
Locality preserving hash functions, a partial order
and tiles in binary space

Victor S. Miller
Joint with Don Coppersmith, Dan Gordon and Peter Ostapenko

IDA Center for Communications Research, Princeton, NJ

29 April, 2021

1 / 27



Finding two needles in a haystack

The problem

I Given a list L = (x (1), . . . , x (N)) of n-bit bit strings.

I Plant a pair (x (i), x (j)) where, Hamming distance (number of
bits that disagree) dH(x (i), x (j)) = k � n, and everything else
is random.

I Find x (i), x (j).
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Have we gone down a “Rabbit Hole”?

I The isoperimetric inequality for the
Hamming Cube.

I Syndrome Decoding.

I An interesting partial order.

I Discrete tiles in a binary space.

I Fast Hadamard Transform.

I Linear Programming.

I Bin Packing.
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A first attempt

Comments
I x (i) are random: dH(x (i), x (j)) ≈ n/2. Any “hit” is not

spurious.

I Exhaustion: Try all pairs.

I Work is N(N − 1)/2.

I For N = 109 that’s a lot of work.

I Can we do better?
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A better (?) idea

I Use a “hash” function f : Bn → Br .

I Put string x into the “bucket” labeled with f (x).

I Only compare bitstrings in the same bucket.

I Cuts down number of comparisons by a factor of 2n−r .

I Call sought for pair w and w̃ .

I Will work well if probability of of w and w̃ being in the same
bucket is large enough.

I Loses certainty.

I If we fail try another hash function.

I Question: what are the best f to use?
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Channels and Codes

I The Binary Symmetric Channel BSC(p) takes each bit and
flips it independently with probability p.

I Pass a bitstring x through BSC(p) to get x̃ .

I A code S ⊂ Bn is a subset of bit strings.

I Error detecting: if x ∈ S and x̃ 6∈ S we’ve detected an error.

I Error correcting: x ∈ S , find x̂ “closest” to x̃ .
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Probability of disagreement

I FS(p): probability if x ∈ S is random that x̃ ∈ S .

FS(t) :=
n∑

i=0

Ai (S)t i , Ai (S) := #{x , y ∈ S : dH(x , y) = i}

FS(p) :=
1

|S |
(1− p)nFS(p/(1− p))

I Error detecting: probability of failure. We want to minimize.

I f −1(b) is set of elements in bucket labeled by b ∈ Br .

P(f ) := Pr(f (X ) = f (X̃ )) =
∑
b∈Br

Ff −1(b)(p).

I Goal: Find S ⊂ Bn, |S | = 2n−r which maximizes FS(p).
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Equivalence

I σ ∈ Sn: a permutation.

I σ(x) permutes the coordinates of x .

I Note: Fσ(S)⊕a(p) = FS(p), where a ∈ Bn, ⊕ is mod 2
addition of coordinates.

I We will say that S and σ(S)⊕ a are isomorphic.

I Thus P(fσ,a) = P(f ) where fσ,a(x) = f (σ(x)⊕ a).

I Note: If S is “good” we can define a hash function f from it
if it’s a tile: Bn is a disjoint union of translates of S using ⊕.

I Index translates by elements of Br , map x to index of
translate containing it.
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The question I was asked

I Projection: π : Bn → Br be π((x1, . . . , xn)) = (x1, . . . , xr ).

I Question: Can we do better than using π?

I Answer: It depends on p.
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The isoperimetric theorem for the Hamming Cube

Theorem (Isoperimetric Theorem (Harper))

If S ⊂ Bn, let e(S) = #{x ∈ S , y 6∈ S : dH(x , y) = 1}. Then

e(S) ≥ 1

2
|S | log2 |S |,

with equality if and only if S is isomorphic to (∗, . . . , ∗, 0, . . . , 0), a
subcube.

Theorem
Projection is best if p ≤ 2−2(n−r).

Proof.
Use the isoperimetric inequality for the Hamming cube. Note that
A0(S) = |S |,A1(S) = n|S | − e(S).
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Doing better than projection

I C ⊂ Bn: a linear subspace of dimension r .

I Check matrix: A: x ∈ C ⇔ Ax = 0.

I Syndrome: Given x̃ calculate Ax̃ . Gives the coset of C
containing x̃ .

I For each coset a⊕ C give y ∈ a⊕ C of minimum Hamming
weight: Coset Leader.

I Use the set of coset leaders as a region S .

I Theorem: Asymptotically this beats projection for a random
code of fixed rate.

For the Golay code G

FG(t) := 2048 + 11684t + 128524t2 + 226688t3,

Better than projection when p ≥ 0.2555.
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Optimal Regions

Definition (Optimal Region)

Let S ⊂ Bn. Say that S is optimal at t ∈ (0, 1) if FS(t) ≥ FS ′(t)
for all S ′ ⊂ Bn, |S ′| = |S |.
S is optimal if it is optimal at some t ∈ (0, 1).

Theorem (Optimal Region Theorem (Gordon, Miller,
Ostapenko))

An optimal subset S ⊂ Bn is isomorphic to an order ideal in the
partial order 4R (defined below).

Proof.
Uses the “shifting” and “compression” functions of Erdős-Ko-Rado
from extremal set theory. Looks at local failures to be an order
ideal, and corrects them.
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A partial order

I S is a set, 4 is a partial order on S .

I Reflexive: x 4 x for all x .

I Antisymmetric: x 4 y , y 4 x ⇒ x = y .

I Transitive: x 4 y , y 4 z ⇒ x 4 z .

I Note: Not every pair x , y ∈ S may be comparable.

I (S ,4) is called a poset.

I Identify bitstring x ∈ Bn with a subset of {0, . . . , n − 1}, I (x)
of positions of 1 bits.

I T(i) := i th largest element of T

I Define: x 4R y if

I (x)(1) ≤ I (y)(1), . . . , I (x)(k) ≤ I (y)(k),

where k = min(|I (x)|, |I (y)|).
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What’s in a name?

The partial order 4R has many names.

I Kündgen: right-shifted partial order

I Stanley, Proctor (and others):
M(n) (the poset name).

I Ahlswede, Tamm: pushing order.

Has many interesting connections: parti-
tions, Coxeter Groups.
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Order Ideals

I Order Ideal: A subset T ⊂ S where x ∈ S , y 4 x ⇒ y ∈ S .

I Generators: T ⊂ S . 〈T 〉 := {x ∈ S : ∃y ∈ T , x 4 y}.
I Principal ideal: 〈{x}〉: one generator.
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Finding all order ideals of a given size

I Squire: a recursion to find all order ideals of a poset.

I Number of all ideals grows too quickly, but we’re only
interested those of limited size.

Principal ideals of size n in M(n)

1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 6, 1, 2, 3, 4, 2, 6, 2, 4, 3, 5,
2, 6, 3, 4, 5, 7, 1, 4, 3, 6, 4, 5, 2, 7, 3, 4, 5, 7, 3, 8, 2, 6, 2, 6, 4,
8, 3, 4, 5, 11, 4, 7, 3, 6, 5, 6, 4, 15

Order ideals of size n in M(n): A274312.
≈ 2.06372 · 1.259305361.29232158n

1 , 1 , 1, 2 , 2, 3, 4, 6 , 7, 10, 13, 18, 23, 31, 40, 54 , 69, 91,
118, 155, 199, 260, 334, 433, 555, 717, 917, 1180, 1506, 1929,
2458, 3140 , 3990, 5081, 6445, 8185, 10361, 13125, 16581,
20956, 26424, 33322, 41940, 52782, 66312, 83293, 104467,
130979, . . . , 4384627 .
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≈ 2.06372 · 1.259305361.29232158n

1 , 1 , 1, 2 , 2, 3, 4, 6 , 7, 10, 13, 18, 23, 31, 40, 54 , 69, 91,
118, 155, 199, 260, 334, 433, 555, 717, 917, 1180, 1506, 1929,
2458, 3140 , 3990, 5081, 6445, 8185, 10361, 13125, 16581,
20956, 26424, 33322, 41940, 52782, 66312, 83293, 104467,
130979, . . . , 4384627 .
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Finding small optimal regions

I Find all order ideals in M(n) of sizes s = 2, 4, 8, 16, 32, 64.

I Calculate corresponding FS(t) polynomials.

I Compare all of them to find optimal regions.

I For s = 2, 4, 8 only projection is optimal.

I For s = 16: 5 optimal besides projection.

I For s = 32: 20 optimal besides projection.

I For s = 64: 56 optimal besides projection.

I For all but 10 of the size 64, they are sets of minimal weight
coset leaders of a linear code.

17 / 27



Finding small optimal regions

I Find all order ideals in M(n) of sizes s = 2, 4, 8, 16, 32, 64.

I Calculate corresponding FS(t) polynomials.

I Compare all of them to find optimal regions.

I For s = 2, 4, 8 only projection is optimal.

I For s = 16: 5 optimal besides projection.

I For s = 32: 20 optimal besides projection.

I For s = 64: 56 optimal besides projection.

I For all but 10 of the size 64, they are sets of minimal weight
coset leaders of a linear code.

17 / 27



Finding small optimal regions

I Find all order ideals in M(n) of sizes s = 2, 4, 8, 16, 32, 64.

I Calculate corresponding FS(t) polynomials.

I Compare all of them to find optimal regions.

I For s = 2, 4, 8 only projection is optimal.

I For s = 16: 5 optimal besides projection.

I For s = 32: 20 optimal besides projection.

I For s = 64: 56 optimal besides projection.

I For all but 10 of the size 64, they are sets of minimal weight
coset leaders of a linear code.

17 / 27



The terrible 10

Table: Putative tiles

k n generators of V

6 12 {11}, {10, 5}, {9, 8}
7 13 {12}, {10, 4}, {9, 8}
8 14 {13, 2}, {13, 1, 0}, {3, 2, 0}
9 15 {14, 1, 0}, {10, 2}

16 22 {21, 1}
17 23 {22, 0}, {19, 1}
18 24 {23, 0}, {17, 1}
19 25 {24, 0}, {15, 1}
20 26 {25, 0}, {13, 1}
21 27 {26, 0}, {11, 1}
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Tiles in Bn

Definition (Tile)

A subset S ⊆ Bn is a tile if Bn is covered by disjoint translates of S .

∃A ⊆ Bn, A⊕ S = Bn, uniquely.

The set A is called a complement of S . Note: A is also a tile.

Remark
This is equivalent to A⊕ S = Bn, (A⊕ A) ∩ (S ⊕ S) = {0}.
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Deciding if a subset is a tile

I χS(x) = 1 if x ∈ S , 0 otherwise.

I Convolution: g ? h(x) :=
∑

y∈Bn g(x)h(x ⊕ y).

I S is known, A is unknown.

I χA ? χS(x) = #{a ∈ A, s ∈ S : x = a⊕ s}
I Hadamard Transform: ĝ(y) :=

∑
x∈Bn g(x)(−1)x ·y .

I Convolution ⇒ Product: ĝ ? h(y) = ĝ(y)ĥ(y)

I Equivalent to: χ̂A(y)χ̂S(y) = |A|δ(y), (δ(y) = 1 if y = 0,
= 0, otherwise).

I Integer program: Given a finite set of linear equalities and
inequalities with integer variables, find values of variables
satisfying all of them.
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∑

x∈Bn g(x)(−1)x ·y .

I Convolution ⇒ Product: ĝ ? h(y) = ĝ(y)ĥ(y)
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Necessary and Sufficient equations for a tile

Variables:
zu = χA(u),wx = χ̂A(x).

Conditions:

0 ≤ zu ≤1 and is an integer.

−|A| ≤ wx ≤|A| and is an integer.

w0 =|A|.
wx =0 if x 6= 0 and χ̂S(x) 6= 0.

wx =
∑
u

(−1)x ·uzu for all x .

Unfortunately too hard for CPLEX (high quality Integer
Programming solver).
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A relaxation

I Use (A⊕ A) ∩ (S ⊕ S) = {0}.
I Use that and equation of Hadamard transform: for

n = 12, 13, 14, 15 sought for A doesn’t exist!
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Necessary Equations for a tile

Variables:
bu = χA ? χA(u), cx = |χ̂A(x)|2.

Conditions:

0 ≤ bu ≤|A| and is an integer.

0 ≤ cx ≤|A|2 and is the square of an integer.

b0 =|A|.
c0 =|A|2.
bu =0 if u 6= 0 and χS ? χS(u) 6= 0.

cx =0 if x 6= 0 and χ̂S(x) 6= 0.

cx =
∑
u

(−1)x ·ubu for all x .
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A useful trick

I Equations for the Hadamard Transform involve 22n nonzero
coefficients.

I Sparse matrix multiplication: Calculate Ax with #
multiplications = # nonzero coefficients in A.

I If we can write A = B(1) · · ·B(r), and B(i) are sparse it’s a
win.

I Fast Hadamard Transform: H = B(1) · · ·B(n), where #
nonzeros in B(i) is only 2n.

I Introduce extra variables for intermediate products.

I Makes the problems for n = 12, 13, 14, 15 small enough for
CPLEX. Others are still too big.
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Pieces and Bins

I X : linear subspace of Bn.

I Intersect S with cosets of X :
pieces.

I #((a⊕ S) ∩ (b ⊕ X )) =
#(S ∩ ((a⊕ b)⊕ X )).

I Must use all pieces to cover
cosets of X .

I Can’t make it work for
n = 12, 13 but can for all
others.

k r bin size piece census

8 3 8 10*5, 1*6, 1*8
9 3 8 4*4, 8*5, 1*8

16 2 4 20*3, 1*4
17 2 4 3*2, 18*3, 1*4
18 2 4 6*2, 16*3, 1*4
19 2 4 9*2, 14*3, 1*4
20 2 4 12*2, 12*3, 1*4
21 2 4 15*2, 10*3, 1*4
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Things to do

I Prove asymptotics for # order ideals of a given size in M(n).

I Characterize those ideals yielding optimal regions.

I Better formulation for linear programming proof of
non-tileability.

I When does bin packing work?

I Can we combine the two ideas?

I Ultimate goal: good characterization of those ideals yielding
tiles.

26 / 27



Things to do

I Prove asymptotics for # order ideals of a given size in M(n).

I Characterize those ideals yielding optimal regions.

I Better formulation for linear programming proof of
non-tileability.

I When does bin packing work?

I Can we combine the two ideas?

I Ultimate goal: good characterization of those ideals yielding
tiles.

26 / 27



Things to do

I Prove asymptotics for # order ideals of a given size in M(n).

I Characterize those ideals yielding optimal regions.

I Better formulation for linear programming proof of
non-tileability.

I When does bin packing work?

I Can we combine the two ideas?

I Ultimate goal: good characterization of those ideals yielding
tiles.

26 / 27



Things to do

I Prove asymptotics for # order ideals of a given size in M(n).

I Characterize those ideals yielding optimal regions.

I Better formulation for linear programming proof of
non-tileability.

I When does bin packing work?

I Can we combine the two ideas?

I Ultimate goal: good characterization of those ideals yielding
tiles.

26 / 27



Things to do

I Prove asymptotics for # order ideals of a given size in M(n).

I Characterize those ideals yielding optimal regions.

I Better formulation for linear programming proof of
non-tileability.

I When does bin packing work?

I Can we combine the two ideas?

I Ultimate goal: good characterization of those ideals yielding
tiles.

26 / 27



Things to do

I Prove asymptotics for # order ideals of a given size in M(n).

I Characterize those ideals yielding optimal regions.

I Better formulation for linear programming proof of
non-tileability.

I When does bin packing work?

I Can we combine the two ideas?

I Ultimate goal: good characterization of those ideals yielding
tiles.

26 / 27



References I
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