

Powers of 2 in High-Dimensional Lattice Walks

Nikolai Beluhov

University of Cambridge

... -2 -1 0 1 2 ...

Begin at 0
make $2n$ steps
return to 0

How many ways?

$$W_1(n) = \binom{2n}{n}$$

What about 2D?

Begin at 0
make $2n$ steps
return to 0

How many ways?
We go left, right, up, down

$$W_2(n) = \sum_{x_1+x_2=n} \binom{2n}{x_1, x_1, x_2, x_2}$$

Choose positive/negative first
then directions

$$W_2(n) = \binom{2n}{n} \sum_{x_1+x_2=n} \binom{n}{x_1, x_2}^2$$

Vandermonde's identity

$$W_2(n) = \binom{2n}{n}^2$$

What about any number of dimensions?

$$W_d(n) = \sum_{x_1+\dots+x_d=n} \binom{2n}{x_1, x_1, \dots, x_d, x_d}$$

Choose positive/negative first
then directions

$$W_d(n) = \binom{2n}{n} \sum_{x_1+\dots+x_d=n} \binom{n}{x_1, \dots, x_d}^2$$

How many 2's are there in $W_d(n)$?

Kummer's theorem
How many 2's are there in $\binom{a+b}{a,b}$?
Look at a, b in binary

$$W_1(n) = \binom{2n}{n}$$

Let s be the number of 1's
in the binary expansion of n
The answer is s

What about 2D?

$$W_2(n) = \binom{2n}{n}^2$$

The answer is $2s$

What about 3D?

$$W_3(n) = \binom{2n}{n} \sum_{x_1+x_2+x_3=n} \binom{n}{x_1, x_2, x_3}^2$$

Apply Kummer to each summand
Count odds

Generalisation
For all odd d the answer is s

What about even $d = 2e$?
Fold by Vandermonde

$$W_d(n) = \binom{2n}{n} \text{ times}$$

$$\sum_{y_1+\dots+y_e=n} \binom{2y_1}{y_1} \dots \binom{2y_e}{y_e} \binom{n}{y_1, \dots, y_e}^2$$

Same method works when e odd
For all $d \equiv 2 \pmod{4}$ the answer is $2s$

What we know so far

$$d \equiv 1 \pmod{2} \quad s$$

$$d \equiv 2 \pmod{4} \quad 2s$$

$$d \equiv 4 \pmod{8} \quad ?$$

Let's run some experiments

n	1	2	3	7	9	21	25
s	1	1	2	3	2	3	3
exp	3	3	10	12	6	9	11

What we know so far

$$d \equiv 1 \pmod{2} \quad s$$

$$d \equiv 2 \pmod{4} \quad 2s$$

$$d \equiv 4 \pmod{8} \quad \geq 3s$$

$$d \equiv 8 \pmod{16} \quad ?$$

The truth

$$d \equiv 1 \pmod{2} \qquad \qquad s$$

$$d \equiv 2 \pmod{4} \qquad \qquad 2s$$

$$d \equiv 4 \pmod{8} \qquad \qquad \geq 3s$$

$$d \equiv 8 \pmod{16} \qquad \qquad \geq 3s + 1$$

$$d \equiv 16 \pmod{32} \qquad \qquad \geq 3s + 2$$

...

We know the cases of equality, too

Focus on $d = 4$
The method generalises

$$W_4(n) = \binom{2n}{n} \text{ times}$$

$$\sum_{x+y=n} \binom{2x}{x} \binom{2y}{y} \binom{n}{x, y}^2$$

Consider just

$$\sum_{x+y=n} \binom{2x}{x} \binom{2y}{y} \binom{n}{x, y}^2$$

We want exponent $2s$

Apply Kummer to each summand
Some summands fine
Others not so much

Worst summands

$x + y = n$ without carries

Exponent is just s

We want exponent $2s$

What to do?

Consider worst ones first

Gather all together

$$\sum_{\substack{x+y=n \\ \text{carry-free}}} \binom{2x}{x} \binom{2y}{y} \binom{n}{x, y}^2$$

Surprise

Sum of worst ones has exponent $2s$

The method generalises
Gather all summands into groups
Each group has exponent $\geq 2s$
Focus on the worst group

Each summand has exponent s

We gather 2^s summands

Suddenly, exponent $2s$

We get a boost

Why so special?

$$\binom{2x}{x} \binom{2y}{y} \binom{n}{x, y}^2$$

Not that special
Let's run some experiments
When do we get a boost?

$$F(x, y) = \binom{n}{x, y}$$

$$F(x, y) = \binom{n}{x, y}^a$$

$$F(x, y) = \begin{pmatrix} 2x \\ x \end{pmatrix} \begin{pmatrix} 2y \\ y \end{pmatrix}$$

$$F(x, y) = \left[\begin{pmatrix} 2x \\ x \end{pmatrix} \begin{pmatrix} 2y \\ y \end{pmatrix} \right]^a$$

Products of such

$$F(x, y) = \left[\begin{pmatrix} 2x \\ x \end{pmatrix} \begin{pmatrix} 2y \\ y \end{pmatrix} \right]^a \begin{pmatrix} n \\ x, y \end{pmatrix}^b$$

$$F(x, y) = \binom{4x}{2x} \binom{4y}{2y}$$

$$F(x, y) = \left[\binom{4x}{2x} \binom{4y}{2y} \right]^a$$

...

Conjecture

We get a boost for all such $F(x, y)$
Proof?

First we tidy up a bit
What is $F(x, y)$, really?

The right building blocks are
the factorials

$$F(x, y) = \frac{(2x)! \ (2y)! \ n!^2}{x!^4 \ y!^4}$$

Take out common factors

$$f_i(x, y) = \text{odd part of } (2^i x)! \ (2^i y)!$$

$$F(x, y) = f_0(x, y)^{-4} \ f_1(x, y)$$

Division doesn't matter
Focus on products of f_i 's
raised to positive powers

Induction

One more tweak

Focus on products of f_i 's
raised to positive powers
times polynomial $P(x, y)$

Example

$$F(x, y) = f_0(x, y)$$

First case: Even $n = 2m$
Carry-free $x + y = n$ becomes

$$\begin{array}{r} x \\ + y \\ \hline = n \end{array} \quad \begin{array}{r} \boxed{} \\ \boxed{} \\ \hline \boxed{} \end{array} \quad \begin{array}{r} 0 \\ 0 \\ 0 \end{array}$$

$$\sum_{\text{carry-free } n} f_0(x, y) =$$

$$\sum_{\text{carry-free } m} f_0(2x, 2y) =$$

$$\sum_{\text{carry-free } m} f_1(x, y)$$

Second case: Odd $n = 2m + 1$
Carry-free $x + y = n$ becomes

$$\begin{array}{r} x \quad \boxed{} \quad 0^{(1)} \\ + y \quad \boxed{} \quad 1^{(0)} \\ \hline = n \quad \boxed{} \quad 1 \end{array}$$

$$\sum_{\text{carry-free } n} f_0(x, y) =$$

$$\sum_{\text{carry-free } m} [f_0(2x+1, 2y) + f_0(2x, 2y+1)] =$$

$$\begin{aligned} & \sum_{\text{carry-free } m} [(2x + 1)f_0(2x, 2y) + \\ & \quad + (2y + 1)f_0(2x, 2y)] = \\ & \sum_{\text{carry-free } m} (2x + 2y + 2)f_1(x, y) = \end{aligned}$$

$$2 \cdot \sum_{\text{carry-free } m} (x + y + 1) f_1(x, y)$$

The induction step is complete

Wrapping up

We can gather the worst into a group

We can gather all summands into groups

Divisibility follows

The method generalises

$$F(z_1, \dots, z_k)$$

Divisibility follows for all d

Further tinkering gives us
the cases of equality

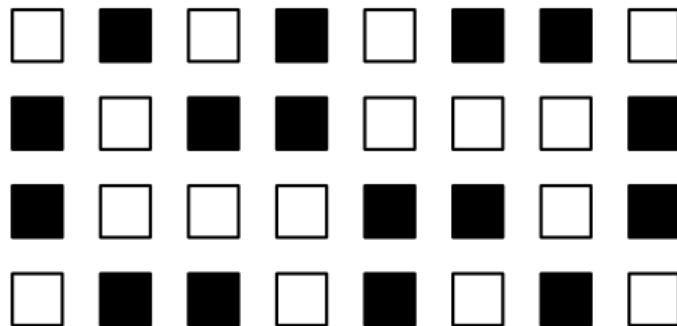
Fun by-products
The sum of all odd
binomial coefficients in row n
is divisible by 2^s

Fun by-products
Sums of powers

Sums of multinomial coefficients
Other primes

Why do we care about
the number of 2's in $W_d(n)$?

Bhattacharya's conjecture



Let $B(m, n)$ be the number of ways
for size $2m \times 2n$

How many 2's are there in $B(m, n)$?

The conjecture is $s_2(m)s_2(n)$

Connection to lattice walks

$$B(1, n) = W_1(n)$$

$$B(2, n) = W_3(n)$$

Confirmed for

$m = 2^k$, any n : Easy

$m = 2^k + 1$, any n : Not so easy

Thank you