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Thus we can integrate any rational fraction of the form

¢ (z)

y
Urlhpyy oo Upm

i, being of the form ax 45, and ¢ (x) a rational and integral

function of x of a degree lower by at least two unities than

the degree of the denominator. For, expressing ¢(x) in
[ i

2l _
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4th Form, Functions of the form a”¢(z) in which ¢ (x) is
rational and integral. "
2

52 FINITE INTEGRATION. [cH. 1v.

Since Aa” = (a —1) a”, we have
Sa*=-—"2—4 C.
a—1

To deduce Za”¢ (x) we may now employ either a method of
integration by parts or a symbolical method founded upon the
relations between the exponential a” and the symbol A.

To integrate by parts we have,
since Au,w, =u,Av, + v, Au,,

u, Av, = Au,v, — ‘D,HAU, ’

therefore
2t Av, = U0, — 20, Athy cereerinnnninien ),
the theorem required. Applying this we have
aﬂ azﬂ
2p@)a=¢ @) —7~= —7A ()

=@ -asess @)

Thus the integration of a”¢ () is made to depend upon that
of a”A¢ () ; this again will by the same method depend upon
that of a”A’p (x), and so on. Hence ¢ (x) being by Eeypothesis
rational and integral, the process may be continued until the
function under the sign ¥ vanishes. This will happen after
n + 1 operations if ¢ () be of the n™ degree; and the integral
will be obtained in finite terms.

But the symbolical method above referred to leads to the
same result by a single operation.
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Indefinite Hypergeometric Sums in MACSYMA®

F. Wim. Gosper, Jr.
XEROX Palo Ao Research Cenler

ABSTRACT
We present a MACSYMA lmﬁoo which, given the summand
(A) .. ® A'(” - ‘(..‘) - ‘(.’ ’

finds g(n), the "incefinite sum®, withia sn additive constanl, provided that gine+1)/g(n) is & rations! function of
n. We then have the idenlity

(8) ic_ w glgel) - glp).



The Aigorithm

The oniy significanl problem is 10 solve the rational functional equation

(func) a:,, - R:T—)ﬂnhl

for f. Sinca this followed from differancing g(n) = f(n) a, = fin}s g(n), we have

ﬁ(n) 1
f(”) - Zine 2 = ‘("QD - l

gn)

which is rational when gin+1)/g(n) is. Because we have no boundary condition o satisfy, equation (func) is
easier to salisty than a firsl order linear recurrence with polynomial coefficients. In fact, if f(n) is a solution,



if [ is a ration>’ function, then the quotients from Euclid's 2!gorithm {using polynomial division) form the h'mc
of its continued fraction:

1
1

py(n) + :

fn) = P, (n) ¢ =
py(n) ¢

—

.p‘ (n’

Our MACSYMA algorithm successively determines p,, p,, . . . , with the proviso that no p, be constant for i >
1, 50 as fo guaraniee the uniqueness of the representation.



As » result, | patched the algorithm to only determine q ¢f its g+1 undotermined coefi'cients on non terminal
terms where g > 1, thus treating all such cases in the manner of (weirdo;. This seemsd to repair the
problem, at the cost of exhausling list storage capasity on cerlain cases that had formerly worked.
Fortunately, en 20 April 1977, all of this kludgery was tnnoered cbsolets whan | taud & decision procedure
for this problem. (A discrele anslog to the Riach algorithm for indefinite integration.) The procegure is
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ABSTRACT  Given a summand a,, we seek the “indefinite
sum” S(n) determined (within an additive constant) by

2 an = S(m) = S(0) 0]
or, equivalently, by

ap = ﬂn)—ﬂn_ 1). (1]
An algorithm is exhibited which, given a,,, finds those S(n) with
the property
Sin)
S(n — 1)

= a rational function of n. 2]




Method

If S(n)/S(n — 1) is a rational function of n, then by Eq. 1 the
term ratio
S(n)
o __Sw)=Stn=1) -1 '
p—-) S(n—1)—S(n — 2) _S(n—2) -

: Sin-=1)

|

must also be a rational function of n. (We exclude the degen-



erate case where a,, is identically,zero.) Express this ratio as

Qp Pn Qn

b |
Apn—-1 Pn-=1 Ty

where p,, gn, and rpare polynomials in n subject to the fol-
lowing condition:

(5]

ng(Qn» fn+j) =], (6]

for all non-negative integers j.

It is always possible to put a rational function in this form,
for if ged(gn, rn+;) = g(n), then this common factor can be
eliminated with the change of variables

' o ln i i Tn
")’ ™ gln—j)’
Pn—pngln)gn—1)...g(n—j+ 1), 6]

which leaves the term ratio unchanged. The values of j for
which such gs exist can be readily detected as the non-negative

integer roots of the resultant of g, amd r, . ; with respect to
n.
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We now write

S(n) =% f(n)an, 7]
where f(n) is to be determmed. By using Eq. 1,
— _Pn S(n) — _Pn 1
fin) Gn+1 S(n)—S(n—1) gny) ! _Sn—1)
S(n)

so f(n) is a rational function of n whenever §(n)/S(n — 1) is.
By substituting Eq. 7 into Eq. 1, we get

—_Gn+1
an - - ] )Bn-1.
D ——f(n)a, — Dot f(" Jan—)
Multiplying this through by p,/a,, and using Eq. 5, we have
= gn+1f(n) = raf(n = 1), 8]

the functional equation for f.
THEOREM. If S(n)/S(n — 1) is a rational function of n, then

f(n) s a polynomial.



At the same time ...
Moenck, R.: On computing closed forms for summations. In: Proceedings of the 1977 MACSYMA Users’ Conference, pp. 225-236
(1977)

Remembering from sactinn 3 that powers are not nice forms for summation,
we define a factorial operaror on a function:

(9) [f({)]k = f(x)+f(x=1)+f(r=2)...t(x~k+1) for k>0 .
We can extend tﬁis operator by noticing:
(10) (f(x)] = (01 [f(x-0)]

If we define [f(x)]o = 1 and assert that (10) i{s an identity then substituting
k=0 we get:

(11) [£C)]_, = T?T:%IT]_
L

We will call the vaiue of k or L in equations 9 and 11, the factoricl degree of
function, because of its parallel to the "power" Jegree. We now proceed to
examioe the differences of factorials.

(12)  AlE ], = [£(0)] _; A f(x=k+1) , k0 .
k
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Y(x +1)r(x) — Y(x) = 1, (3)

ZA(x)y(x + 1) — B(x — 1)y(x) = C(x). (4)
6(x) = F() 2 e ) 5)

Then substitution y(x) = y(x)[p(x)]x.1 into (4) gives new equation
2A(x)p(x + 1)7(x + 1) = B(x — 1)p(x — k)j(x) = C(x)  (6)

which has polynomial solution y(x) and y(x) in (5) can be replaced
by 7(x), C(x) in (5) can be replaced by C(x) (effectively realizing
cancellation of unnecessary common factor in the numerator and
denominator of (5)). If the degree bound for y(x) in (4) is N, then

the degree bound for y(x) in (6) is N — (k + 1) deg p(x).



Take as an example of extreme case the following summation problem

ZQ_Ta:L' —x — 1000
= (x +1000) =

Dispersion p = 1000 in this case, and the operator M (E) in (24) is 15 E'°%° — 1.
The quotient will have 1000 nonzero terms, and the remainder will be equal to
51900 — 1. In order for the problem to be summable a has to be equal to 2'°°°. In
this case all coefficients of the quotient will be equal to 1, the numerator of the
input will have to have the size exponential in the size of the denominator, and
expanded form of the result will have size polynomial in the size of the input.





