Studying the Area Under Generalized Dyck Paths

AJ Bu

Rutgers University
March 7, 2024

Introduction to Dyck and Motzkin Paths

Two well-known types of paths:

- A Motzkin path of length n is a path in the $x y$-plane from the origin to $(n, 0)$ with steps in $\{(1,1),(1,0),(1,-1)\}$ that never goes below the x-axis.

We call

$$
\begin{aligned}
& U:=(1,1) \text { an up step, } \\
& F:=(1,0) \text { a flat step, and } \\
& D:=(1,-1) \text { a down step }
\end{aligned}
$$

- A Dyck path is a Motzkin path that avoids flat steps.

Example

The following is a Motzkin path of length 10

UUFDUUDFDD

Example:

Natural Question: How do we enumerate Motzkin paths?

Use weight enumerator:

$$
P(t)=\sum_{W \in \mathcal{P}} t^{\text {Length }(W)}
$$

$$
P(t)=1+t P(t)+t^{2}[P(t)]^{2} .
$$

Let \mathcal{P} denote the set of all Motzkin paths.
Then \mathcal{P} is generated by

$$
\mathcal{P}=\{\text { EmptyPath }\} \cup F \mathcal{P} \cup \cup \mathcal{P} D \mathcal{P} .
$$

Therefore, the enumerator of each of these gives us

$$
P=1+t P+t^{2} P^{2}
$$

Area Under Motzkin Paths

To keep track of area under the paths in \mathcal{P}, as well as the number of paths, we use the following bi-variate weight enumerator:

$$
P(t, q)=\sum_{W \in \mathcal{P}} t^{\text {Length }(W)} q^{\text {AreaUnder }(W)}
$$

E.g.

$U D U D$ has weight $t^{4} q^{2}$

UFFD has weight $t^{4} q^{3}$

FFFF has weight t^{4}

Area Under Motzkin Paths

$$
\mathcal{P}=\{\text { EmptyPath }\} \cup F \mathcal{P} \cup \cup \mathcal{P} D \mathcal{P}
$$

Note that for

$$
M=F M_{0}
$$

both M and M_{0} have the same area.
We, however, need to make adjustments for

$$
M=U M_{1} D M_{0}
$$

(1) The total area under the steps U and D is 1
(2) The area under the Motzkin path M_{0} is equal to the area under the portion of M that it represents
(3) Since M_{1} is shifted to height 1 , however, every step in M_{1} has one more unit block below it.

$$
\Longrightarrow M(t, q)=1+t M(t, q)+t^{2} q M(t, q) M(q t, q)
$$

Generalized Dyck Paths

A generalized Dyck path is a path in the $x y$-plane from the origin $(0,0)$ to $(n, 0)$ with an arbitrary set of atomic steps and that never go below the x-axis.
E.g. A generalized Dyck path with steps in $S=\{1,2,-1,-2\}$.

$$
[1,2,-2,2,1,-2,-2]
$$

Joint Work with Doron Zeilberger:

Paper: Using Symbolic Computation to Explore Generalized Dyck Paths and Their Areas (posted on arXiv)

Accompanying Maple Package: GDW.txt
(Link is found in paper. Also posted on both of our websites)
(1) Use symbolic programming to generate $F(t, X)$ s.t. $F(t, P)=0$, where $P(t)$ is the weight-enumerator for the generalized Dyck paths with steps in a given set S.
(2) Make an analogous method that keeps track of area as well
E.g. Generalized Dyck paths with steps in $S=\{1,2,-1,-2\}$

Using our Maple procedure,

$$
\operatorname{EqGFt}(\{1,2,-1,-2\}, \mathrm{P}, \mathrm{t})
$$

outputs

$$
1+(-2 t-1) P+t(3 t+2) P^{2}-t^{2}(2 t+1) P^{3}+P^{4} t^{4}
$$

Notation

First let's introduce the following notation:
$\mathcal{P}_{a, b}=$ the set of generalized Dyck paths with a set of steps given by S that start at $(0, a)$ and end at height b,
$P_{a, b}(t)=$ the desired weight-enumerator for the paths in $\mathcal{P}_{a, b}$.
$\mathcal{Q}_{a, b}=$ the subset of $\mathcal{P}_{a, b}$ that contains all non-empty paths that stay strictly above the x-axis, except at an endpoint if $a=0$ or $b=0$,
$Q_{a, b}(t)=$ the desired weight-enumerator for the paths in $\mathcal{Q}_{a, b}$.

- Begin with $\mathcal{P}_{0,0}$
- Get new equations and variables by breaking the paths down into a concatenation of legal steps and sub-paths with various starting and ending heights
- Use the enumerating function for the "children" to get the enumerator for the original set
- Sometimes, we will replace a child set with one that has the same number of elements but is easier to work with.
- Repeat this whole process with each child set until no more children are produced.
- Assigning different variables to each of these sets gives us our system of equations
- We can then use Gröbner bases to get $P(t)$

A Brief Summary of Gröbner Bases

A Göbner basis of an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a finite subset $G=\left\{g_{1}, \ldots, g_{t}\right\}$ of I such that, for every nonzero polynomial f in I, f is divisible by the leading term of g_{i} for some i.

The Gröbner basis simplifies solving the ideal membership problem and finding solutions to a system of polynomial equations.

A polynomial f lies in the ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ with Gröbner basis G if and only if the remainder on division of f by G is zero.

Example of Process: $P_{0,0}(t)$

Suppose $0 \in S$. We want to find $P_{0,0}(t)$.

- EmptyPath $\in \mathcal{P}_{0,0}$
- If the path begins with the flat step, then we have

$$
F \mathcal{P}_{0,0}
$$

- Otherwise, we begin with a positive step, and the path must return to the x-axis for a first time. We will split our path into two sub-paths at this point

$$
\begin{gathered}
\mathcal{Q}_{0,0} \mathcal{P}_{0,0} \\
\Longrightarrow \quad \mathcal{P}_{0,0}=\{\text { EmptyPath }\} \cup F \mathcal{P}_{0,0} \cup \mathcal{Q}_{0,0} \mathcal{P}_{0,0} \\
\Longrightarrow \quad P_{0,0}=1+t \cdot P_{0,0}+Q_{0,0} \cdot P_{0,0}
\end{gathered}
$$

Example of Process: $Q_{0,0}(t)$

Now we want to find $Q_{0,0}(t)$

First, let us introduce the following notation:
Let the set U give the legal upward steps and D give the legal downward steps
e.g. For $S=\{1,2,-1,-2\}$, our legal steps are

$$
\text { Up steps: } \begin{aligned}
u_{1} & =\text { up } 1 \text { unit } \quad \text { and } \quad u_{2}=\text { up } 2 \text { units } \\
\Longrightarrow U & =\{1,2\}
\end{aligned}
$$

Down steps: $\quad d_{1}=$ down 1 unit and $d_{2}=$ down 2 units

$$
\Longrightarrow D=\{1,2\}
$$

Example of Process: $Q_{0,0}(t)$

- Let the set U give the legal upward steps and D give the legal downward steps
- Legal Initial Steps: u_{k} s.t. $k \in U$

Separating this step leaves a path that starts at height k

- Legal final steps: d_{ℓ} s.t. $\ell \in D$

Separating this step leaves a path that ends at height ℓ

$$
\Longrightarrow \mathcal{Q}_{0,0}=\bigcup_{k \in \cup} \bigcup_{\ell \in D} u_{k}\left[\mathcal{Q}_{k, \ell}\right] d_{\ell}
$$

- Shifting the paths in $\mathcal{Q}_{k, \ell}$ down by 1 unit creates a bijection with $\mathcal{P}_{k-1, \ell-1}$

$$
\Longrightarrow Q_{0,0}(t)=t^{2} \sum_{k \in U} \sum_{\ell \in D} P_{k-1, \ell-1}(t)
$$

E.g. Generalized Dyck paths with steps in $\{1,2,-1,-2\}$

$$
U=\{1,2\} \quad D=\{1,2\}
$$

Legal initial steps: $u_{1}=1$ and $u_{2}=2$

$$
\Longrightarrow \quad \mathcal{Q}_{0,0}=u_{1} \quad \mathcal{Q}_{1,0} \quad \cup \quad u_{2} \quad \mathcal{Q}_{2,0}
$$

Legal final steps: $d_{1}:=-1$ and $d_{2}:=-2$
$\mathcal{Q}_{0,0}=u_{1} \mathcal{Q}_{1,1} d_{1} \cup u_{1} \mathcal{Q}_{1,2} d_{2} \cup u_{2} \mathcal{Q}_{2,1} d_{1} \cup u_{2} \mathcal{Q}_{2,2} d_{2}$

$$
\Longrightarrow \quad Q_{0,0}=t^{2} \cdot Q_{1,1}+t^{2} \cdot Q_{1,2}+t^{2} \cdot Q_{2,1}+t^{2} \cdot Q_{2,2}
$$

Bijections:

$$
\begin{array}{llll}
\mathcal{Q}_{1,1} \longleftrightarrow \mathcal{P}_{0,0} & \Longrightarrow & \begin{array}{l}
Q_{1,1}(t)=P_{0,0}(t) \\
\mathcal{Q}_{1,2} \longleftrightarrow \mathcal{P}_{0,1} \\
\mathcal{Q}_{2,1} \longleftrightarrow \mathcal{P}_{1,0} \\
\mathcal{Q}_{2,2} \longleftrightarrow \mathcal{P}_{1,1} \\
\Longrightarrow
\end{array} & \Longrightarrow
\end{array} \quad \begin{aligned}
& Q_{1,2}(t)=P_{0,1}(t) \\
& Q_{2,1}(t)=P_{1,0}(t) \\
& \\
&
\end{aligned}
$$

E.g. Generalized Dyck paths with steps in $\{1,2,-1,-2\}$

Keep doing this until no more new "children" are produced
E.g. Our procedure

$$
\text { MakeSyst(P,Q,t, \{ 1,2,-1,-2 \}) }
$$

gives the system of equations:

$$
\begin{aligned}
& P_{0,0}=P_{0,0} Q_{0,0}+1, \\
& P_{0,1}=P_{0,0} Q_{0,1}, \\
& P_{1,0}=Q_{1,0} P_{0,0}, \\
& P_{1,1}=P_{0,1} Q_{1,0}+P_{0,0}, \\
& Q_{0,0}=t^{2} P_{0,0}+t^{2} P_{0,1}+t^{2} P_{1,0}+t^{2} P_{1,1}, \\
& Q_{0,1}=t P_{0,0}+t P_{1,0}, \\
& Q_{1,0}=t P_{0,0}+t P_{0,1}
\end{aligned}
$$

with variables $\left\{P_{0,0}, P_{0,1}, P_{1,0}, P_{1,1}, Q_{0,0}, Q_{0,1}, Q_{1,0}\right\}$

Area Under Generalized Dyck Paths

We can modify our method of enumerating generalized Dyck paths to keep track of the total area.
e.g. Before we had

$$
\begin{aligned}
\mathcal{Q}_{0,0} & =\bigcup_{k \in U} \bigcup_{\ell \in D} u_{k} \mathcal{Q}_{k, \ell} d_{\ell} \\
Q_{0,0}(t) & =t^{2} \sum_{k \in U} \sum_{\ell \in D} P_{k-1, \ell-1}(t)
\end{aligned}
$$

Now, considering area, we have. . .

$$
Q_{0,0}(t, q)=t^{2} \sum_{k \in U} \sum_{\ell \in D} q^{k / 2+\ell / 2} P_{k-1, \ell-1}(q t, q)
$$

We showed that

$$
\begin{aligned}
\mathcal{Q}_{0,0} & =u_{1} \mathcal{Q}_{1,1} d_{1} \cup u_{1} \mathcal{Q}_{1,2} d_{2} \cup u_{2} \mathcal{Q}_{2,1} d_{1} \cup u_{2} \mathcal{Q}_{2,2} d_{2} \\
Q_{0,0}(t) & =t^{2} \cdot P_{0,0}(t)+t^{2} \cdot P_{0,1}(t)+t^{2} \cdot P_{1,0}(t)+t^{2} \cdot P_{1,1}(t)
\end{aligned}
$$

Area under steps:

- Area under $u_{1}=$ Area under $d_{1}=\frac{1}{2}$
- Area under $u_{2}=$ Area under $d_{2}=1$

$$
\begin{gathered}
Q_{0,0}(t, q)=q t^{2} P_{0,0}(q t, q)+q^{3 / 2} t^{2} P_{0,1}(q t, q)+q^{3 / 2} t^{2} P_{1,0}(q t, q) \\
+q^{2} t^{2} P_{1,1}(q t, q)
\end{gathered}
$$

E.g. Generalized Dyck paths with steps in $\{1,2,-1,-2\}$

E.g. Our procedure

$$
\text { qMakeSyst(P,Q,t,q,\{1,2,-1,-2\}) }
$$

gives the following system of functional equations.

$$
\begin{aligned}
P_{0,0}(t, q)= & P_{0,0}(t, q) Q_{0,0}(t, q)+1, \\
P_{0,1}(t, q)= & P_{0,0}(t, q) Q_{0,1}(t, q), \\
P_{1,0}(t, q)= & Q_{1,0}(t, q) P_{0,0}(t, q), \\
P_{1,1}(t, q)= & P_{0,1}(t, q) Q_{1,0}(t, q)+P_{0,0}(t, q), \\
Q_{0,0}(t, q)= & q t^{2} \cdot P_{0,0}(q t, q)+q^{3 / 2} t^{2} \cdot P_{0,1}(q t, q) \\
& \quad+q^{3 / 2} t^{2} \cdot P_{1,0}(q t, q)+q^{2} t^{2} \cdot P_{1,1}(q t, q), \\
Q_{0,1}(t, q)= & q^{1 / 2} t \cdot P_{0,0}(q t, q)+q t \cdot P_{1,0}(q t, q), \\
Q_{1,0}(t, q)= & q^{1 / 2} t \cdot P_{0,0}(q t, q)+q t \cdot P_{0,1}(q t, q)
\end{aligned}
$$

Solving the System of Functional Equations

After the computer finds the system of functional equations described above, we instruct it to find a system algebraic equations for the 'components' of the $P_{a, b}(t, q)$ (and we also need $\left.Q_{a, b}(t, q)\right)$.

To do this, use:

- The Taylor Series expansions about $q=1$:

$$
P_{a, b}(t, q)=\sum_{n=0}^{\infty} \frac{1}{n!}\left[\frac{d^{n}}{d q^{n}} P_{a, b}(t, q)\right]_{q=1}(q-1)^{n}
$$

- Use the following Lemma:

If $f(t)$ is the formal power series of a single variable t, and q is another variable, then

$$
f(q t)=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n}\left[\frac{d^{n}}{d t^{n}} f(t)\right](q-1)^{n}
$$

Solving the System of Functional Equations

Let $P_{a, b}^{\prime}(t, 1)$ denote $\left.\frac{d}{d q} P_{a, b}(t, q)\right|_{q=1}$.
The generating function for the sum of the areas of all legal walks of length n is

$$
P^{\prime}(t, 1)
$$

- Rewrite all our $P_{a, b}(t, q)$ and $Q_{a, b}(t)$ as

$$
\begin{aligned}
& P_{a, b}(t, q)=P_{a, b}(t, 1)+(q-1) \cdot P_{a, b}^{\prime}(t, 1)+O\left((q-1)^{2}\right), \quad \text { and } \\
& Q_{a, b}(t, q)=Q_{a, b}(t, 1)+(q-1) \cdot Q_{a, b}^{\prime}(t, 1)+O\left((q-1)^{2}\right)
\end{aligned}
$$

- We expand in powers of $q-1$ then collect terms
- Use lemma on previous slide and get more equations by differentiating with respect to t each of these equations using implicit differentiation

E.g. Generalized Dyck paths with steps in $\{1,2,-1,-2\}$

E.g. Our procedure

$$
\text { qEqGFt }(\{1,2,-1,-2\}, P, t)
$$

gives

$$
\begin{aligned}
20736 P^{4} t^{10} & -2304 P^{4} t^{9}-6560 P^{4} t^{8}-10368 P^{3} t^{9}+1520 P^{4} t^{7} \\
& -23328 P^{3} t^{8}+465 P^{4} t^{6}+3848 P^{3} t^{7}+3888 P^{2} t^{8} \\
& -184 P^{4} t^{5}+9530 P^{3} t^{6}+17352 P^{2} t^{7}+16 P^{4} t^{4} \\
& -2290 P^{3} t^{5}-429 P^{2} t^{6}-648 P t^{7}-878 P^{3} t^{4} \\
& -8914 P^{2} t^{5}-2214 P t^{6}+352 P^{3} t^{3}+2289 P^{2} t^{4} \\
& -970 P t^{5}+81 t^{6}-32 P^{3} t^{2}+704 P^{2} t^{3}+2295 P t^{4} \\
& -144 t^{5}-324 P^{2} t^{2}-628 P t^{3}+358 t^{4}+32 P^{2} t \\
& -122 P t^{2}-168 t^{3}+72 P t+24 t^{2}-8 P
\end{aligned}
$$

Area Under Generalized Dyck Paths

Say we know bi-variate polynomials $f(t, q), g(t, q)$, and $h(t, q)$ s.t.

$$
P(t, q)=f(t, q)+g(t, q) \cdot P(t, q)+h(t, q) \cdot P(t, q) \cdot P(q t, q)
$$

We can solve for $P^{\prime}(t, 1)$, which gives the total area under the paths of length n.

Note: Rather than outputting algebraic equations, as seen earlier, we now produce closed-form expressions in terms of radicals

We can also solve for higher order derivatives:

$$
P^{(k)}(t, 1)=\left.\frac{d^{k}}{d q^{k}} P(t, q)\right|_{q=1}
$$

Area Under Generalized Dyck Paths

Paper: Explicit Generating Functions for the Sum of the Areas Under Dyck and Motzkin Paths (and for Their Powers)
(Posted on arXiv as well as my website)

Accompanying Maple Package: qEW.txt

(Link in paper as well as on my website)

Brief Description of Process:

(1) Plug in $q=1$
(2) Solve for $P(t, 1)$
(3) Using Taylor series about $q=1$ and comparing the coefficients of $(q-1)^{n}$, we can solve for $P^{(n)}(t, 1)$

- Express $P^{(n)}(t, 1)$ as the sum of derivatives $P^{(k)}(t, 1)$ where $k<n$ and derivatives of functions of t with respect to t
- Since we have $P(t, 1)$, we can simply compute any order derivative with respect to t as well as $P^{\prime}(t, 1)$
- To find $P^{(n)}(t, 1)$, repeat this process with the coefficient of $(q-1)^{k}$ to get $P^{(k)}(t, 1)$ for $k=1, \ldots n$

Demonstrate this Process with the Motzkin Paths

$$
M(t, q)=1+t M(t, q)+t^{2} q M(q t, q) M(t, q)
$$

(1) Plugging in $q=1$, we get

$$
M(t, 1)=1+t M(t, 1)+t^{2}[M(t, 1)]^{2}
$$

(2) Solving for $M(t, 1)$:

$$
M(t, 1)=\frac{1-t \pm \sqrt{-3 t^{2}-2 t+1}}{2 t^{2}}
$$

(3) $M(t, 1)$ is the enumerator for Motzkin paths of length n and has a Taylor series expansion about $t=0$. Thus

$$
M(t, 1)=\frac{1-t-\sqrt{-3 t^{2}-2 t+1}}{2 t^{2}}
$$

Area Under Motzkin Paths: Finding $M_{q}(t, 1)$

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{(q-1)^{k}}{k!} & M^{(k)}(t, 1) \\
& =1+t \sum_{k=0}^{n} \frac{(q-1)^{k}}{k!} M^{(k)}(t, 1) \\
& +q t^{2} \sum_{k=0}^{n} \frac{(q-1)^{k}}{k!} M^{(k)}(t, 1) \sum_{k=0}^{n} \frac{(q-1)^{k}}{k!} M^{(k)}(q t, 1) .
\end{aligned}
$$

The coefficient of $(q-1)$ on both sides gives:

$$
M_{q}(t, 1)=t M_{q}(t, 1)+t^{2} M(t, 1)\left(t M_{t}(t, 1)+2 M_{q}(t, 1)+M(t, 1)\right) .
$$

Area Under Motzkin Paths

$$
M_{q}(t, 1)=\frac{t^{3} M(t, 1) M_{t}(t, 1)+t^{2} M^{2}(t, 1)}{1-t-2 t^{2} M(t, 1)}
$$

We know $M(t, 1)$ and can solve for $M_{t}(t, 1)$ by taking the derivative.

Plugging these in, we get:

$$
M_{q}(t, 1)=\frac{\left(t-1+\sqrt{-3 t^{2}-2 t+1}\right)^{2}}{4 t^{2}\left(-3 t^{2}-2 t-1\right)}
$$

To find $M^{(n)}(t, 1)$, we can repeat this process with the coefficient of $M^{(k)}(t, 1)$ for $k \leq n$.

Now that we have the derivatives...

We can then look at the Maclaurin series of these function to get some pretty interesting information! For example:
(1) $M(t, 1)$ is the weight enumerator of Motzkin paths of length n

$$
1+t+2 t^{2}+4 t^{3}+9 t^{4}+21 t^{5}+51 t^{6}+127 t^{7}+323 t^{8}+O\left(t^{9}\right)
$$

(2) $M_{q}(t, 1)$ is the weight enumerator of the total area under all Motzkin paths of length n
$t^{2}+4 t^{3}+16 t^{4}+56 t^{5}+190 t^{6}+624 t^{7}+2014 t^{8}+6412 t^{9}+O\left(t^{10}\right)$
(3) $M_{q q}(t, 1)+M_{q}(t, 1)$ is the weight enumerator for the sum of the squares of the areas of Motzkin paths of length n
$t^{2}+6 t^{3}+40 t^{4}+198 t^{5}+910 t^{6}+3848 t^{7}+15492 t^{8}+59920 t^{9}+O\left(t^{10}\right)$
We can also do this for higher powers

Look at average areas and the variance.

- Given a family of paths let
$a_{0}(n)=$ the number of such paths of length n,
$a_{1}(n)=$ the total area under such paths of length n,
$a_{2}(n)=$ the sum of the squares of the areas under such paths of length n
- Using qEW.txt, we can generate 10,000 (or more) terms of the sequences of:
- The average areas $\left\{\frac{a_{1}(n)}{a_{0}(n)}\right\}$
- The variances $\left\{\frac{a_{2}(n)}{a_{0}(n)}-\left(\frac{a_{1}(n)}{a_{0}(n)}\right)^{2}\right\}$

