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Counting

Counting is the act of determining the number of objects in a set

Combinatorics is often described as the mathematics of counting

A combinatorial set is a set of objects with a notion of size which has finitely many of each each size

Examples
Words, lattice paths, graphs, set partitions, permutations, etc



Permutation patterns

This talk will focus on permutation classes, i.e., permutations avoiding substructures

The permutation 41257368

e e 2o
ﬁ4ﬁ§ﬁff@ﬁff@ﬁS';ffff@fﬁf_f@ =
T :

12® ‘ For example in the subsequence 273.
‘ ...........................

= -

The containment order is a partial order on the set of permutations



Permutation classes

A permutation class is a set of permutations that is closed downwards
Uniquely defined by minimal permutations not in the set, called the basis

We write Av(B) for the permutation class that avoids the permutations in the set B

Our question:

Given a basis B, how many permutations of size n are in Av(B) ?

Example:

Rorzihn > 0, there is one permutation of size n in Av(21).



Avoiding size three permutations

Theorem

2n
For every permutation o of size three, the size of | Av, (o) | is C, = e ( ) .
n n

There are two symmetry classes: {123, 321} and {132, 213, 231, 312}

Example
AwgéBydtation in of size n > 0 in Av(132) can be

written as anf} where a and f avoid 132.
All of the entries in a are below the entries in /.

1 n =20

e { Zz;é Gl ifn >0 ﬁ



Av(132)

Example
A permutation in of size n > 0 in Av(132) can be

written as anfl where a and f avoid 132.
All of the entries in a are below the entries in f.

Let F(x) = )" | Av,(132) | x", then F(x) = 1 + xF(x)".

n>0
1—\/1—4x ﬁ

Solving gives F(x) =
2x




A pipeline for enumerative combinatorics
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Av(132) by computer
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Gridded permutations and tilings

= / ™\ A tiling is a triple ((n, m), O, R), where (n, m) are the dimensions,
® O are the obstructions, and X are the requirements
/\\ / /\ The tiling represents the set of (gridded) permutations that can be
\_ / drawn on the tiling, without containing any obstruction, while
containing every requirement
2 )
‘e
6 . 5 Here we get the permutation 6423751, although, strictly
4‘2 3e speaking we should also write the coordinate of each point
. 1. .




Av(132) by computer

18 from tilings.strategies import RowColumnSeparationStrategy
19

20 strategy = RowColumnSeparationStrategy()

21 rule = strategy(tiling)

22 print(rule)
Place topmost — — .

= alZig, 5
: >>> print(rule)

/\ point Infer row and column separation
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Requirement 0: Requirement 0:

& ) J/ 0: (1, 1) 0: (1, 2)
 empty, or B |
non-empty ; from tilings import GriddedPerm, Tiling /
3 tiling = Tiling(
4 obstructions=][
5 GriddedPerm((@, 1), ((o, @), (2, 0))), /\ /\
6 GriddedPerm((0, 1), ((1, 1), (1, 1))),
7 GriddedPerm((1, o), ((1, 1), (1, 1))),
8 GriddedPerm((@, 2, 1), ((o, @), (0, @), (0, 2))),
9 GriddedPerm((@, 2, 1), ((2, @), (2, 9), (2, 0))),
10 1,
11 requirements=|
12 [
13 GriddedPerm((@,), ((1, 1),)),
14 1,
15 1,

[
(o))
e




Insertion encoding

A language for encoding permutations

<&
d] for middl e 2

O = Ono represen:ed ‘ay :rzf( oi 1;3 e) A

OB no represented b or le : . .

P > . 32010 The insertion encoding of
O > on represented by r (for right) :
O n represented by f (for fill) S2elao 325146 1s m1m1f112f1f1
e e >l deo
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Let Z(€) be the language formed by the insertion encodings of a permutation class &

Theorem [Albert, Linton, and Ruskuc (2005), Vatter (2012)] ° . . ®
For a permutation class Av(B), the following are equivalent 1o 1%

1. The language £ (Av(B)) is regular : S * e

2. There are at most k slots in any evolution
3. The set B contains at least one permutation in each of Av(132, 312), Av(213, 231),
Av(123 3142 3412) and Aw(G21 2145 2415



Insertion encoding as tilings
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Inflations of simple permutations

An interval in a permutation is a set of consecutive indices where the values are consecutive

A permutation of size at least two is simple if it has no proper intervals

Theorem [Albert and Atkinson (2005)] &
Every permutation of size at least two can be written as an inflation o

nloy, ...,0,] where x is a unique simple permutation. If m > 4, the

0; are unique. *
If r =12 (or x = 21 resp.), and o, is sum-indecomposable (or skew- °

indecomposable resp.) then it is also unique.

Theorem [Albert and Atkinson (2005)]
A permutation class with finitely many simple permutations is Az 2 5 210 1 120
finitely based and has an algebraic generating function.



Finitely many simple permutations

This gives a recipe to build the inflations of a
simple permutation in a permutation class

It can be extended to any permutation class
with finitely many simple permutations

Theorem [Brignall, Ruskuc, and Vatter (2008)]
[t is decidable if a permutation class has finitely many simple permutations.

Theorem [Bassino, Bouvel, Pierrot, and Rossin (2015)]
For a fixed basis B, there is a polynomial time algorithm that decides if Av(B) has finitely many
simple permutations.

An algorithm for this procedure was given by Bassino, Bouvel, Pierrot, Pivoteau, and Rossin (2017)



(Combinatorial exploration

Apply strategies to create a universe of rules, and then search for a specification within the universe

Algorithm 1 Combinatorial Specification Searcher

e

Input: A set of combinatorial rules U
Output: The union of all combinatorial specifications contained in U

changed «— True
while changed do
changed < False

for A < (BW,..., BM) e Udo
if any BU) is not on the left-hand side of any rule in U then

U—U~{AE (BO,...,Bm))
changed «— True
end if
end for
. end while
VU
: return V

O S
SIS R O el =

Theorem 3.1. For any set of combinatorial rules U, the set V' returned by Algorithm 1 is equal
to the union of all combinatorial specifications that are contained in U.

Definition 4.2. We call an m-ary strategy S a productive strategy if the following two conditions
hold for all combinatorial sets A with corresponding decomposition ds(A) = (BW,...,B(m),
and forallie {1,...,m}.

1. Forall N € NN, if Ay relies on B]@, then j < N.
2. If Ay relies on Bg) for some N € N, then

(@) Ayl = |B,(1i)| for all n € N, and

(b) |Ag| > |B§i)| for some £ € IN.

Theorem 4.3. Let P be a proof tree, or the equivalent combinatorial specification, composed
entirely of rules derived from productive strategies. Then P is productive, i.e., the infinite
system of equations derived from its counting functions has a unique solution.



TileScope

We call our implementation of combinatorial exploration with tilings the TileScope algorithm

Combinatorial | < Flexible finite
Exploration BN enum. scheme [30]
Struct-cover | | Finitely many simple Regular insertion \ Vatter’s finite
verified [23] permutations [20] encoding [135] ' | enum. scheme [134]
\ A~ ‘| A
Zeilberger’s finite | Scanning elements
emppa s [31]{ enum. scheme [139] - y algorithm [79]
Polynomial Finitely labeled
classes [90] generating tree [136]

Figure 3: Comparison of algorithmic enumeration methods.

As well as unifying earlier methods, one key advantage of TileScope is its ability to utilise a
growing library of strategies in a simultaneous manner to build a greater understanding of the
structure of the permutation classes



(Combinatorial exploration

Apply strategies to create a universe of rules, and then search for a specification within the universe

What is a specification? A set of rules where each class appears once on the left. What is a rule?
First, we need strategies. Let X be the set of combinatorial sets.
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Examples of strategies
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Productive specifications

A specification is a set of rules where each combinatorial set appears exactly once on the LHS.

Deb = (qrodecrue)
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Reliance graphs
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Theorem 4.1. Let P be a proof tree (or the corresponding specification) involving combinatorial
sets B B@) .. . BN and whose reliance graph contains no infinite directed walks. Let 8(P)

be the system of equations in the indeterminates {b](i) : 7€ N, 1 < i < N}. There exists a
unique solution to the system

((B0,50,..), (552, o, (B0, 5M,.) ) e (e

In other words, P is a productive proof tree.




Example of reliance graph
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(Combinatorial exploration

Apply strategies to create a universe of rules, and then search for a specification within the universe

Definition 4.2. We call an m-ary strategy S a productive strategy if the following two conditions
hold for all combinatorial sets A with corresponding decomposition ds(A) = (BW, ..., B(m),
and forallie {1,...,m}.

1. For all N € N, if Ay relies on Bgi), then j < N.

2. If Ay relies on Bg,) for some N € N, then

(@) |An| = |B,(1i)| for all n € N, and

(b) |Ay| > |Béi)| for some £ € IN.

Theorem 4.3. Let P be a proof tree, or the equivalent combinatorial specification, composed
entirely of rules derived from productive strategies. Then P is productive, i.e., the infinite
system of equations derived from its counting functions has a unique solution.

There are productive specification with rules from strategies that are not productive.
A story for another day.



Combinatorial Exploration: An Algorithmic Framework for Enumeration

This is a 99 page preprint available on the arXiv:
https:/ /arxiv.org/abs/2202.07715 to appear in
Memoirs of the AMS.

* automatically and rigorously study the structure
of combinatorial sets and derive their counting
sequences and generating functions

* enumerate and randomly sample objects

» strengthen the foundations of combinatorial
specifications

Av(1234,1342)

View Raw Data
Counting Sequence

1,1, 2, 6, 22, 89, 380, 1678, 7584, 34875, 162560, 766124, 3644066,
17469863, 84324840, ...

Copy 101 terms to clipboard Search on OEIS Search on PermPAL

Heatmap

To create this heatmap, we sampled 1,000,000 permutations of length 300
uniformly at random. The color of the point (3, j) represents how many
permutations have value j at index ¢ (darker = more).

Specification 1 Specification 2 Specification 3 Specification 4

Implicit Equation for the Generating Function &

T (cz:2 — 2z + 2)F(a:)4 - (2.'132 — 4z — l)F(a:)3 + (22 + 3)F(:7:)2 —3F(z)+1:

Copy to clipboard: | latex Maple Search on PermPAL
Recurrence
a(0) =1
a(l)=1
a(2) =2
a(3) =6
a(4) = 22
a(5) = 89
a(6) = 380
a(7) = 1678
2(4n+5)(2n + 3) (4n + 3)a(n 1427613 + 105300n2 + 2
a(n i g) — _ 2Un+5) @n+3) n+3a(m)

9(n+9)(n+7)(n+6) 27 (n+9) (s

Copy to clipboard: latex Maple

Specification 5

This specification was found using the strategy pack "Point Placements Tracked Fusion Req Corrob

Expand Verified" and has 223 rules.

Found on January 27, 2022.
Finding the specification took 15092 seconds.

- . —— —


https://arxiv.org/abs/2202.07715

Combinatorial Exploration: An Algorithmic Framework for Enumeration

This is a 99 page preprint available on the arXiv:
https:/ /arxiv.org/abs/2202.07715 to appear in
Memoirs of the AMS.

* apply extensively to permutation pattern
problems

* rederive hundreds of results in literature in a
unified manner and prove many new results

* share the results in a new public database:
https:/ / permpal.com
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https://arxiv.org/abs/2202.07715
https://permpal.com

Other directions

* Forests - specifications with non-productive strategies!
* Bijections
« Qther objects, e.g, lattice paths, set partitions, alternating sign matrices, polyominoes

* Mesh patterns and grid classes - we’ve all had enough definitions, for another day...



Permutation Patterns 2025

PERMUTATI ON
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PERMUTATI ON

University of St Andrews, Scotland, July 7th-11th 2025

Invited speakers are David Bevan and Natasha Blitvic

Important dates:

Abstract submission deadline: April 11th 2025
Early registration deadline: May 1st 2025
Late registration deadline: June, 2025

Conference dates: July 7th-11th 2025
Pre-conference workshop: July 4th-5th 2025



End credits (start at 4.39)
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https://www.youtube.com/watch?v=gzrpHGsAsL4

