Patterns and Partitions

Yotam Smilansky

Experimental Mathematics Seminar, Rutgers University

Colored sequences of partitions

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

x_{m}, r_{m}, b_{m} the set of left endpoints of all,red,blue intervals in π_{m}.

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

x_{m}, r_{m}, b_{m} the set of left endpoints of all,red,blue intervals in π_{m}.

1. Uniform distribution:

- Is the sequence x_{m} uniformly distributed?
- Are r_{m} and b_{m} uniformly distributed?

Colored sequences of partitions

Set $\mathcal{I}=[0,1]$ and fix $\alpha \in(0,1)$.
Substitution rule: $\mathcal{I} \longmapsto \alpha \mathcal{I} \sqcup \alpha+(1-\alpha) \mathcal{I}$

Kakutani splitting procedure: Put $\pi_{0}=\mathcal{I}$, and define π_{m+1} by substituting all intervals of maximal length in π_{m}.

x_{m}, r_{m}, b_{m} the set of left endpoints of all,red,blue intervals in π_{m}.

1. Uniform distribution:

- Is the sequence x_{m} uniformly distributed?
- Are r_{m} and b_{m} uniformly distributed?

2. Color frequencies:

- Does $\left|r_{m}\right| /\left|x_{m}\right|$ converge?
- Does $\mathcal{L}\left(\left\{x \in \mathcal{I}: x\right.\right.$ is colored red in $\left.\left.\pi_{m}\right\}\right)$ converge?
- In case both limits exist, are they necessarily the same?

Multiscale substitution schemes

Multiscale substitution schemes

Prototiles in \mathbb{R}^{d}

Multiscale substitution schemes

Prototiles in \mathbb{R}^{d}

are substituted by patterns of tiles

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in \mathbb{R}^{d}
are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in \mathbb{R}^{d}
are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Multiscale substitution schemes

Prototiles in $\mathbb{R}^{d} \quad$ are substituted by patterns of tiles
The Kakutani splitting procedure defines a sequence of partitions:

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Directed weighted graph model for substitution schemes

Vertices model the prototiles.
Edges originating in a vertex model the tiles appearing in the substitution rule pattern of the prototile.
Lengths determined by the scales of the tiles.
A scheme is irreducible if its graph is strongly connected.
A non-example: Two labeled copies of \mathcal{I}, with substitution rules:

$$
\mathcal{I}_{1} \longmapsto \frac{3}{5} \mathcal{I}_{2} \sqcup \frac{3}{5}+\frac{2}{5} \mathcal{I}_{2}, \quad \mathcal{I}_{2} \longmapsto \frac{1}{2} \mathcal{I}_{2} \sqcup \frac{1}{2}+\frac{1}{2} \mathcal{I}_{2}
$$

Uniform distribution results

Theorem (Kakutani): For any $\alpha \in(0,1)$, the sequence x_{m} is uniformly distributed.

Uniform distribution results

Theorem (Kakutani): For any $\alpha \in(0,1)$, the sequence x_{m} is uniformly distributed.

Theorem (S.): Kakutani sequences generated by irreducible multiscale substitution schemes are uniformly distributed.

Uniform distribution results

Theorem (Kakutani): For any $\alpha \in(0,1)$, the sequence x_{m} is uniformly distributed.

Theorem (S.): Kakutani sequences generated by irreducible multiscale substitution schemes are uniformly distributed.

Uniform distribution results

Theorem (Kakutani): For any $\alpha \in(0,1)$, the sequence x_{m} is uniformly distributed.

Theorem (S.): Kakutani sequences generated by irreducible multiscale substitution schemes are uniformly distributed.

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.
Tiles in partition π_{m} are modeled by metric paths of length I_{m}.

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.
Tiles in partition π_{m} are modeled by metric paths of length I_{m}. Example: the $\frac{1}{3}$-Kakutani.

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.
Tiles in partition π_{m} are modeled by metric paths of length I_{m}.
Example: the $\frac{1}{3}$-Kakutani. $I_{1}=\log \frac{3}{2}$

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.
Tiles in partition π_{m} are modeled by metric paths of length I_{m}.
Example: the $\frac{1}{3}$-Kakutani. $I_{1}=\log \frac{3}{2}$

$$
I_{2}=2 \log \frac{3}{2}
$$

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.
Tiles in partition π_{m} are modeled by metric paths of length I_{m}.
Example: the $\frac{1}{3}$-Kakutani. $I_{1}=\log \frac{3}{2} \quad I_{2}=2 \log \frac{3}{2}$

$\left|r_{m}\right|=\sharp\left\{\right.$ metric paths of length I_{m} terminating on red edge $\}$

Splitting procedure and flow on edges

Metric paths are directed walks on edges, do not necessarily originate or terminate at vertices.
Tiles in partition π_{m} are modeled by metric paths of length I_{m}.
Example: the $\frac{1}{3}$-Kakutani. $I_{1}=\log \frac{3}{2} \quad I_{2}=2 \log \frac{3}{2}$

$\left|r_{m}\right|=\sharp\left\{\right.$ metric paths of length I_{m} terminating on red edge $\}$
$\mathcal{L}\left(\left\{x \in \mathcal{I}: x\right.\right.$ is colored red in $\left.\left.\pi_{m}\right\}\right)$ is the probability that a metric path of length I_{m} terminates on the red edge, if the red edge is assigned probability $\frac{1}{3}$ and the blue edge probability $\frac{2}{3}$.

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Example: The $\boldsymbol{\alpha}$-Kakutani scheme is incommensurable if and only if $\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q}$, which holds for a.e $\alpha \in(0,1)$.

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Example: The $\boldsymbol{\alpha}$-Kakutani scheme is incommensurable if and only if $\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q}$, which holds for a.e $\alpha \in(0,1)$.
This includes the case $\alpha=\frac{1}{3}$:

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Example: The $\boldsymbol{\alpha}$-Kakutani scheme is incommensurable if and only if $\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q}$, which holds for a.e $\alpha \in(0,1)$.
This includes the case $\alpha=\frac{1}{3}$:

- $\lim \left|r_{m}\right| /\left|x_{m}\right|$

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Example: The $\boldsymbol{\alpha}$-Kakutani scheme is incommensurable if and only if $\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q}$, which holds for a.e $\alpha \in(0,1)$.
This includes the case $\alpha=\frac{1}{3}$:

- $\lim \left|r_{m}\right| /\left|x_{m}\right|=\frac{2}{3}$.

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Example: The $\boldsymbol{\alpha}$-Kakutani scheme is incommensurable if and only if $\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q}$, which holds for a.e $\alpha \in(0,1)$.
This includes the case $\alpha=\frac{1}{3}$:

- $\lim \left|r_{m}\right| /\left|x_{m}\right|=\frac{2}{3}$.
- $\lim \mathcal{L}\left(\left\{x \in \mathcal{I}: x\right.\right.$ is colored red in $\left.\left.\pi_{m}\right\}\right)$

Incommensurable and commensurable schemes

A scheme is incommensurable if there exist two closed paths in the associated graph of lengths $a, b \in \mathbb{R}$ so that $\frac{a}{b} \notin \mathbb{Q}$.

Theorem (S.): Kakutani sequences of partitions generated by irreducible incommensurable schemes have color frequencies, and they can be calculated explicitly in terms of the substitution scheme.

Example: The $\boldsymbol{\alpha}$-Kakutani scheme is incommensurable if and only if $\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q}$, which holds for a.e $\alpha \in(0,1)$.
This includes the case $\alpha=\frac{1}{3}$:

- $\lim \left|r_{m}\right| /\left|x_{m}\right|=\frac{2}{3}$.
- $\lim \mathcal{L}\left(\left\{x \in \mathcal{I}: x\right.\right.$ is colored red in $\left.\left.\pi_{m}\right\}\right)=\frac{\frac{1}{3} \log \frac{1}{3}}{\frac{1}{3} \log \frac{1}{3}+\frac{2}{3} \log \frac{2}{3}}$.

More examples

A commensurable example - The Rauzy fractal scheme:

Edge lengths: $\log \tau, 2 \log \tau, 3 \log \tau$, where $\tau=$ tribonacci constant.

More examples

A commensurable example - The Rauzy fractal scheme:

Edge lengths: $\log \tau, 2 \log \tau, 3 \log \tau$, where $\tau=$ tribonacci constant.
For a.e θ Sadun's generalized pinwheel scheme is incommensurable:

Multiscale substitution tilings (jointly with Yaar Solomon)

Multiscale substitution tilings (jointly with Yaar Solomon)

Given am incommensurable scheme and starting with a prototile T of volume 1 , the substitution flow $F_{t}(T)$ is defined by

- At $t=0$ the tile T is substituted.
- As t increases, the resulting patch is inflated by e^{t}.
- Tiles are substituted as soon as they reach volume 1 .

Multiscale substitution tilings (jointly with Yaar Solomon)

Given am incommensurable scheme and starting with a prototile T of volume 1 , the substitution flow $F_{t}(T)$ is defined by

- At $t=0$ the tile T is substituted.
- As t increases, the resulting patch is inflated by e^{t}.
- Tiles are substituted as soon as they reach volume 1.

Tilings of \mathbb{R}^{d} are defined as limits of $\left\{F_{t}(T): t \geq \mathbb{R}\right\}$.

Multiscale substitution tilings (jointly with Yaar Solomon)

Given am incommensurable scheme and starting with a prototile T of volume 1 , the substitution flow $F_{t}(T)$ is defined by

- At $t=0$ the tile T is substituted.
- As t increases, the resulting patch is inflated by e^{t}.
- Tiles are substituted as soon as they reach volume 1.

Tilings of \mathbb{R}^{d} are defined as limits of $\left\{F_{t}(T): t \geq \mathbb{R}\right\}$.
Our study includes:

- Structural, geometrical and statistical properties of tilings: (types and scales, repetitivity, patch frequencies, BD/BL)
- Dynamical properties of the tiling dynamical system. (minimality, invariant measures)

The commensurable case

Famous constructions such as the Penrose-Robinson scheme:

The commensurable case

Famous constructions such as the Penrose-Robinson scheme:

Uniform distribution follows from the Perron-Frobenius theorem.

The commensurable case

Famous constructions such as the Penrose-Robinson scheme:

Uniform distribution follows from the Perron-Frobenius theorem.

This Kakutani sequence does not have color frequencies.

The incommensurable case - counting paths on graphs

The incommensurable case - counting paths on graphs Let $M(s)$ be the graph matrix function defined by

$$
M_{i j}(s)=e^{-s \cdot l\left(\varepsilon_{1}\right)}+\cdots+e^{-s \cdot l\left(\varepsilon_{k_{i j}}\right)}
$$

and $M_{i j}(s)=0$ if there are no such edges in G.

The incommensurable case - counting paths on graphs Let $M(s)$ be the graph matrix function defined by

$$
M_{i j}(s)=e^{-s \cdot l\left(\varepsilon_{1}\right)}+\cdots+e^{-s \cdot l\left(\varepsilon_{k_{j j}}\right)}
$$

and $M_{i j}(s)=0$ if there are no such edges in G.
Theorem (Kiro, Smilansky $\times 2$): Let G be a strongly connected incommensurable graph. There exist $\lambda>0$ and $Q \in M_{n}(\mathbb{R})$ with positive entries, such that if $\varepsilon \in \mathcal{E}$ has initial vertex $h \in \mathcal{V}$, the number of metric paths of length exactly x from vertex $i \in \mathcal{V}$ to a point on the edge ε grows as

$$
\frac{1-e^{-l(\varepsilon) \lambda}}{\lambda} Q_{i h} e^{\lambda x}+o\left(e^{\lambda x}\right), \quad x \rightarrow \infty
$$

where λ is the maximal real value for which $\rho(M(\lambda))=1$,

$$
Q=\frac{\operatorname{adj}(I-M(\lambda))}{-\operatorname{tr}\left(\operatorname{adj}(I-M(\lambda)) \cdot M^{\prime}(\lambda)\right)}
$$

Poles of the Laplace transform

The proof follows The Wiener-Ikehara Theorem, originally motivated by the Prime Number Theorem.

This requires the study of the poles of the Laplace transform of a counting function, which in our case is given by

$$
\mathcal{L}\{f(x)\}(s)=\frac{1-e^{-I(\varepsilon) s}}{s} \cdot \frac{(\operatorname{adj}(I-M(s)))_{i h}}{\operatorname{det}(I-M(s))}
$$

and so we study the zeroes of the exponential polynomial

$$
\operatorname{det}(I-M(s))
$$

Poles of the Laplace transform

The proof follows The Wiener-Ikehara Theorem, originally motivated by the Prime Number Theorem.

This requires the study of the poles of the Laplace transform of a counting function, which in our case is given by

$$
\mathcal{L}\{f(x)\}(s)=\frac{1-e^{-I(\varepsilon) s}}{s} \cdot \frac{(\operatorname{adj}(I-M(s)))_{i h}}{\operatorname{det}(I-M(s))}
$$

and so we study the zeroes of the exponential polynomial

$$
\operatorname{det}(I-M(s)) .
$$

There is a zero at $s=\lambda \in \mathbb{R}$, and none to the right of $\operatorname{Re}(s)=\lambda$.

Poles of the Laplace transform

The proof follows The Wiener-Ikehara Theorem, originally motivated by the Prime Number Theorem.

This requires the study of the poles of the Laplace transform of a counting function, which in our case is given by

$$
\mathcal{L}\{f(x)\}(s)=\frac{1-e^{-I(\varepsilon) s}}{s} \cdot \frac{(\operatorname{adj}(I-M(s)))_{i h}}{\operatorname{det}(I-M(s))}
$$

and so we study the zeroes of the exponential polynomial

$$
\operatorname{det}(I-M(s)) .
$$

There is a zero at $s=\lambda \in \mathbb{R}$, and none to the right of $\operatorname{Re}(s)=\lambda$. Incommensurability implies no other zeroes on $\operatorname{Re}(s)=\lambda$, and ∞ many zeroes in every vertical strip $\lambda-\varepsilon<\operatorname{Re}(s)<\lambda$.

Poles of the Laplace transform

The proof follows The Wiener-Ikehara Theorem, originally motivated by the Prime Number Theorem.

This requires the study of the poles of the Laplace transform of a counting function, which in our case is given by

$$
\mathcal{L}\{f(x)\}(s)=\frac{1-e^{-I(\varepsilon) s}}{s} \cdot \frac{(\operatorname{adj}(I-M(s)))_{i h}}{\operatorname{det}(I-M(s))}
$$

and so we study the zeroes of the exponential polynomial

$$
\operatorname{det}(I-M(s)) .
$$

There is a zero at $s=\lambda \in \mathbb{R}$, and none to the right of $\operatorname{Re}(s)=\lambda$. Incommensurability implies no other zeroes on $\operatorname{Re}(s)=\lambda$, and ∞ many zeroes in every vertical strip $\lambda-\varepsilon<\operatorname{Re}(s)<\lambda$.

Information on the location of zeroes closest to $\operatorname{Re}(s)=\lambda$ can be used to obtain upper bounds on error terms.

Zeroes of exponential polynomial (jointly with Avner Kiro, Alon Nishry and Aron Wennman)

In the case of graphs modeling an $\boldsymbol{\alpha}$-Kakutani scheme

$$
\operatorname{det}(I-M(s))=1-e^{-a s}-e^{-b s}
$$

with $a=\log \frac{1}{\alpha}$ and $b=\log \frac{1}{1-\alpha}$.

Zeroes of exponential polynomial (jointly with Avner Kiro, Alon Nishry and Aron Wennman)

In the case of graphs modeling an $\boldsymbol{\alpha}$-Kakutani scheme

$$
\operatorname{det}(I-M(s))=1-e^{-a s}-e^{-b s}
$$

with $a=\log \frac{1}{\alpha}$ and $b=\log \frac{1}{1-\alpha}$.
Incommensurability is equivalent to

$$
\beta=\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q},
$$

and by a change of variables $z=s \log \alpha$, we reduce to the study of roots of $e^{z}+e^{\beta z}=1$.

Zeroes of exponential polynomial (jointly with Avner Kiro, Alon Nishry and Aron Wennman)

In the case of graphs modeling an $\boldsymbol{\alpha}$-Kakutani scheme

$$
\operatorname{det}(I-M(s))=1-e^{-a s}-e^{-b s}
$$

with $a=\log \frac{1}{\alpha}$ and $b=\log \frac{1}{1-\alpha}$.
Incommensurability is equivalent to

$$
\beta=\frac{\log \alpha}{\log (1-\alpha)} \notin \mathbb{Q},
$$

and by a change of variables $z=s \log \alpha$, we reduce to the study of roots of $e^{z}+e^{\beta z}=1$.

The following slides show some approximations of such zeroes in compact strips, for different values of β. At the moment these experimentations give rise to more questions than answers...

$\beta=\varphi$ the golden ratio, rightmost roots (up to 10,000)

$\beta=\varphi$, all roots (up to 10,000)

$\beta=\varphi$, histogram

$\beta=e$, rightmost roots (up to 10,000)

$\beta=e$, all roots (up to 10,000)

$\beta=e$, histogram

$\beta=\pi$, rightmost roots (up to 10,000)

$\beta=\pi$, all roots (up to 10,000)

$\beta=\pi$, histogram

$\beta=\ell$, a Liouville number, rightmost roots (up to 30,000)

$\beta=\ell$, all roots (up to 30,000)

$\beta=\ell$, histogram

Extending the model

Next, we now turn to the roots of

$$
e^{z}+e^{\beta z}+e^{\gamma z}=1
$$

which are related to graph with a vertex and three loops, or to schemes in which \mathcal{I} is substituted by three rescaled copy of itself.

$\beta=1$ and $\gamma=\varphi$, all roots (up to 10,000)

$\beta=1$ and $\gamma=\varphi$, histogram

$\beta=\sqrt{2}$ and $\gamma=\sqrt{3}$, all roots (up to 10,000)

$\beta=\sqrt{2}$ and $\gamma=\sqrt{3}$, histogram

$\beta=e$ and $\gamma=\pi$, all roots (up to 10,000)

$\beta=e$ and $\gamma=\pi$, histogram

