Counting Matrices that are Squares

Victor S. Miller

Center for Communications Research - Princeton

28 January, 2021
A request from Neil Sloane on 7 May 2013

“Count 0/1 matrices which are squares of such matrices”
What I answered

- Count squares in $\text{Mat}_n(\mathbb{F}_q)$ and $\text{GL}_n(\mathbb{F}_q)$, where $q = 2^m$.
What I answered

- Count squares in $\text{Mat}_n(\mathbb{F}_q)$ and $\text{GL}_n(\mathbb{F}_q)$, where $q = 2^m$.
- $a(n) = \# \text{ squares in } \text{Mat}_n(\mathbb{F}_2)$
- $b(n) = \# \text{ squares in } \text{GL}_n(\mathbb{F}_2)$
What I answered

▶ Count squares in \(\text{Mat}_n(\mathbb{F}_q) \) and \(\text{GL}_n(\mathbb{F}_q) \), where \(q = 2^m \).
▶ \(a(n) = \# \) squares in \(\text{Mat}_n(\mathbb{F}_2) \)
▶ \(b(n) = \# \) squares in \(\text{GL}_n(\mathbb{F}_2) \)
▶ \(a(n) = \\
\quad 2, 10, 260, 31096, 13711952, 28275659056, 224402782202048, \ldots \\
▶ \(b(n) = \\
\quad 1, 3, 126, 11340, 5940840, 12076523928, 95052257647200, \ldots \)
A good problem

- A good problem is one in which the solution gets you to learn about other things.
A good problem

- A good problem is one in which the solution gets you to learn about other things.
- Word maps in groups.
A good problem

- A good problem is one in which the solution gets you to learn about other things.
- Word maps in groups.
- The cycle index for matrix algebras.
A good problem

- A good problem is one in which the solution gets you to learn about other things.
- Word maps in groups.
- The cycle index for matrix algebras.
- Dickson’s formula for the size of conjugacy classes.
A good problem

- A good problem is one in which the solution gets you to learn about other things.
- Word maps in groups.
- The cycle index for matrix algebras.
- Dickson’s formula for the size of conjugacy classes.
- Meinardus’ theorem for the asymptotics of classes of partitions.
A good problem

- A good problem is one in which the solution gets you to learn about other things.
- Word maps in groups.
- The cycle index for matrix algebras.
- Dickson’s formula for the size of conjugacy classes.
- Meinardus’ theorem for the asymptotics of classes of partitions.
- Using logarithmic derivatives to get faster calculation for products of generating functions.
What is an Answer?

We have a class of combinatorial objects C_n. An good answer is an algorithm to calculate $|C_n|$ in time $o(|C_n|)$. Of course, the faster the better.
Exhaustion for the original problem

- Generate all \(A \in \text{Mat}_n(\mathbb{F}_2) \), interpret \(A \) as a bit string of length \(n^2 \) and set bit corresponding to \(A^2 \).
Exhaustion for the original problem

- Generate all $A \in \text{Mat}_n(\mathbb{F}_2)$, interpret A as a bit string of length n^2 and set bit corresponding to A^2.
- Gray Code: enumerate all N-bit strings by flipping one bit at a time.
Exhaustion for the original problem

- Generate all $A \in \text{Mat}_n(\mathbb{F}_2)$, interpret A as a bit string of length n^2 and set bit corresponding to A^2.

- **Gray Code**: enumerate all N-bit strings by flipping one bit at a time.

- Use Gray code: $B := A^2$, If $A \leftarrow A + E$, then $B \leftarrow B + EA + AE + E^2$, where E has only 1 bit set.

- EA and AE select a row/column from A, $E^2 = E$ or 0.
Exhaustion for the original problem

- Generate all $A \in \text{Mat}_n(F_2)$, interpret A as a bit string of length n^2 and set bit corresponding to A^2.
- **Gray Code**: enumerate all N-bit strings by flipping one bit at a time.
- Use Gray code: $B := A^2$, If $A \leftarrow A + E$, then $B \leftarrow B + EA + AE + E^2$, where E has only 1 bit set.
- EA and AE select a row/column from A, $E^2 = E$ or 0.
- $a(n)$, $n = 1, \ldots, 5$ almost instantaneous, $a(6)$ takes about 1 hour on my iMac.
Exhaustion for the original problem

- Generate all $A \in \text{Mat}_n(\mathbb{F}_2)$, interpret A as a bit string of length n^2 and set bit corresponding to A^2.
- **Gray Code**: enumerate all N-bit strings by flipping one bit at a time.
- Use Gray code: $B := A^2$, If $A \leftarrow A + E$, then $B \leftarrow B + EA + AE + E^2$, where E has only 1 bit set.
- EA and AE select a row/column from A, $E^2 = E$ or 0.
- $a(n)$, $n = 1, \ldots, 5$ almost instantaneous, $a(6)$ takes about 1 hour on my iMac.
- Can't go much further since time is $\approx 2^{n^2}$.
A good strategy, that sometimes works

- Find a “nice” set $X \supset C_n$, where $C_n = \{ x \in X : P(x) \}$, and P is some predicate.
A good strategy, that sometimes works

- Find a “nice” set $X \supset C_n$, where $C_n = \{x \in X : P(x)\}$, and P is some predicate.

- Find a large group G acting on the right on X, compatibly with P: $P(xg) = P(x)$ for all $x \in X, g \in G$.

Sometimes can count all orbits aG with the same value of $|Ga|$ to get a shorter sum, or use generating functions if orbits decompose nicely.
A good strategy, that sometimes works

- Find a “nice” set $X \supset C_n$, where $C_n = \{x \in X : P(x)\}$, and P is some predicate.
- Find a large group G acting on the right on X, *compatibly* with P: $\mathcal{P}(xg) = P(x)$ for all $x \in X, g \in G$.
- Enumerate all orbits aG such that $P(aG)$ is true.
- When G acts by conjugation, the orbits are called *conjugacy classes*, and action is written $x \mapsto x^g$.
- $G_a := \{g \in G : ag = a\}$ the *stabilizer* of a. Called *centralizer* for conjugacy classes.
- $X/G =$ representatives of the orbits.
A good strategy, that sometimes works

- Find a “nice” set $X \supset C_n$, where $C_n = \{x \in X : P(x)\}$, and P is some predicate.
- Find a large group G acting on the right on X, *compatibly* with P: $P(xg) = P(x)$ for all $x \in X$, $g \in G$.
- Enumerate all *orbits* aG such that $P(aG)$ is true.
- When G acts by conjugation, the orbits are called *conjugacy classes*, and action is written $x \mapsto x^g$.
- $G_a := \{g \in G : ag = a\}$ the *stabilizer* of a. Called *centralizer* for conjugacy classes.
- $X/G = \text{representatives of the orbits.}$
- Answer $|C_n| = \sum_{a \in X/G, P(a)} \frac{|G|}{|G_a|}$.

Sometimes can count all orbits aG with the same value of $|G_a|$ to get a shorter sum, or use generating functions if orbits decompose nicely.
A good strategy, that sometimes works

- Find a “nice” set $X \supset C_n$, where $C_n = \{x \in X : P(x)\}$, and P is some predicate.
- Find a large group G acting on the right on X, *compatibly* with P: $\mathcal{P}(xg) = P(x)$ for all $x \in X, g \in G$.
- Enumerate all *orbits* aG such that $P(aG)$ is true.
- When G acts by conjugation, the orbits are called *conjugacy classes*, and action is written $x \mapsto x^g$.
- $G_a := \{g \in G : ag = a\}$ the *stabilizer* of a. Called *centralizer* for conjugacy classes.
- $X/G = \text{representatives of the orbits}$.
- Answer $|C_n| = \sum_{a \in X/G, P(a)} \frac{|G|}{|G_a|}$.
- Sometimes can count all orbits aG with the same value of $|G_a|$ to get a shorter sum, or use generating functions if orbits decompose nicely.
Word Maps

- G: group, w a word in the free group on r generators.
Word Maps

- G: group, w a word in the free group on r generators.
- $w : G^r \rightarrow G$ given by plugging in elements of G.

Questions: What is the image of w?

w induces a measure on G. What are its properties?

Theorem (Michael Larsen, 2004)

Let G_n be a sequence of simple groups, $|G_n| \rightarrow \infty$, and w a non-trivial word. Then

$$\lim_{n \rightarrow \infty} \frac{|w(G_n)|}{|G_n|} = 1$$

Shows that the image $w(G)$ is "big". So $a(n)$ grows approximately like 2^{n^2}.

Word Maps

- G: group, w a word in the free group on r generators.
- $w : G^r \rightarrow G$ given by plugging in elements of G.
- Questions: What is the image of w?
Word Maps

- G: group, w a word in the free group on r generators.
- $w : G^r \to G$ given by plugging in elements of G.
- Questions: What is the image of w?
- w induces a measure on G. What are its properties?
Word Maps

- G: group, w a word in the free group on r generators.
- $w : G^r \to G$ given by plugging in elements of G.
- Questions: What is the image of w?
- w induces a measure on G. What are its properties?

Theorem (Michael Larsen, 2004)

Let G_n be a sequence of simple groups, $|G_n| \to \infty$, and w a non-trivial word. Then

$$
\lim_{n \to \infty} \frac{\log |w(G_n)|}{\log |G_n|} = 1.
$$
Word Maps

- G: group, w a word in the free group on r generators.
- $w : \mathbb{F}_r \to G$ given by plugging in elements of G.
- Questions: What is the image of w?
- w induces a measure on G. What are its properties?

Theorem (Michael Larsen, 2004)

Let G_n be a sequence of simple groups, $|G_n| \to \infty$, and w a non-trivial word. Then

$$
\lim_{n \to \infty} \frac{\log |w(G_n)|}{\log |G_n|} = 1.
$$

Shows that the image $w(G)$ is “big”. So $a(n)$ grows approximately like 2^{n^2}.
Partitions

We need *partitions* to describe the conjugacy classes.

- **Partition**: A non-decreasing sequence of nonnegative integers, all but a finite number are 0: \(\lambda := \lambda_1 \geq \lambda_2 \geq \ldots \), \(\mathcal{P} \): set of all partitions.

- If \(|\lambda| := \sum_i \lambda_i = n\), we write \(\lambda \vdash n\): \(\lambda \) is a partition of \(n \). The \(0 \neq \lambda_i \) are the *parts* of \(\lambda \).
Partitions

We need *partitions* to describe the conjugacy classes.

- **Partition:** A non-decreasing sequence of nonnegative integers, all but a finite number are 0: \(\lambda := \lambda_1 \geq \lambda_2 \geq \ldots \), \(\mathcal{P} \): set of all partitions.

- If \(|\lambda| := \sum_i \lambda_i = n \), we write \(\lambda \vdash n \): \(\lambda \) is a partition of \(n \). The \(0 \neq \lambda_i \) are the *parts* of \(\lambda \).

- **Young diagram:** \(\lambda = (5, 3, 1, 1, 0, \ldots) \rightarrow \)

\[
\begin{array}{cccc}
| & | & | & | \\
| & | & | & \\
| & | & | & \\
| & | & | & \\
\end{array}
\]

Partitions

We need partitions to describe the conjugacy classes.

▶ **Partition**: A non-decreasing sequence of nonnegative integers, all but a finite number are 0: \(\lambda := \lambda_1 \geq \lambda_2 \geq \ldots \), \(\mathcal{P} \): set of all partitions.

▶ If \(|\lambda| := \sum_i \lambda_i = n\), we write \(\lambda \vdash n \): \(\lambda \) is a partition of \(n \). The \(0 \neq \lambda_i \) are the parts of \(\lambda \).

▶ **Young diagram**: \(\lambda = (5, 3, 1, 1, 0, \ldots) \rightarrow \)

▶ **Conjugate**: \(\lambda'_i := \# \{ j : \lambda_j \geq i \} \). Flip the diagram.
Partitions

We need *partitions* to describe the conjugacy classes.

▶ *Partition:* A non-decreasing sequence of nonnegative integers, all but a finite number are 0: $\lambda := \lambda_1 \geq \lambda_2 \geq \ldots$, \mathcal{P}: set of all partitions.

▶ If $|\lambda| := \sum_i \lambda_i = n$, we write $\lambda \vdash n$: λ is a partition of n. The $0 \neq \lambda_i$ are the *parts* of λ.

▶ *Young diagram:* $\lambda = (5, 3, 1, 1, 0, \ldots) \rightarrow \begin{array}{cccc}
\cdot & & & \\
& \cdot & & \\
& & \cdot & \\
& & & \cdot \\
& & & \\
& & & \\
\end{array}$.

▶ *Conjugate:* $\lambda'_i := \#\{j : \lambda_j \geq i\}$. Flip the diagram.

▶ *Multiplicity:* If $\lambda \vdash n$, and $i > 0$, multiplicity of i: $m_i(\lambda) := \#\{j : \lambda_j = i\}$
Partitions

We need *partitions* to describe the conjugacy classes.

- **Partition**: A non-decreasing sequence of nonnegative integers, all but a finite number are 0: $\lambda := \lambda_1 \geq \lambda_2 \geq \ldots$, \mathcal{P}: set of all partitions.

- If $|\lambda| := \sum_i \lambda_i = n$, we write $\lambda \vdash n$: λ is a partition of n. The $0 \neq \lambda_i$ are the *parts* of λ.

- **Young diagram**: $\lambda = (5, 3, 1, 1, 0, \ldots) \rightarrow \begin{array}{cccc}
\square & \square & \square & \\
\square & \square & \\
\square & \square & \\
\end{array}$.

- **Conjugate**: $\lambda'_i := \#\{j : \lambda_j \geq i\}$. Flip the diagram.

- **Multiplicity**: If $\lambda \vdash n$, and $i > 0$, multiplicity of i: $m_i(\lambda) := \#\{j : \lambda_j = i\}$

- **Asymptotics**: $p(n) = \#\{\lambda \vdash n\} \sim \frac{1}{4\sqrt{3n}} \exp(\pi \sqrt{2n/3})$.
A simpler, related problem

Square permutations
How many permutations are squares of other permutations?

- Conjugacy classes \leftrightarrow partitions.
A simpler, related problem

Square permutations

How many permutations are squares of other permutations?

- Conjugacy classes \leftrightarrow partitions.
- $a(n) = \# \text{ squares in } S_n.$
A simpler, related problem

Square permutations
How many permutations are squares of other permutations?

- Conjugacy classes ↔ partitions.
- \(a(n) = \# \) squares in \(S_n \).
- Squares invariant under conjugation.
A simpler, related problem

Square permutations

How many permutations are squares of other permutations?

- Conjugacy classes ↔ partitions.
- \(a(n) = \# \) squares in \(S_n \).
- Squares invariant under conjugation.
- Stabilizer size for \(\lambda \):
 \[
 \prod_j m_j(\lambda)! j^{m_j(\lambda)}.
 \]
A simpler, related problem

Square permutations

How many permutations are squares of other permutations?

- Conjugacy classes \leftrightarrow partitions.
- $a(n) = \#$ squares in S_n.
- Squares invariant under conjugation.
- Stabilizer size for λ: $\prod_j m_j(\lambda)!j^{m_j(\lambda)}$.
- Conjugacy classes of squares: $m_{2j}(\lambda)$ even.
A product of generating functions

- $\lambda \vdash n$ if and only if $\sum_j jm_j(\lambda) = n$.

- The centralizer size is a product of independent factors $f_j(x)$: the generating function of m_j.

 \[
 \begin{align*}
 j \text{ even: } & \sum_{m \geq 0, \text{ even}} \frac{x^{jm}}{j^m m!} = \cosh \left(\frac{x^j}{j} \right) \\
 j \text{ odd: } & \sum_{m \geq 0} \frac{x^{jm}}{j^m m!} = \exp \left(\frac{x^j}{j} \right).
 \end{align*}
 \]

- Their product

 \[
 \sum_{n \geq 1} \frac{a(n)x^n}{n!} = \prod_{j} f_j(x) = \sqrt{\frac{1+x}{1-x}} \prod_{j \geq 1} \cosh \left(\frac{x^{2j}}{2j} \right).
 \]

- Bender: the probability that a permutation is a square

 \[
 \sim \frac{2}{\sqrt{\pi n}} \prod_{k \geq 1} \cosh \left(\frac{1}{2k} \right).
 \]
Application to matrices

- Let $X = \text{Mat}_n(F)$ all $n \times n$ matrices, $P(A)$ true if and only if A is a square.
- Let $G = \text{GL}_n(F)$, invertible matrices. Acts on X by conjugation $A^U := UAU^{-1}$ and is compatible with P. Orbits are *conjugacy classes*. Usually write $C(a) = G_a$.
- If A is conjugate to B we write $A \sim B$.
Polynomials

- \(I(q)\): monic polynomials irreducible over \(\mathbb{F}_q\).
- \(I(q)_d\): members of \(I(q)\) of degree \(d\).
- \(|I(q)_d| = \frac{1}{d} \sum_{e|d} \mu(d/e)q^e\), where \(\mu\) is the Möbius function.
- \(\phi\) is monic and \(r\) a positive integer: \(\phi^{(r)}(x)\) the polynomial whose roots are the \(r\)-th powers (with multiplicity) of the roots of \(\phi\).
Generalized companion matrices

- If ϕ is a monic polynomial denote by $M(\phi)$ its companion matrix.
Generalized companion matrices

- If \(\phi \) is a monic polynomial denote by \(M(\phi) \) its companion matrix.
- If \(\lambda \in \mathcal{P} \) denote by \(M(\lambda, \phi) := \bigoplus_j M(\phi^j) \).

14 / 30
Generalized companion matrices

- If \(\phi \) is a monic polynomial denote by \(M(\phi) \) its companion matrix.
- If \(\lambda \in \mathcal{P} \) denote by \(M(\lambda, \phi) := \bigoplus_j M(\phi^j) \).
- Call the elements conjugate to \(M(\lambda, \phi) \), for \(\phi \in \mathcal{I}(q) \), a \textit{primitive} conjugacy classes.
- If \(\phi, \psi \in \mathcal{I}(q) \), and \(\lambda, \nu \in \mathcal{P} \) then \(M(\lambda, \phi) \sim M(\nu, \psi) \) if and only if \((\lambda, \phi) = (\nu, \psi) \).
Frobenius normal form

Georg Ferdinand Frobenius.

Every conjugacy class in $\text{Mat}_n(F)$ is the conjugacy class of a direct sum of distinct primitive conjugacy classes.
Generating functions from the primitive classes

- We work in \mathbb{F}_q for $q = 2^m$ for some m.
- It suffices to find squares of the primitive conjugacy classes in $M(\lambda, \phi)$.
- By direct calculation $M(\lambda, \phi)^2 \sim M(\Psi(\lambda), \phi^{(2)})$, for a particular partition $\Psi(\lambda)$, independent of ϕ.
- Let $S := \{\Psi(\lambda) : \lambda \in \mathcal{P}\}$.
- Let $F_{\phi}(X) := \sum_{\lambda \in S} \frac{X^{\deg(\phi) |\lambda|}}{|C(M(\lambda, \phi))|}$, the “local” generating function for ϕ.
- Then $\sum_n \frac{a(n)}{|\text{GL}_n(\mathbb{F}_q)|} X^n = \prod_{\phi} F_{\phi}(X)$.
- $|C(M(\lambda, \phi))|$: only dependence on ϕ is by $\deg(\phi)$.
Characterizing the conjugacy classes of squares

- If k is a part of λ it yield parts $\lfloor k/2 \rfloor, \lceil k/2 \rceil$ in $\psi(\lambda)$.
- $\psi(\lambda)$ is characterized by
 \[m_i(\psi(\lambda)) = 2m_{2i}(\lambda) + m_{2i-1}(\lambda) + m_{2i+1}(\lambda) \] for all i.
- In a field of characteristic 2, $\phi \mapsto \phi^{(2)}$ is a permutation on $\mathcal{I}(q)$.
Aha!?

- For each n exhaust over $\lambda \vdash n$ to find all $\Psi(\lambda)$.
- Get the sequence $1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, \ldots$ which is A006950 in OEIS.
- “Number of partitions of n in which each even part occurs with even multiplicity. There is no restriction on the odd parts.”: same as for squares in S_n.
- “Also the number of partitions of n in which all odd parts occur with multiplicity 1. There is no restriction on the even parts.”
- The $\Psi(\lambda)$ don’t have either property!
- But their conjugates do!
- Constructive theorem: $\nu = \Psi(\lambda)$ for some λ if and only if $m_{2i-1}(\nu') \leq 1$ for all i.
A generating function for the partitions

- Let \(a'(n) = \text{number of } \lambda \vdash n, \text{ such that } m_{2j-1}(\lambda') \leq 1. \)
- Algorithm exhausts over these so we need to estimate their number.
- Generating function in A006950 is Ramanujan’s mock theta function

\[
\vartheta(X) := \sum_{n \geq 1} a'(n)X^n = \prod_{k \geq 1} \frac{1 + X^{2k-1}}{1 - X^{2k}} = \prod_{n \geq 1, n \not\equiv 2 \mod 4} (1 - X^n)^{-1}.
\]
Counting Conjugacy Classes of Squares

- Each $\phi \in \mathcal{I}(q)$ has a set S_ϕ of allowed $\lambda \in \mathcal{P}$.

Generating function for number of classes is $\prod_{\phi \in \mathcal{I}(q)} (q) \sum_{\lambda \in S_\phi} X^{|\lambda| - \deg \phi}$.

In our case all S_ϕ are the same.

So generating function for the number of conjugacy classes is $\prod_{d \in \mathcal{I}(q)} (1 - X^d)^{|\mathcal{I}(q)|}.$

Useful trick $1 - qX = \prod_{d=1}^{\infty} (1 - X^d)^{|\mathcal{I}(q)|}$.

Yields generating function for number of classes $\prod_{n \geq 1, n \not\equiv 2 \mod 4} (1 - qX^n) - 1$.

Converges for $|X| < \frac{1}{q}$ with a simple pole at $X = \frac{1}{q}$.

Thus the number of classes for n is $\sim cq^n$ for some $c > 0$.

20 / 30
Counting Conjugacy Classes of Squares

- Each $\phi \in \mathcal{I}(q)$ has a set S_{ϕ} of allowed $\lambda \in \mathcal{P}$.
- Generating function for number of classes is
 \[
 \prod_{\phi \in \mathcal{I}(q)} \sum_{\lambda \in S_{\phi}} X^{|\lambda| \deg \phi}.
 \]
Counting Conjugacy Classes of Squares

- Each $\phi \in I(q)$ has a set S_ϕ of allowed $\lambda \in P$.
- Generating function for number of classes is
 \[
 \prod_{\phi \in I(q)} \sum_{\lambda \in S_\phi} X^{\lambda \deg \phi}.
 \]
- In our case all S_ϕ are the same.
- So generating function for the number of conjugacy classes is
 \[
 \prod_d \vartheta(X^d)^{|I(q)_d|}.
 \]
Counting Conjugacy Classes of Squares

- Each $\phi \in I(q)$ has a set S_ϕ of allowed $\lambda \in P$.
- Generating function for number of classes is
 \[\prod_{\phi \in I(q)} \sum_{\lambda \in S_\phi} X^{|\lambda| \deg \phi}. \]
- In our case all S_ϕ are the same.
- So generating function for the number of conjugacy classes is
 \[\prod_d \omega(X^d)^{|I(q)_d|}. \]
- Useful trick
 \[
 1 - qX = \prod_{d=1}^{\infty} (1 - X^d)^{|I(q)_d|}.
 \]
- Yields generating function for number of classes
 \[
 \prod_{n \geq 1, n \neq 2 \mod 4} (1 - qX^n)^{-1}.
 \]
Counting Conjugacy Classes of Squares

- Each $\phi \in \mathcal{I}(q)$ has a set S_ϕ of allowed $\lambda \in \mathcal{P}$.
- Generating function for number of classes is
 \[\prod_{\phi \in \mathcal{I}(q)} \sum_{\lambda \in S_\phi} X^{|\lambda| \deg \phi}. \]
- In our case all S_ϕ are the same.
- So generating function for the number of conjugacy classes is
 \[\prod_d \vartheta(X^d)^{|\mathcal{I}(q)_d|}. \]
- Useful trick
 \[1 - qX = \prod_{d=1}^{\infty} (1 - X^d)^{|\mathcal{I}(q)_d|}. \]
- Yields generating function for number of classes
 \[\prod_{n \geq 1, n \not\equiv 2 \text{ mod } 4} (1 - qX^n)^{-1}. \]
- Converges for $|X| < 1/q$ with a simple pole at $X = 1/q$.
 Thus $\#$ classes for n is $\sim cq^n$ for some $c > 0$.
Generating Function for the number of squares

- Local function for $\phi \in \mathcal{I}(q)$:

$$F_\phi(X) = \sum_{\lambda \in S_\phi} \frac{X^{\deg(f)}|\lambda|}{|C(M(\lambda, \phi))|}.$$

- As above, all S_ϕ are the same.
- $|C(M(\lambda, \phi))|$ only dependence on ϕ is by $\deg(\phi)$ (see next slide).

- So

$$\sum_{n} \frac{a(n)}{|\text{GL}_n(\mathbb{F}_q)|} X^n = \prod_{d \geq 1} F_d(X)^{|\mathcal{I}(q)_d|}.$$
Size of the centralizer

▶ Frobenius showed:

$$\dim_{\mathbb{F}_q}\{ U \in \text{Mat}_n(\mathbb{F}_q) : UM(\lambda, \phi) = M(\lambda, \phi)U \} = \deg(\phi) \sum_i \lambda_i^2.$$

▶ Yields $$q^{\deg(\phi) \sum_i \lambda_i^2}$$ matrices $$U$$.

▶ We need a correction factor since $$U$$ must be invertible.

▶ Let $$r_n(q) = \frac{|\text{GL}_n(\mathbb{F}_q)|}{|\text{Mat}_n(\mathbb{F}_q)|}$$: the probability that a matrix is invertible.

▶ Dickson: Multiply by $$\prod_i r_{m_i}(\lambda)(q^{\deg(\phi)})$$.

▶ Note: $$r_{\infty}(q) = \lim_{n \to \infty} r_n(q) > 0,$$

$$r_{\infty}(2) \approx 0.28878809508660242.$$
Dickson proved the above in 1900, but many subsequent authors appeared to be unaware of this!
From calculated values it appears that
\[a(n) \sim c_1 2^{n^2}, \quad b(n) \sim c_2 2^{n^2} \]
for some \(c_1, c_2 > 0 \).

In other words the probability that a matrix is a square has a nonzero limit as \(n \to \infty \).

Wall proved a result like this for counting semisimple classes.

An analysis of his method shows that it applies more generally, in particular to our problem.

A bit different than for \(S_n \), where the probability goes to 0.
Bounding the running time

- We iterate over all partitions $\lambda \vdash n$ for $n \leq N$, and $m_{2i-1}(\lambda') \leq 1$. Meinardus' Theorem gives asymptotics for the number of restricted partitions $a'(n) \sim \frac{1}{4} \sqrt{2\pi n} \exp\left(\frac{\pi}{\sqrt{2}} \sqrt{n}\right)$. Still super-polynomial.
Bounding the running time

- We iterate over all partitions $\lambda \vdash n$ for $n \leq N$, and $m_{2i-1}(\lambda') \leq 1$.
- Meinardus’ Theorem gives asymptotics for the number of restricted partitions

$$a'(n) \sim \frac{1}{4\sqrt{2n}} \exp(\pi \sqrt{n/2}).$$

Still super-polynomial.
A useful speedup

- We need to calculate things like $F(X) = \prod_{d=1}^{n} f_d(X)^{n_d}$, where $f_d(X)$ are power series with constant term 1.
- Take logarithmic derivatives

$$\frac{F'(X)}{F(X)} = \sum_{d=1}^{n} n_d \frac{f_d'(X)}{f_d(X)},$$

- Want first $n + 1$ terms. Treat those as unknowns, and 0-th term is 1.
- Get a lower triangular linear system.
- Using this trick, sped up calculation for $n = 14$ from 318 seconds to under 1 second.
Other powers

- Counting squares in characteristic 2 is easier because \(\phi \mapsto \phi^{(2)} \) is one-to-one.
- In odd characteristic one needs to break up the polynomials in \(I(q) \) into different classes.
- Some \(\phi^{(2)} \) are squares of irreducibles, so the partition changes.
- Need to use counting results of Stephen Cohen on decomposition of \(\phi(x^r) \), for \(\phi \) irreducible.
- Similar but more complicated formulas.
Further Questions

- Right now we exhaust over restricted partitions. Is there a polynomial time algorithm in n?
- Finer asymptotics for $a(n)$, $b(n)$.
- Analogous results for powers that are relatively prime to the characteristic of the field.
- Faster algorithm for square roots.
- The sequence of the maximum number of square roots of a matrix. Related to counting integer points in a polytope.
Acknowledgements

- Neil Sloane, for posing the problem and for the OEIS!
- Bob Guralnick and Jason Fulman for helpful correspondence.
- Richard Stong for explaining Wall’s analytic method.
Doron and Herb