at most 5 singularities
all with unipotent monodromy and denominator type [1, 2, . . . , n]4.


