
Resurgent integer sequences

David Broadhurst, Open University, UK
Rutgers Experimental Mathematics Seminar, 6 February 2025

In combinatorics, we happily manipulate formal power series, taking no heed of
whether they might converge. Applied mathematicians encounter series with no
radius of convergence, about which they worry. Jean Écalle mediates between these
communities, by telling us about resurgent trans-series. I shall give an account of
how an integer sequence from a problem in physics exhibits resurgence. By way
of preparation, I begin with a simpler integer sequence found by Pat Devlin and
Paulina Trifonova in a study of combinatorial games played randomly.

1. Asymptotics of a linear recursion for random games

2. Non-linear recursion from a Dyson-Schwinger equation

3. Padé–Borel summation with alternating signs

4. Trans-series and resurgent hyperasymptotic expansions
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Asymptotics of a linear recursion: In https://arxiv.org/pdf/2401.16670 Pat
Devlin and Paulina Trifonova identified a notable pair of integer sequences (αk, βk)
defined recursively with (α1, β1) = (1,−1) and for k > 0

αk+1 = k(4k + 1)αk + βk (1)

βk+1 = −k(k + 1)αk + (4k2 − k − 1)βk. (2)

These solve the following problem. If a game of Chomp starts with n cells in row 1
and k ≤ n cells in row 2, what is the probability in random play that the opening
player wins? For n ≥ k > 0 and (n, k) 6= (1, 1) the answer is

P (n, k) =
1

2
− nαk + βk

(n+ k)(n+ k − 1)(n+ k − 2)(2k − 2)!
. (3)

Conventionally, the game starts with n = k, where I found that

P (k, k) =
1

2
− (
√

2− 1)S1

(2k − 1)2−µ
+

(
√

2 + 1)S2

(2k − 1)2+µ
+O

(
1

(2k − 1)4−µ

)
(4)

at large k with

S1 =
2µ−1

Γ(1 + µ)
, S2 =

2−µ−1

Γ(1− µ)
, µ =

1√
2
. (5)

2



Theorem 1: With µ = 1
2

√
2, c0 = 1 and cn given by the first-order recursion

2ncn + (n− µ)(n− 1− µ)cn−1 = 0 (6)

for n > 0, there are Stokes constants (S1, S2) such that for large k ≥ 3
4N

αk = S1

N∑
n=0

cnΓ (2k − 1 + µ− n)

+ S2

N∑
n=0

cnΓ (2k − 1− µ− n) +O (cNΓ(2k −N)) (7)

where cn is the conjugate of cn in the quadratic number field Q(
√

2).

Outline of proof: Converting (1,2) to a second-order recursion for αk and adopting
a generic Ansatz αk ∼

∑
n≥0 cnΓ(2k − 1 + µ− n) we obtain, with ν = n− µ,

(2ν2 − 1)cn + ν(ν − 1)
(
(2ν − 1)cn−1 + 1

2(ν − 1)(ν − 2)cn−2
)

= 0 (8)

on the understanding that cn = 0 for n < 0. At n = 0, this requires 2µ2 = 1.
Then (6) solves (8) for all n > 0. The asymptotic expansion (7) combines solutions
with µ = ±1

2

√
2. When k and n are both large, the condition k ≥ 3

4n ensures that
terms in the asymptotic expansion have decreasing magnitudes.
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Hyperasymptotics of random Chomp: In Theorem 1 the asymptotic behaviour
of αk is governed by (cn, cn) up to some limit imposed by the asymptotic expansion
of those coefficients of asymptotic expansion. One may ask the old question: quis
custodiet ipsos custodes, who governs those governors? If there are higher governors,
who governs them? Can such a sequence of hyperasymptotic questions have any
ending? In the present case, there is a satisfactory answer. The governors are
governed by their conjugates, with

cn ∼
(−1)n+1µ

Γ2(1− µ)

M∑
m=0

2m−ncmΓ(n− 2µ−m) (9)

cn ∼
(−1)nµ

Γ2(1 + µ)

M∑
m=0

2m−ncmΓ(n+ 2µ−m) (10)

giving terms of alternating sign and decreasing size for large n > 2M .

The factorial growth in (9,10) accounts for the condition k ≥ 3
4N in Theorem 1, where

truncation at n = N gives a relative error estimated by 2−NΓ(N)Γ(2k−N)/Γ(2k),
which becomes stationary for N ∼ 4

3k where its size is roughly 3−2k.

With k = 52500 and N = 70000, I determined the Stokes constants (S1, S2) at 50000
digit precision. This took about 3 minutes. [Here endeth the first lesson.]

4



Non-linear recursion from a Dyson-Schwinger equation:
In quantum field theory we expand encounter formal power series whose coefficients
are integrals whose integrands are specified by Feynman diagrams. Very often, the
coefficients increase factorially. Here I shall deal with a case where the coefficients
are rational numbers from which we obtain an integer sequence.

Symbolically, the series is generated by this picture

= + + + · · ·

which generates Tn Feynman diagrams with n loops, where A000081 at OEIS gives

Tn = 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381 . . .

These are the also number of unlabelled rooted trees with n nodes. Asymptotically,

Tn =
b

n3/2
cn(1 +O(1/n))

b = 0.43992401257102530404090339143454476479808540794011 . . .

c = 2.95576528565199497471481752412319458837549230466359 . . .

which is quite benign. Yet the contributions from Tn diagrams grow factorially.
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At 4 loops, we have a rainbow, a chain and two more interesting diagrams:

The sum of rainbows converges. Chains can be summed by Borel transformation.

γrainbow =
3−

√
5 + 4

√
1 + a

2
= −a

6
+ 11

a2

63
− 206

a3

65
+ 4711

a4

67
+O(a5)

γchain = −
∫ ∞
0

6 exp(−6z/a)dz

(z + 1)(z + 2)(z + 3)
= −a

6
+ 11

a2

63
− 170

a3

65
+ 3450

a4

67
+O(a5)

γ ∼
∑
n>0

Gn
(−a)n

62n−1
= −a

6
+ 11

a2

63
− 376

a3

65
+ 20241

a4

67
+O(a5)

with large integers Gn in the alternating asymptotic series for γ(a). Note that
G4 = 20241 > 4711 + 3450, because of two further diagrams, above. The sequence
1, 11, 376, 20241, 1427156, 121639250... is A051862 at the OEIS.
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Dirk Kreimer and I showed that these numbers are generated by a third-order
differential equation with quartic non-linearity,

8a3γ
{
γ2γ′′′ + 4γγ′γ′′ + (γ′)3

}
+ 4a2γ

{
2γ(γ − 3)γ′′ + (γ − 6)(γ′)2

}
+ 2aγ(2γ2 + 6γ + 11)γ′ − γ(γ + 1)(γ + 2)(γ + 3) = a.

Padé–Borel summation with alternating signs: We sought to resum the factorially
divergent alternating series by an Ansatz

γ(a) = − a

6Γ(β)

∫ ∞
0

B(ax/3) exp(−x)xβ−1dx, B(z) =
N(z)

D(z)
.

The expansion coefficients of the Borel transform B(z) = 1+O(z) are obtained from
those those of γ(a)/a by dividing the latter by factorially increasing factors, producing
a function expected to have a finite radius of convergence in the Borel variable z, with
singularities on the negative z-axis, as for the sum of chains.

The Padé trick is to convert the expansion of B, up to n loops, into a ratio N/D
of polynomials of degrees close to n/2. Then one can check how well this method
reproduces Gn+1. We found that this works rather well with β ≈ 3 . Gerald Dunne
has recently shown that this method works even better with β = 35/12, for reasons
that I shall now explain.
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Trans-series and resurgent hyperasymptotics:
Michael Borinsky and I considered the sign-constant asymptotic expansion

g0(x) ∼
∑
n≥0

Anx
n =

1

2
+

11

24
x+

47

36
x2 +

2249

384
x3 +

356789

10368
x4 +

60819625

248832
x5 +O(x6)

that formally solves the non-linear differential equation for g(x) = −γ(−3x)/x,

(g(x)P − 1)(g(x)P − 2)(g(x)P − 3)g(x) = −3, P = x

(
2x

d

dx
+ 1

)
Ar large n, the expansion coefficients An behave as

An = S1Γ

(
n+

35

12

)(
1− 97

48

(
1

n

)
+O

(
1

n2

))
,

with a Stokes constant S1 = 0.087595552909179124483795447421262990627388 . . .
which can be determined empirically by considering a solution

g(x) = g0(x) + σ1x
−β exp(−1/x)h1(x) +O(σ21)

and retaining terms linear in σ1 in the nonlinear ODE.
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This yields a linear homogeneous ODE for h1(x), which permits a solution that
is finite and regular at x = 0 if and only if β = 35

12 . Normalizing σ1 by setting
h1(0) = −1, we obtain the expansion of

h1(x) ∼
∑
k≥0

Bkx
k = −1 +

97

48
x+

53917

13824
x2 +

3026443

221184
x3 +

32035763261

382205952
x4 +O(x5)

which gives the first-instanton correction to the perturbative solution, suppressed
by exp(−1/x). Developing the series An and Bk, I determined 3000 digits of S1 in

An ∼ −S1

∑
k≥0

Γ

(
n+

35

12
− k
)
Bk.

This is an example of resurgence: information about An resurges in Bk, and vice
versa, because both A(x) = g0(x) and B(x) = h1(x) know about the same physics.
Hyperasymptotic expansions involve the study of how Bn behaves at large n, which
involves another set of numbers Ck, at small k, and so on, and so on.

Large A’s need smaller B’s, especially to guide them,
and larger B’s need smaller C’s, and so ad infinitum.
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Trans-series: Hyperasymptotic investigation involves terms suppressed by exp(−m/x),
with action m > 1. For this third-order ODE, there are 3 solutions to the
linearized problem, namely

g(x) = g0(x) + σm

(
x−

35
12e−

1
x

)m
hm(x) +O(σ2m), m ∈ {1, 2, 3},

with h2/x
5 = C and h3/x

5 = D finite and regular near the origin. Then we use linear
ODEs to develop the expansions

C(x) = h2(x)/x5 = −1 +
151

24
x− 63727

3456
x2 +

7112963

82944
x3 − 7975908763x

23887872
x4 +O(x5),

D(x) = h3(x)/x5 = −1 +
227

48
x+

1399

4608
x2 +

814211

73728
x3 +

3444654437

42467328
x4 +O(x5).

But that is not the end of the story. We have solutions involving products of σm. We
are developing a trans-series. Écalle tells use to expect a triple expansion in powers
of x, exp(−1/x) and log(x). The coefficients come from the same ODE. They know
about each other. Structure at exp(−m/x) will resurge at different actions.
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The terms in the trans-series with action m < 4 are of the form

g =
∑
m≥0

gm

(
x−

35
12 e−

1
x

)m
, L =

21265

2304
x5 log(x),

g0 = A, g1 = σ1B, g2 = σ2x
5C + σ21(F + CL),

g3 = σ3x
5D + σ1σ2x

5E + σ31(I + (D + E)L).

Denoting the coefficients of xn in functions by subscripts, we found that

Bn ∼ −2S1

∑
k≥0

FkΓ(n+ 35
12 − k)

+ 4S1

∑
k≥0

CkΓ(n− 25
12 − k)

(
21265
4608 ψ(n− 25

12 − k) + d1
)
,

d1 = −43.332634728250755924500717390319380703460728022278 . . .

with ψ(z) = Γ′(z)/Γ(z) = log(z) +O(1/z), shows the m = 1 term, at large n, looking
forward to m = 2 terms, at small k.
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For the asymptotic expansion of the second-instanton coefficients, we found

Cn ∼ −S1

∑
k≥0

EkΓ(n+ 35
12 − k) + S3

∑
k≥0

Bk(−1)n−kΓ(n+ 25
12 − k).

The first sum looks forwards to m = 3 in the trans-series, where coefficients of

E(x) = −4 + 371
12 x−

111785
1152 x

2 + 8206067
18432 x

3 − 18251431003
10616832 x4 +O(x5)

appear. The second sum has alternating signs, looks backwards to m = 1 and is
suppressed by a factor of 1/n5/6. Likewise,

Fn ∼− 3S1

∑
k≥0

IkΓ(n+ 35
12 − k)

+ 2S1

∑
k≥0

(3Dk + 2Ek)Γ(n− 25
12 − k)

(
21265
4608 ψ(n− 25

12 − k) + d1
)

− 2S3

∑
k≥0

Bk(−1)n−kΓ(n− 35
12 − k)

(
21265
4608 ψ(n− 35

12 − k) + f1
)

looks forwards to Ik, Dk and Ek, at m = 3, and backwards to Bk at, m = 1. On the
next slide, I exhibit the whole story, as compactly as possible.
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g(x) =
∞∑
m=0

(
x−

35
12 e−

1
x

)m bm/2c∑
i=0

b(m−2i)/3c∑
j=0

σm−2i−3j1 σ̂i2σ̂
j
3x

5(i+j)
∑
n≥0

a
(m)
i,j (n)xn,

σ̂2 = σ2 + 21265
2304 σ

2
1 log(x), σ̂3 = σ3 + 21265

2304 σ
3
1 log(x),

a
(m)
i,j (n) ∼ −(s+ 1)S1

∑
k≥0

a
(m+1)
i,j (k)Γ(n+ 35

12 − k)

+ S1

∑
k≥0

(
4(i+ 1)a

(m+1)
i+1,j (k) + 6(j + 1)a

(m+1)
i,j+1 (k)

)
Γ(n− 25

12 − k)
(
21265
4608 ψ(n− 25

12 − k) + d1
)

+ 1
4S3

∑
k≥0

(
4(s+ 1)a

(m−1)
i−1,j (k) + 6(j + 1)a

(m−1)
i−2,j+1(k)

)
(−1)n−kΓ(n+ 25

12 − k)

− 2(s− 2i− 1)S3

∑
k≥0

a
(m−1)
i,j (k)(−1)n−kΓ(n− 35

12 − k)
(
21265
4608 ψ(n− 35

12 − k) + f1
)

− S3

∑
k≥0

(
8(i+ 1)a

(m−1)
i+1,j (k) + 6(j + 1)a

(m−1)
i,j+1 (k)

)
(−1)n−kΓ(n− 95

12 − k)Q(n− 95
12 − k)

− (f1 − c1)S3

∑
k≥0

(
2(i+ 1)a

(m−1)
i+1,j−1(k) + 6(i+ j)a

(m−1)
i,j (k)

)
(−1)n−kΓ(n− 35

12 − k),

s = m− 2i− 3j, Q(z) =
(
21265
4608

)2 (
ψ2(z) + ψ′(z)

)
+ 2c1

(
21265
4608

)
ψ(z) + c2.
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Comments and conclusions:

1. The linear problem from game theory has simple hyperasymptotics. Its integer
sequence has a pair of conjugate governors, which also govern each other.

2. The integer sequence from quantum field theory comes from a non-linear
recursion. Its trans-series exhibits 17 types of resurgence, intensively tested
at high precision, for all actions m ≤ 8.

3. The 6 Stokes constants have been determined to better than 1000 digits.

4. Excellent freeware, from Pari-GP in Bordeaux, was vital to this enterprise.

5. The presence of logarithms in the trans-series may be ascribed to resonance
between three equally spaced instantons.

6. I have been guided by advice from Gerald Dunne and encouraged by programmes
and workshops on Applicable Resurgent Asymptotics at the Isaac Newton Institute,
in Cambridge, and on Resurgence and Modularity in QFT and String Theory at
the Galileo Galilei Institute, in Florence.
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